1
|
Winefield KC, Larsen DS, Painter GF, Compton BJ. Rapid and Stereoselective Access to 6″-Amino-6″-deoxy-α-GalCer Scaffolds. J Org Chem 2025; 90:3745-3751. [PMID: 40035627 DOI: 10.1021/acs.joc.5c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This work describes a highly efficient route to an orthogonally protected α-galactosylphytosphingosine (α-GalPhyt) from which 6″-N-modified α-galactosylceramide (α-GalCer) analogues can be synthesized rapidly and on-scale. Key to this route is the use of a d-galactal-derived 1,2-anhydro donor that undergoes an α-selective glycosylation with a sphingoid acceptor. The resulting α-GalPhyt intermediate can be orthogonally deprotected, enabling selective manipulation at either the C-6″ position of the galactose ring or at C-2 of the sphingoid lipid. The utility of this approach was demonstrated by the synthesis of the potent natural killer (NK) T cell agonist, NU-α-GalCer, and a novel 6″-amino-6″-deoxy analogue of another notable agonist, 7DW8-5, both from the same key intermediate.
Collapse
Affiliation(s)
- Kaleb C Winefield
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| |
Collapse
|
2
|
Baygu Y, Kabay N, Kabay B, Yıldız B, Ömeroğlu İ, Durmuş M, Rıza Karagür E, Akça H, Ergin Ç, Gök Y. Synthesis, characterization and investigation of photochemical and in vitro antiproliferative properties of novel Zn(II) phthalocyanine. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
1,3-Phenylene-based symmetrical bis(urea-1,2,3-triazole) hybrids: Synthesis, antimicrobial and in silico studies as 14α-sterol demethylase inhibitors. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Meijlink MA, Chua YC, Chan STS, Anderson RJ, Rosenberg MW, Cozijnsen A, Mollard V, McFadden GI, Draper SL, Holz LE, Hermans IF, Heath WR, Painter GF, Compton BJ. 6″-Modifed α-GalCer-peptide conjugate vaccine candidates protect against liver-stage malaria. RSC Chem Biol 2022; 3:551-560. [PMID: 35656478 PMCID: PMC9092427 DOI: 10.1039/d1cb00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Self-adjuvanting vaccines consisting of peptide epitopes conjugated to immune adjuvants are a powerful way of generating antigen-specific immune responses. We previously showed that a Plasmodium-derived peptide conjugated to a rearranged form of α-galactosylceramide (α-GalCer) could stimulate liver-resident memory T (TRM) cells that were effective killers of liver-stage Plasmodium berghei ANKA (Pba)-infected cells. To investigate if similar or even superior TRM responses can be induced by modifying the α-GalCer adjuvant, we created new conjugate vaccine cadidates by attaching an immunogenic Plasmodium-derived peptide antigen to 6″-substituted α-GalCer analogues. Vaccine synthesis involved developing an efficient route to α-galactosylphytosphingosine (α-GalPhs), from which the prototypical iNKT cell agonist, α-GalCer, and its 6″-deoxy-6″-thio and -amino analogues were derived. Attaching a cathepsin B-cleavable linker to the 6″-modified α-GalCer created pro-adjuvants bearing a pendant ketone group available for peptide conjugation. Optimized reaction conditions were developed that allow for the efficient conjugation of peptide antigens to the pro-adjuvants via oxime ligation to create new glycolipid-peptide (GLP) conjugate vaccines. A single dose of the vaccine candidates induced acute NKT and Plasmodium-specific CD8+ T cell responses that generated potent hepatic TRM responses in mice. Our findings demonstrate that attaching antigenic peptides to 6″-modifed α-GalCer generates powerful self-adjuvanting conjugate vaccine candidates that could potentially control hepatotropic infections such as liver-stage malaria. Candidate vaccines comprised of peptide antigen conjugated to 6″-modified α-GalCer analogues generate potent hepatic TRM responses in mice with a single dose inducing protective immunity against malaria in a Plasmodium sporozoite challenge model.![]()
Collapse
Affiliation(s)
- Michael A. Meijlink
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Susanna T. S. Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Matthew W. Rosenberg
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourntie, Parkville, VIC, Australia
| | - Vanessa Mollard
- School of BioSciences, University of Melbourntie, Parkville, VIC, Australia
| | | | - Sarah L. Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Lauren E. Holz
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Avalia Immunotherapies Limited, Lower Hutt, New Zealand
| | - William R. Heath
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Avalia Immunotherapies Limited, Lower Hutt, New Zealand
| | - Benjamin J. Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| |
Collapse
|
5
|
Poonia N, Lal K, Kumar A. Design, synthesis, antimicrobial evaluation and in silico studies of symmetrical bis (urea-1,2,3-triazole) hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04318-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Abstract
This review highlights the progress on the isolation, bioactivity, biogenesis and total synthesis of dimeric sesquiterpenoids since 2010.
Collapse
Affiliation(s)
- Lie-Feng Ma
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Yi-Li Chen
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Wei-Guang Shan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| |
Collapse
|
7
|
Gomes NGM, Pereira RB, Andrade PB, Valentão P. Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Mar Drugs 2019; 17:md17100551. [PMID: 31569621 PMCID: PMC6835637 DOI: 10.3390/md17100551] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
While several marine natural products bearing the 2,5-diketopiperazine ring have been reported to date, the unique chemistry of dimeric frameworks appears to remain neglected. Frequently reported from marine-derived strains of fungi, many naturally occurring diketopiperazine dimers have been shown to display a wide spectrum of pharmacological properties, particularly within the field of cancer and antimicrobial therapy. While their structures illustrate the unmatched power of marine biosynthetic machinery, often exhibiting unsymmetrical connections with rare linkage frameworks, enhanced binding ability to a variety of pharmacologically relevant receptors has been also witnessed. The existence of a bifunctional linker to anchor two substrates, resulting in a higher concentration of pharmacophores in proximity to recognition sites of several receptors involved in human diseases, portrays this group of metabolites as privileged lead structures for advanced pre-clinical and clinical studies. Despite the structural novelty of various marine diketopiperazine dimers and their relevant bioactive properties in several models of disease, to our knowledge, this attractive subclass of compounds is reviewed here for the first time.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| |
Collapse
|
8
|
Negri GE, Gharakhanian EG, Deming TJ. Tunable, Functional Diblock Copolypeptide Hydrogels Based on Methionine Homologs. Macromol Biosci 2019; 20:e1900243. [DOI: 10.1002/mabi.201900243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/10/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Graciela E. Negri
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E Young Dr. E Los Angeles CA 90095–1600 USA
| | - Eric G. Gharakhanian
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E Young Dr. E Los Angeles CA 90095–1600 USA
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E Young Dr. E Los Angeles CA 90095–1600 USA
- Department of Bioengineering University of California, Los Angeles 5121 Engineering 5 Los Angeles CA 90095–1600 USA
| |
Collapse
|
9
|
Fink J, Seibel J. Click reactions with functional sphingolipids. Biol Chem 2019; 399:1157-1168. [PMID: 29908120 DOI: 10.1515/hsz-2018-0169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Sphingolipids and glycosphingolipids can regulate cell recognition and signalling. Ceramide and sphingosine-1-phosphate are major players in the sphingolipid pathways and are involved in the initiation and regulation of signalling, apoptosis, stress responses and infection. Specific chemically synthesised sphingolipid derivatives containing small functionalities like azide or alkyne can mimic the biological properties of natural lipid species, which turns them into useful tools for the investigation of the highly complex sphingolipid metabolism by rapid and selective 'click chemistry' using sensitive tags like fluorophores. Subsequent analysis by various fluorescence microscopy techniques or mass spectrometry allows the identification and quantification of the corresponding sphingolipid metabolites as well as the research of associated enzymes. Here we present an overview of recent advances in the synthesis of ceramide and sphingosine analogues for bioorthogonal click reactions to study biosynthetic pathways and localization of sphingolipids for the development of novel therapeutics against lipid-dependent diseases.
Collapse
Affiliation(s)
- Julian Fink
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| | - Jürgen Seibel
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
10
|
Victor MM, Farias RR, da Silva DL, do Carmo PHF, de Resende-Stoianoff MA, Viegas C, Espuri PF, Marques MJ. Synthesis and Evaluation of Antifungal and Antitrypanosomastid Activities of Symmetrical 1,4-Disubstituted-1,2,3-Bistriazoles Obtained by CuAAC Conditions. Med Chem 2018; 15:400-408. [PMID: 30360747 DOI: 10.2174/1573406414666181024111522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/23/2018] [Accepted: 10/10/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The trypanosomatids, such as the protozoan Leishmania spp., have a demand by ergosterol, which is not present in the membrane from mammal cells. The suppression of the synthesis of ergosterol would be a new target of compounds with leishmanicidal activity, and bistriazole has shown trypanocidal activity by this mechanism. The incidence of fungal infections has increased at an alarming rate over the last decades. This is related both to the growing population of immune-compromised individuals and to the emergence of strains that are resistant to available antifungals. Therefore, there is a challenge for the search of potential new antifungal agents. OBJECTIVE The study aimed to synthesize 1,4-disubstituted-1,2,3-bistriazoles by optimized copper( I)-catalyzed alkyne-azide cycloaddition (CuAAC) and evaluate their antifungal and antitrypanosomastid activities. METHOD The synthesis of symmetrical bistriazoles with diazides as spacers was planned to be performed following the CuAAC reaction strategy. For evaluation of best conditions for the synthesis of symmetrical bistriazoles hex-1-yne 2 was chosen as leading compound, and a variety of catalysts were employed, choosing (3:1) alkyne:diazide stoichiometric relationship employing CuSO4.5H2O as the best condition. For the preparation of diversity in the synthesis of symmetrical bistriazoles, a 1,3-diazide-propan-2-ol 1a and 1,3-diazidepropane 1b were reacted with seven different alkynes, furnishing eleven symmetrical bistriazoles 9-13a,b and 14a. All compounds were essayed to cultures of promastigotes of L. amazonensis (1 x 106 cells mL-1) in the range of 0.10 - 40.00 µg mL-1 and incubated at 25ºC. After 72 h of incubation, the surviving parasites were counted. For antifungal assay, the minimum inhibitory concentrations (MIC) for yeasts and filamentous fungi were determined. Each compound was tested in 10 serial final concentrations (64 to 0.125 µg mL-1). RESULTS Eleven 1,4-disubstituted-1,2,3-bistriazoles were synthesized and their structures were confirmed by IR, 1H and 13C-NMR and Mass spectral analysis. The antifungal and antitrypanosomastid activities were evaluated. The best result to antifungal activity was reached by bistriazole 11a that showed the same MIC of fluconazole (32 µg mL-1) against Candida krusei ATCC 6258, an emerging and potentially multidrug-resistant fungal pathogen. Due to their intrinsically biological activity versatility, five derivatives compounds showed leishmanicidal inhibitory activity between 15.0 and 20.0% at concentrations of 20 and 40.0 µg mL-1. Among these compounds the derivative 13a showed best IC50 value of 63.34 µg mL-1 (182.86 µM). CONCLUSION The preliminary and promising results suggest that bistriazole derivatives, especially compound 13a, could represent an innovative scaffold for further studies and development of new antifungal and anti-parasitic drug candidates.
Collapse
Affiliation(s)
- Mauricio M Victor
- Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil.,National Institute of Science and Technology for Energy and Environmental, Salvador 40170-115, BA, Brazil
| | - Ravir R Farias
- Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil.,National Institute of Science and Technology for Energy and Environmental, Salvador 40170-115, BA, Brazil
| | - Danielle L da Silva
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270- 901, MG, Brazil
| | - Paulo H F do Carmo
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270- 901, MG, Brazil
| | - Maria A de Resende-Stoianoff
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270- 901, MG, Brazil
| | - Cláudio Viegas
- PeQuim - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil
| | - Patrícia F Espuri
- Biomedical Sciences Institute, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil
| | - Marcos J Marques
- Biomedical Sciences Institute, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil
| |
Collapse
|
11
|
Ahmad SAA, Ciampi S, Parker SG, Gonçales VR, Gooding JJ. Forming Ferrocenyl Self‐Assembled Monolayers on Si(100) Electrodes with Different Alkyl Chain Lengths for Electron Transfer Studies. ChemElectroChem 2018. [DOI: 10.1002/celc.201800717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shahrul A. A. Ahmad
- School of Chemistry Australian Centre for NanoMedicine ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney, New South Wales 2052 Australia
- Institute of Advanced Technology Universiti Putra Malaysia 43400 Serdang, Selangor Malaysia
| | - Simone Ciampi
- Department of Chemistry Curtin University Bentley, Western Australia 6102 Australia
| | - Stephen G. Parker
- School of Chemistry Australian Centre for NanoMedicine ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Vinicius R. Gonçales
- School of Chemistry Australian Centre for NanoMedicine ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney, New South Wales 2052 Australia
| | - J. Justin Gooding
- School of Chemistry Australian Centre for NanoMedicine ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney, New South Wales 2052 Australia
| |
Collapse
|
12
|
Bevan JGM, Lourenço EC, Chaves-Ferreira M, Rodrigues JA, Rita Ventura M. Immobilization of UDP-Galactose on an Amphiphilic Resin. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jessica G. M. Bevan
- Biology of Parasitism Laboratory; Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
- Bioorganic Chemistry Laboratory; Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Apartado 127 2780-901 Oeiras Portugal
| | - Eva C. Lourenço
- Bioorganic Chemistry Laboratory; Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Apartado 127 2780-901 Oeiras Portugal
| | - Miguel Chaves-Ferreira
- Biology of Parasitism Laboratory; Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - João A. Rodrigues
- Biology of Parasitism Laboratory; Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - M. Rita Ventura
- Bioorganic Chemistry Laboratory; Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Apartado 127 2780-901 Oeiras Portugal
| |
Collapse
|
13
|
He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res 2016; 429:1-22. [DOI: 10.1016/j.carres.2016.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
14
|
Liao SG, Yue JM. Dimeric Sesquiterpenoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 101 2016; 101:1-112. [DOI: 10.1007/978-3-319-22692-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Zheng ZJ, Wang D, Xu Z, Xu LW. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry. Beilstein J Org Chem 2015; 11:2557-76. [PMID: 26734102 PMCID: PMC4685768 DOI: 10.3762/bjoc.11.276] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC) for such transformations. In addition, the application of bitriazoles and the related CuAAAC reaction in different fields, including medicinal chemistry, coordination chemistry, biochemistry, and supramolecular chemistry, have been highlighted.
Collapse
Affiliation(s)
- Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Ding Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| |
Collapse
|
16
|
Dossa RG, Alperin DC, Garzon D, Mealey RH, Brown WC, Jervis PJ, Besra GS, Cox LR, Hines SA. In contrast to other species, α-Galactosylceramide (α-GalCer) is not an immunostimulatory NKT cell agonist in horses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:49-58. [PMID: 25445911 DOI: 10.1016/j.dci.2014.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
α-GalCer is a potent immunomodulatory molecule that is presented to NKT cells via the CD1 antigen-presenting system. We hypothesized that when used as an adjuvant α-GalCer would induce protective immune responses against Rhodococcus equi, an important pathogen of young horses. Here we demonstrate that the equine CD1d molecule shares most features found in CD1d from other species and has a suitable lipid-binding groove for presenting glycolipids to NKT cells. However, equine CTL stimulated with α-GalCer failed to kill cells infected with R. equi, and α-GalCer did not increase killing by CTL co-stimulated with R. equi antigen. Likewise, α-GalCer did not induce the lymphoproliferation of equine PBMC or increase the proliferation of R. equi-stimulated cells. Intradermal injection of α-GalCer in horses did not increase the recruitment of lymphocytes or cytokine production. Furthermore, α-GalCer-loaded CD1d tetramers, which have been shown to be broadly cross-reactive, did not bind equine lymphocytes. Altogether, our results demonstrate that in contrast to previously described species, horses are unable to respond to α-GalCer. This raises questions about the capabilities and function of NKT cells and other lipid-specific T lymphocytes in horses.
Collapse
Affiliation(s)
- Robson G Dossa
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | - Debra C Alperin
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | - Diana Garzon
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | - Wendy C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | - Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stephen A Hines
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA.
| |
Collapse
|
17
|
Arslan M, Gok O, Sanyal R, Sanyal A. Clickable Poly(ethylene glycol)-Based Copolymers Using Azide-Alkyne Click Cycloaddition-Mediated Step-Growth Polymerization. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mehmet Arslan
- Department of Chemistry; Bogazici University; Bebek 34342 Istanbul Turkey
| | - Ozgul Gok
- Department of Chemistry; Bogazici University; Bebek 34342 Istanbul Turkey
| | - Rana Sanyal
- Department of Chemistry; Bogazici University; Bebek 34342 Istanbul Turkey
| | - Amitav Sanyal
- Department of Chemistry; Bogazici University; Bebek 34342 Istanbul Turkey
| |
Collapse
|
18
|
Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P. Switching Invariant Natural Killer T (iNKT) Cell Response from Anticancerous to Anti-Inflammatory Effect: Molecular Bases. J Med Chem 2014; 57:5489-508. [DOI: 10.1021/jm4010863] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xavier Laurent
- Faculté
de Médecine, Intestinal Biotech Development, Amphis J et K, Boulevard du Professeur Jules Leclerc, 59045 Lille Cedex, France
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Benjamin Bertin
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Ophélie Milhomme
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Régis Millet
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Eric Hénon
- Université
de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles,
BSMA-ICMR, UMR CNRS 6229, Moulin de
la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Philippe Chavatte
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| |
Collapse
|
19
|
Hung JT, Sawant RC, Chen JC, Yen YF, Chen WS, Yu AL, Luo SY. Design and synthesis of galactose-6-OH-modified α-galactosyl ceramide analogues with Th2-biased immune responses. RSC Adv 2014. [DOI: 10.1039/c4ra08602c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a simple type of O-6 analogue of KRN7000 was synthesized starting from galactosyl iodide and d-lyxose.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Genomics Research Center
- Academia Sinica
- Taipei 115, Taiwan
- Institute of Stem Cell & Translational Cancer Research
- Chang Gung Memorial Hospital at Linkou
| | | | - Ji-Chuan Chen
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Yu-Fen Yen
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Wan-Shin Chen
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Alice L. Yu
- Genomics Research Center
- Academia Sinica
- Taipei 115, Taiwan
- Institute of Stem Cell & Translational Cancer Research
- Chang Gung Memorial Hospital at Linkou
| | - Shun-Yuan Luo
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| |
Collapse
|
20
|
Anderson BL, Teyton L, Bendelac A, Savage PB. Stimulation of natural killer T cells by glycolipids. Molecules 2013; 18:15662-88. [PMID: 24352021 PMCID: PMC4018217 DOI: 10.3390/molecules181215662] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 01/31/2023] Open
Abstract
Natural killer T (NKT) cells are a subset of T cells that recognize glycolipid antigens presented by the CD1d protein. The initial discovery of immunostimulatory glycolipids from a marine sponge and the T cells that respond to the compounds has led to extensive research by chemists and immunologists to understand how glycolipids are recognized, possible responses by NKT cells, and the structural features of glycolipids necessary for stimulatory activity. The presence of this cell type in humans and most mammals suggests that it plays critical roles in antigen recognition and the interface between innate and adaptive immunity. Both endogenous and exogenous natural antigens for NKT cells have been identified, and it is likely that glycolipid antigens remain to be discovered. Multiple series of structurally varied glycolipids have been synthesized and tested for stimulatory activity. The structural features of glycolipids necessary for NKT cell stimulation are moderately well understood, and designed compounds have proven to be much more potent antigens than their natural counterparts. Nevertheless, control over NKT cell responses by designed glycolipids has not been optimized, and further research will be required to fully reveal the therapeutic potential of this cell type.
Collapse
Affiliation(s)
| | | | | | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
21
|
Jahromi AH, Fu Y, Miller KA, Nguyen L, Luu LM, Baranger AM, Zimmerman SC. Developing bivalent ligands to target CUG triplet repeats, the causative agent of myotonic dystrophy type 1. J Med Chem 2013; 56:9471-9481. [PMID: 24188018 DOI: 10.1021/jm400794z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An expanded CUG repeat transcript (CUG(exp)) is the causative agent of myotonic dystrophy type 1 (DM1) by sequestering muscleblind-like 1 protein (MBNL1), a regulator of alternative splicing. On the basis of a ligand (1) that was previously reported to be active in an in vitro assay, we present the synthesis of a small library containing 10 dimeric ligands (4-13) that differ in length, composition, and attachment point of the linking chain. The oligoamino linkers gave a greater gain in affinity for CUG RNA and were more effective when compared to oligoether linkers. The most potent in vitro ligand (9) was shown to be aqueous-soluble and both cell- and nucleus-permeable, displaying almost complete dispersion of MBNL1 ribonuclear foci in a DM1 cell model. Direct evidence for the bioactivity of 9 was observed in its ability to disperse ribonuclear foci in individual live DM1 model cells using time-lapse confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Amin Haghighat Jahromi
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL, USA.,Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Yuan Fu
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Kali A Miller
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lien Nguyen
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Long M Luu
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Anne M Baranger
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Steven C Zimmerman
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL, USA.,Department of Chemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
22
|
Pauwels N, Aspeslagh S, Elewaut D, Calenbergh SV. Synthesis of 6″-triazole-substituted α-GalCer analogues as potent iNKT cell stimulating ligands. Bioorg Med Chem 2012; 20:7149-54. [DOI: 10.1016/j.bmc.2012.09.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
|
23
|
Xue JL, He XP, Yang JW, Shi DT, Cheng CY, Xie J, Chen GR, Chen K. Construction of triazolyl bidentate glycoligands (TBGs) by grafting of 3-azidocoumarin to epimeric pyranoglycosides via a fluorogenic dual click reaction. Carbohydr Res 2012; 363:38-42. [DOI: 10.1016/j.carres.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 12/30/2022]
|