1
|
Reid A, Erickson KM, Hazel JM, Lukose V, Troutman JM. Chemoenzymatic Preparation of a Campylobacter jejuni Lipid-Linked Heptasaccharide on an Azide-Linked Polyisoprenoid. ACS OMEGA 2023; 8:15790-15798. [PMID: 37151508 PMCID: PMC10157688 DOI: 10.1021/acsomega.3c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
Complex poly- and oligosaccharides on the surface of bacteria provide a unique fingerprint to different strains of pathogenic and symbiotic microbes that could be exploited for therapeutics or sensors selective for specific glycans. To discover reagents that can selectively interact with specific bacterial glycans, a system for both the chemoenzymatic preparation and immobilization of these materials would be ideal. Bacterial glycans are typically synthesized in nature on the C55 polyisoprenoid bactoprenyl (or undecaprenyl) phosphate. However, this long-chain isoprenoid can be difficult to work with in vitro. Here, we describe the addition of a chemically functional benzylazide tag to polyisoprenoids. We have found that both the organic-soluble and water-soluble benzylazide isoprenoid can serve as a substrate for the well-characterized system responsible for Campylobacter jejuni N-linked heptasaccharide assembly. Using the organic-soluble analogue, we demonstrate the use of an N-acetyl-glucosamine epimerase that can be used to lower the cost of glycan assembly, and using the water-soluble analogue, we demonstrate the immobilization of the C. jejuni heptasaccharide on magnetic beads. These conjugated beads are then shown to interact with soybean agglutinin, a lectin known to interact with N-acetyl-galactosamine in the C. jejuni heptasaccharide. The methods provided could be used for a wide variety of applications including the discovery of new glycan-interacting partners.
Collapse
Affiliation(s)
- Amanda
J. Reid
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Katelyn M. Erickson
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Joseph M. Hazel
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
- Department
of Chemistry, The Ohio State University, 281 W Lane Avenue, Columbus, Ohio 43210, United States
| | - Vinita Lukose
- Departments
of Chemistry and Biology, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jerry M. Troutman
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| |
Collapse
|
2
|
Eade CR, Wallen TW, Gates CE, Oliverio CL, Scarbrough BA, Reid AJ, Jorgenson MA, Young KD, Troutman JM. Making the Enterobacterial Common Antigen Glycan and Measuring Its Substrate Sequestration. ACS Chem Biol 2021; 16:691-700. [PMID: 33740380 DOI: 10.1021/acschembio.0c00983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The enterobacterial common antigen (ECA), a three-sugar repeat unit polysaccharide produced by Enterobacteriaceae family members, impacts bacterial outer membrane permeability, and its biosynthesis affects the glycan landscape of the organism. ECA synthesis impacts the production of other polysaccharides by reducing the availability of shared substrates, the most notable of which is the 55-carbon polyisoprenoid bactoprenyl phosphate (BP), which serves as a carrier for the production of numerous bacterial glycans including ECA, peptidoglycan, O-antigen, and more. Here, using a combination of in vitro enzymatic synthesis and liquid chromatography-mass spectrometry (LC-MS) analysis of bacterial lysates, we provide biochemical evidence for the effect on endogenous polyisoprenoid pools from cell culture that arises from glycan pathway disruption. In this work, we have cloned and expressed each gene involved in ECA repeat unit biosynthesis and reconstituted the pathway in vitro, providing LC-MS characterized standards for the investigation of cellular glycan-linked intermediates and BP. We then generated ECA deficient mutants in genes associated with production of the polysaccharide, which we suspected would accumulate materials identical to our standards. We found that indeed accumulated products from these cells were indistinguishable from our enzymatically prepared standards, and moreover we observed a concomitant decrease in cellular BP levels with each mutant. This work provides the first direct biochemical evidence for the sequestration of BP upon the genetic disruption of glycan biosynthesis pathways in bacteria. This work also provides methods for the direct assessment of both the ECA glycan, and a new understanding of the dynamic interdependence of the bacterial polysaccharide repertoire.
Collapse
Affiliation(s)
- Colleen R. Eade
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Timothy W. Wallen
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Claire E. Gates
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cassidy L. Oliverio
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Beth A. Scarbrough
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Amanda J. Reid
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Matthew A. Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Kevin D. Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jerry M. Troutman
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
3
|
Cochrane RVK, Alexander FM, Boland C, Fetics SK, Caffrey M, Cochrane SA. From plant to probe: semi-synthesis of labelled undecaprenol analogues allows rapid access to probes for antibiotic targets. Chem Commun (Camb) 2020; 56:8603-8606. [DOI: 10.1039/d0cc03388j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extraction of undecaprenol from bay leaves followed by synthetic modification is a convenient method to obtain novel chemical probes.
Collapse
Affiliation(s)
| | | | - Coilín Boland
- School of Medicine and School of Biochemistry and Immunology
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Susan K. Fetics
- School of Medicine and School of Biochemistry and Immunology
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Stephen A. Cochrane
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| |
Collapse
|
4
|
Scott PM, Erickson KM, Troutman JM. Identification of the Functional Roles of Six Key Proteins in the Biosynthesis of Enterobacteriaceae Colanic Acid. Biochemistry 2019; 58:1818-1830. [PMID: 30821147 DOI: 10.1021/acs.biochem.9b00040] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When subjected to harsh conditions such as low pH, pathogenic Escherichia coli can secrete colanic acid to establish a protective barrier between the organism and the acidic environment. The colanic acid consists of a six-sugar repeating unit polymer comprised of glucose, fucose, galactose, and glucuronic acid. The region of the E. coli genome that encodes colanic acid biosynthesis has been reported, and the first enzyme in the biosynthesis pathway has been biochemically characterized. However, the specific roles of the remaining genes required for colanic acid biosynthesis have not been identified. Here we report the in vitro reconstitution of the next six steps in the assembly of the colanic acid repeating unit. To do this, we have cloned and overexpressed each gene within the colanic acid biosynthesis operon. We then tested the activity of the protein product of these genes using high-performance liquid chromatography analysis and a fluorescent analogue of the isoprenoid anchor bactoprenyl diphospho-glucose as a starting substrate. To ensure that retention time changes were associated with varying sugar additions or modifications, we developed a liquid chromatography-mass spectrometry method for analysis of the products produced by each enzyme. We have identified the function of all but one encoded glycosyltransferase and have identified the function of two acetyltransferases. This work demonstrates the centrality of acetylation in the biosynthesis of colanic acid and provides insight into the activity of key proteins involved in the production of an important and highly conserved bacterial glycopolymer.
Collapse
|
5
|
A Defective Undecaprenyl Pyrophosphate Synthase Induces Growth and Morphological Defects That Are Suppressed by Mutations in the Isoprenoid Pathway of Escherichia coli. J Bacteriol 2018; 200:JB.00255-18. [PMID: 29986944 DOI: 10.1128/jb.00255-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
The peptidoglycan exoskeleton shapes bacteria and protects them against osmotic forces, making its synthesis the target of many current antibiotics. Peptidoglycan precursors are attached to a lipid carrier and flipped from the cytoplasm into the periplasm to be incorporated into the cell wall. In Escherichia coli, this carrier is undecaprenyl phosphate (Und-P), which is synthesized as a diphosphate by the enzyme undecaprenyl pyrophosphate synthase (UppS). E. coli MG1655 exhibits wild-type morphology at all temperatures, but one of our laboratory strains (CS109) was highly aberrant when grown at 42°C. This strain contained mutations affecting the Und-P synthetic pathway genes uppS, ispH, and idi Normal morphology was restored by overexpressing uppS or by replacing the mutant (uppS31) with the wild-type allele. Importantly, moving uppS31 into MG1655 was lethal even at 30°C, indicating that the altered enzyme was highly deleterious, but growth was restored by adding the CS109 versions of ispH and idi Purified UppSW31R was enzymatically defective at all temperatures, suggesting that it could not supply enough Und-P during rapid growth unless suppressor mutations were present. We conclude that cell wall synthesis is profoundly sensitive to changes in the pool of polyisoprenoids and that isoprenoid homeostasis exerts a particularly strong evolutionary pressure.IMPORTANCE Bacterial morphology is determined primarily by the overall structure of the semirigid macromolecule peptidoglycan. Not only does peptidoglycan contribute to cell shape, but it also protects cells against lysis caused by excess osmotic pressure. Because it is critical for bacterial survival, it is no surprise that many antibiotics target peptidoglycan biosynthesis. However, important gaps remain in our understanding about how this process is affected by peptidoglycan precursor availability. Here, we report that a mutation altering the enzyme that synthesizes Und-P prevents cells from growing at high temperatures and that compensatory mutations in enzymes functioning upstream of uppS can reverse this phenotype. The results highlight the importance of Und-P metabolism for maintaining normal cell wall synthesis and shape.
Collapse
|
6
|
Lee M, Hesek D, Zajíček J, Fisher JF, Mobashery S. Synthesis and shift-reagent-assisted full NMR assignment of bacterial (Z 8,E 2,ω)-undecaprenol. Chem Commun (Camb) 2017; 53:12774-12777. [PMID: 29139490 PMCID: PMC5749266 DOI: 10.1039/c7cc06781j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The repeating isoprene unit is a fundamental biosynthetic motif. The repetitive structure presents challenges both for synthesis and for structural characterization. In this synthesis of the (Z8,E2,ω)-undecaprenol of prokaryotic glycobiology, we exemplify solutions to these challenges. Allylation of sulfone-derived carbanions controlled the stereochemistry, and its proof-of-structure was secured by Eu(hfc)3 complexation to disperse the overlaid resonances of its 1H NMR spectrum.
Collapse
Affiliation(s)
- Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | |
Collapse
|
7
|
Sharma S, Erickson KM, Troutman JM. Complete Tetrasaccharide Repeat Unit Biosynthesis of the Immunomodulatory Bacteroides fragilis Capsular Polysaccharide A. ACS Chem Biol 2017; 12:92-101. [PMID: 28103676 DOI: 10.1021/acschembio.6b00931] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Capsular polysaccharide A (CPSA) is a four-sugar repeating unit polymer found on the surface of the gut symbiont Bacteroides fragilis that has therapeutic potential in animal models of autoimmune disorders. This therapeutic potential has been credited to its zwitterionic character derived from a positively charged N-acetyl-4-aminogalactosamine (AADGal) and a negatively charged 4,6-O-pyruvylated galactose (PyrGal). In this report, using a fluorescent polyisoprenoid chemical probe, the complete enzymatic assembly of the CPSA tetrasaccharide repeat unit is achieved. The proposed pyruvyltransferase, WcfO; galactopyranose mutase, WcfM; and glycosyltransferases, WcfP and WcfN, encoded by the CPSA biosynthesis gene cluster were heterologously expressed and functionally characterized. Pyruvate modification, catalyzed by WcfO, was found to occur on galactose of the polyisoprenoid-linked disaccharide (AADGal-Gal), and did not occur on galactose linked to uridine diphosphate (UDP) or a set of nitrophenyl-galactose analogues. This pyruvate modification was also found to be required for the incorporation of the next sugar in the pathway N-acetylgalactosamine (GalNAc) by the glycosyltransferase WcfP. The pyruvate acetal modification of a galactose has not been previously explored in the context of a polysaccharide biosynthesis pathway, and this work demonstrates the importance of this modification to repeat unit assembly. Upon production of the polyisoprenoid-linked AADGal-PyrGal-GalNAc, the proteins WcfM and WcfN were found to work in concert to form the final tetrasaccharide, where WcfM formed UDP-galactofuranose (Galf) and WcfN transfers Galf to the AADGal-PyrGal-GalNAc. This work demonstrates the first enzymatic assembly of the tetrasaccharide repeat unit of CPSA in a sequential single pot reaction.
Collapse
Affiliation(s)
- Sunita Sharma
- Department
of Chemistry, ‡The Center for Biomedical Engineering and Science, §Department of Biological Sciences, ∥Nanoscale Science
Program, University of North Carolina at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| | - Katelyn M. Erickson
- Department
of Chemistry, ‡The Center for Biomedical Engineering and Science, §Department of Biological Sciences, ∥Nanoscale Science
Program, University of North Carolina at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| | - Jerry M. Troutman
- Department
of Chemistry, ‡The Center for Biomedical Engineering and Science, §Department of Biological Sciences, ∥Nanoscale Science
Program, University of North Carolina at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| |
Collapse
|
8
|
Troutman JM, Erickson KM, Scott PM, Hazel JM, Martinez CD, Dodbele S. Tuning the production of variable length, fluorescent polyisoprenoids using surfactant-controlled enzymatic synthesis. Biochemistry 2015; 54:2817-27. [PMID: 25897619 DOI: 10.1021/acs.biochem.5b00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bactoprenyl diphosphate (BPP), a two-E eight-Z configuration C55 isoprenoid, serves as a critical anchor for the biosynthesis of complex glycans central to bacterial survival and pathogenesis. BPP is formed by the polymerase undecaprenyl pyrophosphate synthase (UppS), which catalyzes the elongation of a single farnesyl diphosphate (FPP) with eight Z-configuration isoprene units from eight isopentenyl diphosphates. In vitro analysis of UppS and other polyprenyl diphosphate synthases requires the addition of a surfactant such as Triton X-100 to stimulate the release of the hydrophobic product from the enzyme for effective and efficient turnover. Here using a fluorescent 2-nitrileanilinogeranyl diphosphate analogue of FPP, we have found that a wide range of surfactants can stimulate release of product from UppS and that the structure of the surfactant has a major impact on the lengths of products produced by the protein. Of particular importance, shorter chain surfactants promote the release of isoprenoids with four to six Z-configuration isoprene additions, while larger chain surfactants promote the formation of natural isoprenoid lengths (8Z) and larger. We have found that the product chain lengths can be readily controlled and coarsely tuned by adjusting surfactant identity, concentration, and reaction time. We have also found that binary mixtures of just two surfactants can be used to fine-tune isoprenoid lengths. The surfactant effects discovered do not appear to be significantly altered with an alternative isoprenoid substrate. However, the surfactant effects do appear to be dependent on differences in UppS between bacterial species. This work provides new insights into surfactant effects in enzymology and highlights how these effects can be leveraged for the chemoenzymatic synthesis of otherwise difficult to obtain glycan biosynthesis probes. This work also provides key reagents for the systematic analysis of structure-activity relationships between glycan biosynthesis enzymes and isoprenoid structure.
Collapse
Affiliation(s)
- Jerry M Troutman
- †Department of Chemistry, ‡Nanoscale Science Program, and §The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Katelyn M Erickson
- †Department of Chemistry, ‡Nanoscale Science Program, and §The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Phillip M Scott
- †Department of Chemistry, ‡Nanoscale Science Program, and §The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Joseph M Hazel
- †Department of Chemistry, ‡Nanoscale Science Program, and §The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Christina D Martinez
- †Department of Chemistry, ‡Nanoscale Science Program, and §The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Samantha Dodbele
- †Department of Chemistry, ‡Nanoscale Science Program, and §The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| |
Collapse
|
9
|
Dodbele S, Martinez CD, Troutman JM. Species differences in alternative substrate utilization by the antibacterial target undecaprenyl pyrophosphate synthase. Biochemistry 2014; 53:5042-50. [PMID: 25020247 PMCID: PMC4341984 DOI: 10.1021/bi500545g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Undecaprenyl pyrophosphate synthase
(UPPS) is a critical enzyme
required for the biosynthesis of polysaccharides essential for bacterial
survival. In this report, we have tested the substrate selectivity
of UPPS derived from the mammalian symbiont Bacteroides fragilis, the human pathogen Vibrio vulnificus, and the
typically benign but opportunistic pathogen Escherichia coli. An anthranilamide-containing substrate, 2-amideanilinogeranyl diphosphate
(2AA-GPP), was an effective substrate for only the B. fragilis UPPS protein, yet replacing the amide with a nitrile [2-nitrileanilinogeranyl
diphosphate (2CNA-GPP)] led to a compound that was fully functional
for UPPS from all three target organisms. These fluorescent substrate
analogues were also found to undergo increases in fluorescence upon
isoprenoid chain elongation, and this increase in fluorescence can
be utilized to monitor the activity and inhibition of UPPS in 96-well
plate assays. The fluorescence of 2CNA-GPP increased by a factor of
2.5-fold upon chain elongation, while that of 2AA-GPP increased only
1.2-fold. The 2CNA-GPP compound was therefore more versatile for screening
the activity of UPPS from multiple species of bacteria and underwent
a larger increase in fluorescence that improved its ability to detect
increases in chain length. Overall, this work describes the development
of new assay methods for UPPS and demonstrates the difference in substrate
utilization between forms of UPPS from different species, which has
major implications for UPPS inhibitor development, assay construction,
and the development of polysaccharide biosynthesis probes.
Collapse
Affiliation(s)
- Samantha Dodbele
- Department of Chemistry, University of North Carolina at Charlotte , 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | | | | |
Collapse
|
10
|
Troutman JM, Sharma S, Erickson KM, Martinez CD. Functional identification of a galactosyltransferase critical to Bacteroides fragilis Capsular Polysaccharide A biosynthesis. Carbohydr Res 2014; 395:19-28. [PMID: 24997288 DOI: 10.1016/j.carres.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 01/14/2023]
Abstract
Capsular Polysaccharide A (CPSA), a polymer of a four-sugar repeating unit that coats the surface of the mammalian symbiont Bacteroides fragilis, has therapeutic potential in animal models of Multiple Sclerosis and other autoinflammatory diseases. Genetic studies have demonstrated that CPSA biosynthesis is dependent primarily on a single gene cluster within the B. fragilis genome. However, the precise functions of the individual glycosyltransferases encoded by this cluster have not been identified. In this report each of these glycosyltransferases (WcfQ, WcfP, and WcfN) have been expressed and tested for their function in vitro. Using a reverse phase high performance liquid chromatography (HPLC) assay, WcfQ and WcfP were found to transfer galactose from uridine diphosphate (UDP)-linked galactose (Gal) to N-acetyl-4-amino-6-deoxy-galactosamine (AADGal) linked to a fluorescent mimic of bactoprenyl diphosphate, the native isoprenoid anchor for bacterial polysaccharide biosynthesis. The incorporation of galactose to form a bactoprenyl-linked disaccharide was confirmed by radiolabel incorporation and mass spectrometry (MS) of purified product. Using varying concentrations of UDP-Gal and enzyme, WcfQ was found to be the most effective protein at transferring galactose, and is the most likely candidate for in vivo incorporation of the sugar. WcfQ also cooperated in the presence of three preceding biosynthetic enzymes to form an isoprenoid-linked disaccharide in a single-pot reaction. This work represents a critical step in understanding the biosynthetic pathway responsible for the formation of CPSA, an unusual and potentially therapeutic biopolymer.
Collapse
Affiliation(s)
- Jerry M Troutman
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, United States; Center for Biomedical Engineering and Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, United States.
| | - Sunita Sharma
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, United States
| | - Katelyn M Erickson
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, United States
| | - Christina D Martinez
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, United States
| |
Collapse
|
11
|
Castillo D, Espejo R, Middelboe M. Genomic structure of bacteriophage 6H and its distribution as prophage in Flavobacterium psychrophilum strains. FEMS Microbiol Lett 2013; 351:51-58. [PMID: 24267868 DOI: 10.1111/1574-6968.12342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 02/02/2023] Open
Abstract
Flavobacterium psychrophilum is currently one of the most devastating fish pathogens worldwide causing considerable economic losses in salmonid aquaculture. Recently, attention has been drawn to the use of phages for controlling F. psychrophilum, and phages infecting the pathogen have been isolated. Here, we present the genome sequence of F. psychrophilum bacteriophage 6H and its distribution as prophage in F. psychrophilum isolates. The DNA sequence revealed a genome of 46 978 bp containing 63 predicted ORFs, of which 13% was assigned a putative function, including an integrase. Sequence analysis showed > 80% amino acid similarity to a specific region found in the virulent F. psychrophilum strain JIP02/86 (ATCC 49511), suggesting that a prophage similar to phage 6H was present in this strain. Screening for a collection of 49 F. psychrophilum strains isolated in Chile, Denmark, and USA for the presence of four phage 6H genes (integrase, tail tape protein and two hypothetical proteins) by PCR showed the presence of these prophage genes in 80% of the isolates. In conclusion, we hypothesize that bacteriophage 6H belongs to an abundant group of temperate phages which has lysogenized a large fraction of the global F. psychrophilum community.
Collapse
Affiliation(s)
- Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Macul, Santiago, Chile
| | | | | |
Collapse
|
12
|
Mostafavi AZ, Lujan DK, Erickson KM, Martinez CD, Troutman JM. Fluorescent probes for investigation of isoprenoid configuration and size discrimination by bactoprenol-utilizing enzymes. Bioorg Med Chem 2013; 21:5428-35. [PMID: 23816045 PMCID: PMC3758898 DOI: 10.1016/j.bmc.2013.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/28/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Undecaprenyl Pyrophosphate Synthase (UPPS) is an enzyme critical to the production of complex polysaccharides in bacteria, as it produces the crucial bactoprenol scaffold on which these materials are assembled. Methods to characterize the systems associated with polysaccharide production are non-trivial, in part due to the lack of chemical tools to investigate their assembly. In this report, we develop a new fluorescent tool using UPPS to incorporate a powerful fluorescent anthranilamide moiety into bactoprenol. The activity of this analogue in polysaccharide biosynthesis is then tested with the initiating hexose-1-phosphate transferases involved in Capsular Polysaccharide A biosynthesis in the symbiont Bacteroides fragilis and the asparagine-linked glycosylation system of the pathogenic Campylobacter jejuni. In addition, it is shown that the UPPS used to make this probe is not specific for E-configured isoprenoid substrates and that elongation by UPPS is required for activity with the downstream enzymes.
Collapse
Affiliation(s)
- Anahita Z. Mostafavi
- University of North Carolina at Charlotte, Department of Chemistry, 9201 University City Blvd, Charlotte, NC 28223-0001
| | - Donovan K. Lujan
- University of North Carolina at Charlotte, Department of Chemistry, 9201 University City Blvd, Charlotte, NC 28223-0001
| | - Katelyn M. Erickson
- University of North Carolina at Charlotte, Department of Chemistry, 9201 University City Blvd, Charlotte, NC 28223-0001
| | - Christina D. Martinez
- University of North Carolina at Charlotte, Department of Chemistry, 9201 University City Blvd, Charlotte, NC 28223-0001
| | - Jerry M. Troutman
- University of North Carolina at Charlotte, Department of Chemistry, 9201 University City Blvd, Charlotte, NC 28223-0001
| |
Collapse
|
13
|
Mostafavi AZ, Troutman JM. Biosynthetic assembly of the Bacteroides fragilis capsular polysaccharide A precursor bactoprenyl diphosphate-linked acetamido-4-amino-6-deoxygalactopyranose. Biochemistry 2013; 52:1939-49. [PMID: 23458065 DOI: 10.1021/bi400126w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The sugar capsule capsular polysaccharide A (CPSA), which coats the surface of the mammalian symbiont Bacteroides fragilis, is a key mediator of mammalian immune system development. In addition, this sugar polymer has shown therapeutic potential in animal models of multiple sclerosis and other autoimmune disorders. The structure of the CPSA polymer includes a rare stereoconfiguration sugar acetamido-4-amino-6-deoxygalactopyranose (AADGal) that we propose is the first sugar linked to a bactoprenyl diphosphate scaffold in the production of CPSA. In this report, we have utilized a heterologous system to reconstitute bactoprenyl diphosphate-linked AADGal production. Construction of this system included a previously reported Campylobacter jejuni dehydratase, PglF, coupled to a B. fragilis-encoded aminotransferase (WcfR) and initiating hexose-1-phosphate transferase (WcfS). The function of the aminotransferase was confirmed by capillary electrophoresis and a novel high-performance liquid chromatography (HPLC) method. Production of the rare uridine diphosphate (UDP)-AADGal was confirmed through a series of one- and two-dimensional nuclear magnetic resonance experiments and high-resolution mass spectrometry. A spectroscopically unique analogue of bactoprenyl phosphate was utilized to characterize the transfer reaction catalyzed by WcfS and allowed HPLC-based isolation of the isoprenoid-linked sugar product. Importantly, the entire heterologous system was utilized in a single-pot reaction to biosynthesize the bactoprenyl-linked sugar. This work provides the first critical step in the in vitro reconstitution of CPSA biosynthesis.
Collapse
Affiliation(s)
- Anahita Z Mostafavi
- Department of Chemistry, University of North Carolina at Charlotte , 9201 University City Boulevard, Charlotte, North Carolina 28223-0001, United States
| | | |
Collapse
|