1
|
Matamoros E, Pérez EMS, Light ME, Cintas P, Martínez RF, Palacios JC. A True Reverse Anomeric Effect Does Exist After All: A Hydrogen Bonding Stereocontrolling Effect in 2-Iminoaldoses. J Org Chem 2024; 89:7877-7898. [PMID: 38752850 PMCID: PMC11165589 DOI: 10.1021/acs.joc.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
The reverse anomeric effect is usually associated with the equatorial preference of nitrogen substituents at the anomeric center. Once postulated as another anomeric effect with explanations ranging from electrostatic interactions to delocalization effects, it is now firmly considered to be essentially steric in nature. Through an extensive research on aryl imines from 2-amino-2-deoxyaldoses, spanning nearly two decades, we realized that such substances often show an anomalous anomeric behavior that cannot easily be rationalized on the basis of purely steric grounds. The apparent preference, or stabilization, of the β-anomer takes place to an extent that not only neutralizes but also overcomes the normal anomeric effect. Calculations indicate that there is no stereoelectronic effect opposing the anomeric effect, resulting from the repulsion between electron lone pairs on the imine nitrogen and the endocyclic oxygen. Such data and compelling structural evidence unravel why the exoanomeric effect is largely inhibited. We are now confident, as witnessed by 2-iminoaldoses, that elimination of the exo-anomeric effect in the α-anomer is due to the formation of an intramolecular hydrogen bond between the anomeric hydroxyl and the iminic nitrogen, thereby accounting for a true electronic effect. In addition, discrete solvation may help justify the observed preference for the β-anomer.
Collapse
Affiliation(s)
- Esther Matamoros
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus
Teatinos s/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina − IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Esther M. S. Pérez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Mark E. Light
- Department
of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Pedro Cintas
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - R. Fernando Martínez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan C. Palacios
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Sletten ET, Tu YJ, Schlegel HB, Nguyen HM. Are Brønsted Acids the True Promoter of Metal-Triflate-Catalyzed Glycosylations? A Mechanistic Probe into 1,2- cis-Aminoglycoside Formation by Nickel Triflate. ACS Catal 2019; 9:2110-2123. [PMID: 31819822 PMCID: PMC6900934 DOI: 10.1021/acscatal.8b04444] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal triflates have been utilized to catalytically facilitate numerous glycosylation reactions under mild conditions. In some methods, the metal triflate system provides stereocontrol during the glycosylation, rather than the nature of protecting groups on the substrate. Despite these advances, the true activating nature of metal triflates remains unclear. Our findings indicated that the in situ generation of trace amounts of triflic acid from metal triflates can be the active catalyst species in the glycosylation. This fact has been mentioned previously in metal triflate-catalyzed glycosylation reactions; however, a thorough study on the subject and its implications on stereoselectivity has yet to be performed. Experimental evidence from control reactions and 19F NMR spectroscopy have been obtained to confirm and quantify the triflic acid released from nickel triflate, for which it is of paramount importance in achieving a stereoselective 1,2-cis-2-amino glycosidic bond formation via a transient anomeric triflate. A putative intermediate resembling that of a glycosyl triflate has been detected using variable temperature NMR (1H and 13C) experiments. These observations, together with density functional theory calculations and a kinetic study, corroborate a mechanism involving triflic acid-catalyzed stereoselective glycosylation with N-substituted trifluoromethylbenzylideneamino protected electrophiles. Specifically, triflic acid facilitates formation of a glycosyl triflate intermediate which then undergoes isomerization from the stable α-anomer to the more reactive β-anomer. Subsequent SN2-like displacement of the reactive anomer by a nucleophile is highly favorable for the production of 1,2-cis-2-aminoglycosides. Although there is a previously reported work regarding glycosyl triflates, none of these reports have been confirmed to come from the counter ion of the metal center. Our work provides supporting evidence for the induction of a glycosyl triflate through the role of triflic acid in metal triflate-catalyzed glycosylation reactions.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United Sates
| | - Yi-Jung Tu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
5
|
Sletten ET, Ramadugu SK, Nguyen HM. Utilization of bench-stable and readily available nickel(II) triflate for access to 1,2-cis-2-aminoglycosides. Carbohydr Res 2016; 435:195-207. [PMID: 27816838 DOI: 10.1016/j.carres.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
The utilization of substoichiometric amounts of commercially available nickel(II) triflate as an activator in the reagent-controlled glycosylation reaction for the stereoselective construction of biologically relevant targets containing 1,2-cis-2-amino glycosidic linkages is reported. This straightforward and accessible methodology is mild, operationally simple and safe through catalytic activation by readily available Ni(OTf)2 in comparison to systems employing our previously in-house prepared Ni(4-F-PhCN)4(OTf)2. We anticipate that the bench-stable and inexpensive Ni(OTf)2, coupled with little to no extra laboratory training to set up the glycosylation reaction and no requirement of specialized equipment, should make this methodology be readily adopted by non-carbohydrate specialists. This report further highlights the efficacy of Ni(OTf)2 to prepare several bioactive motifs, such as blood type A-type V and VI antigens, heparin sulfate disaccharide repeating unit, aminooxy glycosides, and α-GalNAc-Serine conjugate, which cannot be achieved in high yield and α-selectivity utilizing in-house prepared Ni(4-F-PhCN)4(OTf)2 catalyst. The newly-developed protocol eliminates the need for the synthesis of Ni(4-F-PhCN)4(OTf)2 and is scalable and reproducible. Furthermore, computational simulations in combination with 1H NMR studies analyzed the effects of various solvents on the intramolecular hydrogen bonding network of tumor-associated mucin Fmoc-protected GalNAc-threonine amino acid antigen derivative, verifying discrepancies found that were previously unreported.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA
| | | | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
6
|
Li X, Zhu J. Glycosylation via Transition-Metal Catalysis: Challenges and Opportunities. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600484] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaohua Li
- Department of Natural Sciences; University of Michigan-Dearborn; 4901 Evergreen Road 48128 Dearborn Michigan USA
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering; The University of Toledo; 2801 West Bancroft Street 43606 Toledo Ohio USA
| |
Collapse
|
7
|
Peng P, Schmidt RR. An Alternative Reaction Course in O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glycosyl Donors and Lewis Acidic Metal Salts as Catalyst: Acid–Base Catalysis with Gold Chloride-Glycosyl Acceptor Adducts. J Am Chem Soc 2015; 137:12653-9. [DOI: 10.1021/jacs.5b07895] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Peng
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Richard R. Schmidt
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
8
|
Abstract
A synthetic study on the creation of a bivalent, ROMP capable monomer has the ability to be polymerized into the corresponding neo-glycopolymer mimetic of the surface glycans on gp120 envelope spike of the HIV virus. In our approach, we have developed a new strategy for orthogonally attaching both the terminal Manα1-2Man disaccharide unit of the D1 arm of Man9GlcNAc2 of HIV gp120 and the terminal Manα1-2 unit of its D2 arm to a bivalent scaffold to produce the corresponding polymerizable monomer. The Manα1-2 saccharide moieties were assembled using a nickel catalyst, Ni(4-F-PhCN)4(OTf)2, to activate trihaloacetimidate donors under mild and operationally simple procedure.
Collapse
|
9
|
Yu F, McConnell MS, Nguyen HM. Scalable synthesis of Fmoc-protected GalNAc-threonine amino acid and T(N) antigen via nickel catalysis. Org Lett 2015; 17:2018-21. [PMID: 25853273 PMCID: PMC4752204 DOI: 10.1021/acs.orglett.5b00780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly α-selective and scalable synthesis of the Fmoc-protected GalNAc-threonine amino acid and TN antigen in gram scale (0.5-1 g) is described. The challenging 1,2-cis-2-amino glycosidic bond is addressed through a coupling of threonine residues with C(2)-N-ortho-(trifluoromethyl)benzylidenamino trihaloacetimidate donors mediated by Ni(4-F-PhCN)4(OTf)2. The desired 1,2-cis-2-amino glycoside was obtained in 66% yield (3.77 g) with α-only selectivity and subsequently transformed into the Fmoc-protected GalNAc-threonine and TN antigen. This operationally simple procedure no longer requires utilization of the commonly used C(2)-azido donors and overcomes many of the limitations associated with the synthesis of 1,2-cis linkage.
Collapse
Affiliation(s)
| | | | - Hien M. Nguyen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
10
|
McKay MJ, Park NH, Nguyen HM. Investigations of scope and mechanism of nickel-catalyzed transformations of glycosyl trichloroacetimidates to glycosyl trichloroacetamides and subsequent, atom-economical, one-step conversion to α-urea-glycosides. Chemistry 2014; 20:8691-701. [PMID: 24905328 DOI: 10.1002/chem.201402433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 12/13/2022]
Abstract
The development and mechanistic investigation of a highly stereoselective methodology for preparing α-linked-urea neo-glycoconjugates and pseudo-oligosaccharides is described. This two-step procedure begins with the selective nickel-catalyzed conversion of glycosyl trichloroacetimidates to the corresponding α-trichloroacetamides. The α-selective nature of the conversion is controlled with a cationic nickel(II) catalyst, [Ni(dppe)(OTf)2 ] (dppe=1,2-bis(diphenylphosphino)ethane, OTf=triflate). Mechanistic studies have identified the coordination of the nickel catalyst with the equatorial C2 -ether functionality of the α-glycosyl trichloroacetimidate to be paramount for achieving an α-stereoselective transformation. A cross-over experiment has indicated that the reaction does not proceed in an exclusively intramolecular fashion. The second step in this sequence is the direct conversion of α-glycosyl trichloroacetamide products into the corresponding α-urea glycosides by reacting them with a wide variety of amine nucleophiles in presence of cesium carbonate. Only α-urea-product formation is observed, as the reaction proceeds with complete retention of stereochemical integrity at the anomeric CN bond.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242 (USA), Fax: (+1) 319-335-1270
| | | | | |
Collapse
|