1
|
Sarkar C, De A, Maji S, Kłak J, Kundu S, Bera M. Design, Synthesis, Magnetic Properties, and Hydrogen Evolution Reaction of a Butterfly-like Heterometallic Trinuclear [Cu II2Mn II] Cluster. Inorg Chem 2024. [PMID: 39556317 DOI: 10.1021/acs.inorgchem.4c03723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A novel heterometallic trinuclear cluster [CuII2MnII(cpdp)(NO3)2(Cl)] (1) has been designed and synthesized by employing a molecular library approach that uses CuCl2·2H2O and Mn(NO3)2·4H2O as inorganic metal salts and H3cpdp as a multifunctional organic scaffold (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of 1, revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center. Formation of this cluster is accomplished by a self-assembly process through functionalization of 1 with one μ2:η1:η1-nitrate and two μ2:η2:η1-benzoate groups via the CuII(μ2-NO3)CuII} and {CuII(μ2-O2CC6H5)MnII} linkages, respectively. Variable-temperature SQUID magnetometry revealed the coexistence of ferromagnetic and antiferromagnetic interactions in 1. The observed magnetic behavior in 1 is unexpected because of a large Cu-O-Mn angle with a value of 132.05°, indicating that the correlation between coupling constants and the structural parameters is a multifactor problem. This cluster shows excellent electrocatalytic performance for the HER attaining a current density of 10 mA/cm2 with a Tafel slope of 183 mV dec-1 at a 310 mV overpotential value. Essentially, cluster 1 shows exceptional electrochemical stability at ambient temperature, accompanied by minimal degradation of the current density as examined by chronoamperometric studies. Density functional theory calculations establish the mechanistic insight into the HER process, indicating that the CuII-OCO-MnII site is the active site for formation of molecular hydrogen.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Aditi De
- Process Engineering (EPE) Division, Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Julia Kłak
- Faculty of Chemistry, University of Wroclaw, Wroclaw 50383, Poland
| | - Subrata Kundu
- Process Engineering (EPE) Division, Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
2
|
Sk S, Majumder A, Sow P, Samadder A, Bera M. Exploring a new family of designer copper(II) complexes of anthracene-appended polyfunctional organic assembly displaying potential anticancer activity via cytochrome c mediated mitochondrial apoptotic pathway. J Inorg Biochem 2023; 243:112182. [PMID: 36933342 DOI: 10.1016/j.jinorgbio.2023.112182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
The present article describes the systematic study on design and synthesis, physicochemical properties and spectroscopic features, and potential anticancer activities of a family of novel copper(II)-based designer metal complexes [Cu2(acdp)(μ-Cl)(H2O)2] (1), [Cu2(acdp)(μ-NO3)(H2O)2] (2) and [Cu2(acdp)(μ-O2CCF3)(H2O)2] (3) of anthracene-appended polyfunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol). Synthesis of 1-3 was accomplished under facile experimental conditions, preserving their overall integrity in solution. The incorporation of polycyclic anthracene skeleton within the backbone of organic assembly increases lipophilicity of resulting complexes, thereby dictating the degree of cellular uptake with improved biological activity. Complexes 1-3 were characterized by elemental analysis, molar conductance, FTIR, UV-Vis absorption/fluorescence emission titration spectroscopy, PXRD and TGA/DTA studies, including DFT calculations. The cellular cytotoxicity of 1-3 when studied in HepG2 cancer cell line showed substantial cytotoxic effects, whereas no such cytotoxicity was observed when exposed to normal L6 skeletal muscle cell line. Thereafter, the signaling factors involved in the process of cytotoxicity in HepG2 cancer cells were investigated. Alteration of cytochrome c and Bcl-2 protein expression levels along with modulation of mitochondrial membrane potential (MMP) in the presence of 1-3, strongly suggested the possibility of activating mitochondria-mediated apoptotic pathway involved in halting the cancer cell propagation. However, when a comparative assessment on their bio-efficacies was made, 1 showed higher cytotoxicity, nuclear condensation, DNA binding and damage, ROS generation and lower rate of cell proliferation compared to 2 and 3 in HepG2 cell line, indicating that the anticancer activity of 1 is significantly higher than that of 2 and 3.
Collapse
Affiliation(s)
- Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Priyanka Sow
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| |
Collapse
|
3
|
Jia Q, Zhang H, Zhao A, Qu L, Xiong W, Alam MA, Miao J, Wang W, Li F, Xu J, Lv Y. Produce D-allulose from non-food biomass by integrating corn stalk hydrolysis with whole-cell catalysis. Front Bioeng Biotechnol 2023; 11:1156953. [PMID: 36911188 PMCID: PMC9998921 DOI: 10.3389/fbioe.2023.1156953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
D-allulose is a high-value rare sugar with many health benefits. D-allulose market demand increased dramatically after approved as generally recognized as safe (GRAS). The current studies are predominantly focusing on producing D-allulose from either D-glucose or D-fructose, which may compete foods against human. The corn stalk (CS) is one of the main agricultural waste biomass in the worldwide. Bioconversion is one of the promising approach to CS valorization, which is of significance for both food safety and reducing carbon emission. In this study, we tried to explore a non-food based route by integrating CS hydrolysis with D-allulose production. Firstly we developed an efficient Escherichia coli whole-cell catalyst to produce D-allulose from D-glucose. Next we hydrolyzed CS and achieved D-allulose production from the CS hydrolysate. Finally we immobilized the whole-cell catalyst by designing a microfluidic device. Process optimization improved D-allulose titer by 8.61 times, reaching 8.78 g/L from CS hydrolysate. With this method, 1 kg CS was finally converted to 48.87 g D-allulose. This study validated the feasibility of valorizing corn stalk by converting it to D-allulose.
Collapse
Affiliation(s)
- Qing Jia
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Jixing Miao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Weigao Wang
- Department of Chemical Engineering, Shriram Center, Stanford University, Stanford, CA, United States
| | - Feihu Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Wu W, Shi S, Zhang Z, Guo X, Sun L, Wei R, Zhang J, Gao L, Pan X, Xiao G. Monodisperse perovskite CoSn(OH)6 in-situ grown on NiCo hydroxide nanoflowers with strong interfacial bonds to boost broadband visible-light-driven photocatalytic CO2 reduction. J Colloid Interface Sci 2022; 619:407-418. [DOI: 10.1016/j.jcis.2022.03.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
|
5
|
Majumder A, Haldar S, Dutta N, Das A, Bera M. Cu(II), Mn(II) and Zn(II) Complexes of Anthracene‐Affixed Carboxylate‐Rich Tridentate Ligand: Synthesis, Structure, Spectroscopic Investigation and Their DNA Binding Profile. ChemistrySelect 2022. [DOI: 10.1002/slct.202104319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Avishek Majumder
- Department of Chemistry University of Kalyani Kalyani Nadia, West Bengal 741235 INDIA
| | - Shobhraj Haldar
- Department of Chemistry University of Kalyani Kalyani Nadia, West Bengal 741235 INDIA
| | - Nityananda Dutta
- Department of Chemistry University of Kalyani Kalyani Nadia, West Bengal 741235 INDIA
| | - Arpan Das
- Department of Chemical Sciences Indian Institute of Science Education & Research-Kolkata Mohanpur West Bengal 741246 INDIA
| | - Manindranath Bera
- Department of Chemistry University of Kalyani Kalyani Nadia, West Bengal 741235 INDIA
| |
Collapse
|
6
|
Majumder A, Dutta N, Das A, Carrella L, Bera M. Exploring new water soluble bridged dicopper(II) assemblies: Synthesis, structure, spectroscopic characterization, properties, and their interactions with d-glucosamine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Van Craen D, Flynn IG, Carta V, Flood AH. Bimetallic Bis-anion Cascade Complexes of Magnesium in Nonaqueous Solution. Inorg Chem 2020; 59:5939-5948. [DOI: 10.1021/acs.inorgchem.9b03710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Van Craen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Ian G. Flynn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Amar H. Flood
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
8
|
Dutta N, Majumder A, Das A, Chatterjee A, Tarafder M, Datta B, Bera M. Synthetic, structural, spectral and DNA binding aspects of copper(II), nickel(II) and zinc(II) dimers of new carboxylate-based tripodal ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Martínez Medina JJ, Rodríguez J, Mermot J, Naso LG. Antitumour and Antimetastatic Effects and Safety Profile of a New Magnesium(II)-Chrysin Complex. Aust J Chem 2020. [DOI: 10.1071/ch19333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chrysin is a flavone found in many plant extracts including blue passion flower, propolis and honey. The magnesium(ii) cation is an essential metal for life and it is involved in a variety of metabolic and physiological functions. Biological activities of flavonoids can be improved by complexation with metals. For this reason, Mgchrys was synthesised. The complex was characterised by spectroscopic techniques (ultraviolet–visible absorption spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), 1H and 13C-NMR) and elemental and thermogravimetric analysis. The results indicated that chrysin reacts with magnesium(ii) through a 4-carbonyl-5-hydroxy chelation site. The computational study suggests the coexistence of at least twelve conformers of Mgchrys at room temperature. There are six most stable conformers that show square-pyramidal and distorted square-pyramidal geometries. In addition, anticancer and antimetastatic activities of Mgchrys on the A549 cell line were evaluated and compared with the metal and the free ligand. The complex did not show cytotoxicity against normal lung fibroblasts but it behaved as a cytotoxic drug against the cancer cell line with oxidative stress being its probable mechanism of action. However, Mgchrys inhibited the different steps involved in the metastatic cascade: adhesion to fibronectin, migration and invasion. The compounds displayed no acute toxicity (Artemia salina test) and no mutagenic effect (Ames test).
Collapse
|
10
|
Haldar S, Patra A, Bera M. Exploring the catalytic activity of new water soluble dinuclear copper(ii) complexes towards the glycoside hydrolysis. RSC Adv 2014. [DOI: 10.1039/c4ra09800e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water soluble dicopper(ii/ii) complexes of a new dinucleating ligand, H3phpda were synthesized and characterized for the investigation of glycoside hydrolysis.
Collapse
Affiliation(s)
| | - Ayan Patra
- Department of Chemistry
- University of Kalyani
- Kalyani, India
| | | |
Collapse
|