1
|
Schendel RR, Bunzel M. Cereal grain arabinoxylans contain a unique non-feruloylated disaccharide side-chain with alpha-xylose units: α-d-xylopyranosyl-(1 → 3)-l-arabinose. Carbohydr Polym 2025; 348:122810. [PMID: 39562085 DOI: 10.1016/j.carbpol.2024.122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024]
Abstract
Feruloylated side-chain oligosaccharide substituents are a distinctive feature of cereal grains' arabinoxylans (AX), but less is known about non-feruloylated oligosaccharide side-chain substituents. In this study we explored non-feruloylated disaccharide side-chains from corn (Zea mays L.) AX that had not been exposed to alkaline conditions and successfully isolated and unequivocally characterized the structure, α-d-xylopyranosyl-(1 → 3)-l-arabinose. This structure is uniquely different from the oligosaccharide portion of the comparable feruloylated disaccharide compound. Qualitative screening showed that this non-feruloylated disaccharide is also present in wheat (Triticum aestivum L.), oats (Avena sativa L.), and popcorn (Zea mays L. var. everta). β-d-Xylopyranosyl-(1 → 2)-l-arabinose, the carbohydrate motif from feruloylated oligosaccharide side-chain substituents, was not found in a non-feruloylated form. Our data imply that non-feruloylated β-d-xylopyranosyl-(1 → 2)-l-arabinose side-chains may not be an authentic component of cereal AX, and that structural models of AX should be revised accordingly. Non-feruloylated oligosaccharide side-chains are indeed an authentic substituent of cereal AX, but their carbohydrate structures sharply diverge from their feruloylated counterparts.
Collapse
Affiliation(s)
- Rachel R Schendel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America.
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
2
|
Alvarez VMZ, Fernández PV, Ciancia M. Structure-antioxidant activity relationship of xylooligosaccharides obtained from carboxyl-reduced glucuronoarabinoxylans from bamboo shoots. Food Chem 2024; 455:139761. [PMID: 38850975 DOI: 10.1016/j.foodchem.2024.139761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
Xylooligosaccharides (XOs) have shown high potential as prebiotics with nutritional and health benefits. In this work, XOs were obtained from highly purified, carboxy-reduced glucuronoarabinoxylans by treatment with Driselase®. The mixtures were fractionated, and the structures were elucidated by methylation analysis and NMR spectroscopy. Antioxidant activity was determined by the methods of DPPH and β-carotene/linoleic acid. It was found that the most active oligosaccharides (P3 and G3) comprised 4 or 5 xylose units, plus two arabinoses and one 4-O-methylglucose as side chains, their sequence of units was determined. The optimal concentration for their use as antioxidants was 2 mg/mL. The synthetic antioxidant butylated hydroxytoluene (BHT, 0.2 mg/mL) showed a percentage of inhibition 15% higher than P3. Although its concentration was ∼10 times higher, P3 is non-toxic, and could have great advantages as food additive. These results show that pure XOs exert significant antioxidant activity, only due to their carbohydrate nature.
Collapse
Affiliation(s)
- Víctor Martín Zelaya Alvarez
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| | - Paula Virginia Fernández
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
3
|
Joyce GE, Kagan IA, Flythe MD, Davis BE, Schendel RR. Profiling of cool-season forage arabinoxylans via a validated HPAEC-PAD method. FRONTIERS IN PLANT SCIENCE 2023; 14:1116995. [PMID: 36993841 PMCID: PMC10040848 DOI: 10.3389/fpls.2023.1116995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Cool-season pasture grasses contain arabinoxylans (AX) as their major cell wall hemicellulosic polysaccharide. AX structural differences may influence enzymatic degradability, but this relationship has not been fully explored in the AX from the vegetative tissues of cool-season forages, primarily because only limited AX structural characterization has been performed in pasture grasses. Structural profiling of forage AX is a necessary foundation for future work assessing enzymatic degradability and may also be useful for assessing forage quality and suitability for ruminant feed. The main objective of this study was to optimize and validate a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method for the simultaneous quantification of 10 endoxylanase-released xylooligosaccharides (XOS) and arabinoxylan oligosaccharides (AXOS) in cool-season forage cell wall material. The following analytical parameters were determined or optimized: chromatographic separation and retention time (RT), internal standard suitability, working concentration range (CR), limit of detection (LOD), limit of quantification (LOQ), relative response factor (RRF), and quadratic calibration curves. The developed method was used to profile the AX structure of four cool-season grasses commonly grown in pastures (timothy, Phleum pratense L.; perennial ryegrass, Lolium perenne L.; tall fescue, Schedonorus arundinaceus (Schreb.) Dumort.; and Kentucky bluegrass, Poa pratensis L.). In addition, the cell wall monosaccharide and ester-linked hydroxycinnamic acid contents were determined for each grass. The developed method revealed unique structural aspects of the AX structure of these forage grass samples that complemented the results of the cell wall monosaccharide analysis. For example, xylotriose, representing an unsubstituted portion of the AX polysaccharide backbone, was the most abundantly-released oligosaccharide in all the species. Perennial rye samples tended to have greater amounts of released oligosaccharides compared to the other species. This method is ideally suited to monitor structural changes of AX in forages as a result of plant breeding, pasture management, and fermentation of plant material.
Collapse
Affiliation(s)
- Glenna E. Joyce
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Isabelle A. Kagan
- Forage-Animal Production Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Lexington, KY, United States
| | - Michael D. Flythe
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
- Forage-Animal Production Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Lexington, KY, United States
| | - Brittany E. Davis
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
- Forage-Animal Production Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Lexington, KY, United States
| | - Rachel R. Schendel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Gupta M, Bangotra R, Sharma S, Vaid S, Kapoor N, Dutt HC, Bajaj BK. Bioprocess development for production of xylooligosaccharides prebiotics from sugarcane bagasse with high bioactivity potential. INDUSTRIAL CROPS AND PRODUCTS 2022; 178:114591. [DOI: 10.1016/j.indcrop.2022.114591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Deconstruction of plant biomass by a Cellulomonas strain isolated from an ultra-basic (lignin-stripping) spring. Arch Microbiol 2020; 202:1077-1084. [PMID: 32030461 DOI: 10.1007/s00203-020-01816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Plant material falling into the ultra-basic (pH 11.5-11.9) springs within The Cedars, an actively serpentinizing site in Sonoma County, California, is subject to conditions that mimic the industrial pretreatment of lignocellulosic biomass for biofuel production. We sought to obtain hemicellulolytic/cellulolytic bacteria from The Cedars springs that are capable of withstanding the extreme alkaline conditions wherein calcium hydroxide-rich water removes lignin, making cell wall polysaccharides more accessible to microorganisms and their enzymes. We enriched for such bacteria by adding plant debris from the springs into a synthetic alkaline medium with ground tissue of the biofuel crop switchgrass (Panicum virgatum L.) as the sole source of carbon. From the enrichment culture we isolated the facultative anaerobic bacterium Cellulomonas sp. strain FA1 (NBRC 114238), which tolerates high pH and catabolizes the major plant cell wall-associated polysaccharides cellulose, pectin, and hemicellulose. Strain FA1 in monoculture colonized the plant material and degraded switchgrass at a faster rate than the community from which it was derived. Cells of strain FA1 could be acclimated through subculturing to grow at a maximal concentration of 13.4% ethanol. A strain FA1-encoded β-1, 4-endoxylanase expressed in E. coli was active at a broad pH range, displaying near maximal activity at pH 6-9. Discovery of this bacterium illustrates the value of extreme alkaline springs in the search for microorganisms with potential for consolidated bioprocessing of plant biomass to biofuels and other valuable bio-inspired products.
Collapse
|
6
|
Holck J, Djajadi DT, Brask J, Pilgaard B, Krogh KBRM, Meyer AS, Lange L, Wilkens C. Novel xylanolytic triple domain enzyme targeted at feruloylated arabinoxylan degradation. Enzyme Microb Technol 2019; 129:109353. [PMID: 31307573 DOI: 10.1016/j.enzmictec.2019.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/02/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
A three catalytic domain multi-enzyme; a CE1 ferulic acid esterase, a GH62 α-l-arabinofuranosidase and a GH10 β-d-1,4-xylanase was identified in a metagenome obtained from wastewater treatment sludge. The capability of the CE1-GH62-GH10 multi-enzyme to degrade arabinoxylan was investigated to examine the hypothesis that CE1-GH62-GH10 would degrade arabinoxylan more efficiently than the corresponding equimolar mix of the individual enzymes. CE1-GH62-GH10 efficiently catalyzed the production of xylopyranose, xylobiose, xylotriose, arabinofuranose and ferulic acid (FA) when incubated with insoluble wheat arabinoxylan (WAX-I) (kcat = 20.8 ± 2.6 s-1). Surprisingly, in an equimolar mix of the individual enzymes a similar kcat towards WAX-I was observed (kcat = 17.3 ± 3.8 s-1). Similarly, when assayed on complex plant biomass the activity was comparable between CE1-GH62-GH10 and an equimolar mix of the individual enzymes. This suggests that from a hydrolytic point of view a CE1-GH62-GH10 multi-enzyme is not an advantage. Determination of the melting temperatures for CE1-GH62-GH10 (71.0 ± 0.05 °C) and CE1 (69.9 ± 0.02), GH62 (65.7 ± 0.06) and GH10 (71 ± 0.05 °C) indicates that CE1 and GH62 are less stable as single domain enzymes. This conclusion was corroborated by the findings that CE1 lost ˜50% activity within 2 h, while GH62 retained ˜50% activity after 24 h, whereas CE1-GH62-GH10 and GH10 retained ˜50% activity for 72 h. GH62-GH10, when appended to each other, displayed a higher specificity constant (kcat/Km = 0.3 s-1 mg-1 ml) than the individual GH10 (kcat/Km = 0.12 s-1 ± 0.02 mg-1 ml) indicating a synergistic action between the two. Surprisingly, CE1-GH62, displayed a 2-fold lower kcat towards WAX-I than GH62, which might be due to the presence of a putative carbohydrate binding module appended to CE1 at the N-terminal. Both CE1 and CE1-GH62 released insignificant amounts of FA from WAX-I, but FA was released from WAX-I when both CE1 and GH10 were present, which might be due to GH10 releasing soluble oligosaccharides that CE1 can utilize as substrate. CE1 also displayed activity towards solubilized 5-O-trans-feruloyl-α-l-Araf (kcat = 36.35 s-1). This suggests that CE1 preferably acts on soluble oligosaccharides.
Collapse
Affiliation(s)
- Jesper Holck
- Enzyme Technology, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | - Demi T Djajadi
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800, Kgs. Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Bo Pilgaard
- Enzyme Technology, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | | | - Anne S Meyer
- Enzyme Technology, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | - Lene Lange
- LLa-Bioeconomy, Research & Advisory, Karensgade 5, DK-2500, Valby, Denmark
| | - Casper Wilkens
- Enzyme Technology, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
GH62 arabinofuranosidases: Structure, function and applications. Biotechnol Adv 2017; 35:792-804. [DOI: 10.1016/j.biotechadv.2017.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 01/03/2023]
|
8
|
Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends. Appl Biochem Biotechnol 2017; 183:876-892. [DOI: 10.1007/s12010-017-2470-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/29/2017] [Indexed: 11/26/2022]
|
9
|
Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau. Appl Environ Microbiol 2017; 83:AEM.03020-16. [PMID: 28087533 DOI: 10.1128/aem.03020-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/10/2017] [Indexed: 02/03/2023] Open
Abstract
Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils.IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in soil systems undermines attempts to determine the underlying causes of the population shifts or their impact on carbon cycling in soil. This study combines a systematic analysis of the polysaccharide degradation potential of a diverse collection of Actinomycetales isolates from surface soils of a semiarid grassland with analysis of genomes from five of these isolates and publicly available Actinomycetales genomes for genes encoding polysaccharide-active enzymes. The results address an important gap in knowledge of Actinomycetales ecophysiology-identification of key taxa capable of facilitating lignocellulose degradation in dryland soils. Information from this study will benefit future metagenomic studies related to carbon cycling in dryland soils by providing a baseline linkage of Actinomycetales phylogeny with lignocellulolytic functional potential.
Collapse
|
10
|
Wilkens C, Andersen S, Petersen BO, Li A, Busse-Wicher M, Birch J, Cockburn D, Nakai H, Christensen HEM, Kragelund BB, Dupree P, McCleary B, Hindsgaul O, Hachem MA, Svensson B. An efficient arabinoxylan-debranching α-l-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site. Appl Microbiol Biotechnol 2016; 100:6265-6277. [DOI: 10.1007/s00253-016-7417-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/07/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
11
|
Xue S, Uppugundla N, Bowman MJ, Cavalier D, Da Costa Sousa L, E Dale B, Balan V. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:195. [PMID: 26617670 PMCID: PMC4662034 DOI: 10.1186/s13068-015-0378-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/09/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18-25 % of the total soluble sugars in the hydrolysate and 12-18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7-9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. RESULTS Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEX-corn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. CONCLUSION The carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.
Collapse
Affiliation(s)
- Saisi Xue
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| | - Nirmal Uppugundla
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| | - Michael J. Bowman
- />USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, Peoria, IL 61604 USA
| | - David Cavalier
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
- />DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Leonardo Da Costa Sousa
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| | - Bruce. E Dale
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| | - Venkatesh Balan
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| |
Collapse
|