1
|
Paurević M, Šrajer Gajdošik M, Ribić R. Mannose Ligands for Mannose Receptor Targeting. Int J Mol Sci 2024; 25:1370. [PMID: 38338648 PMCID: PMC10855088 DOI: 10.3390/ijms25031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Martina Šrajer Gajdošik
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Rosana Ribić
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, HR-42000 Varaždin, Croatia
| |
Collapse
|
2
|
Delehedde C, Ciganek I, Rameix N, Laroui N, Gonçalves C, Even L, Midoux P, Pichon C. Impact of net charge, targeting ligand amount and mRNA modification on the uptake, intracellular routing and the transfection efficiency of mRNA lipopolyplexes in dendritic cells. Int J Pharm 2023; 647:123531. [PMID: 37863445 DOI: 10.1016/j.ijpharm.2023.123531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Targeting mRNA formulations to achieve cell specificity is one of the challenges that must be tackled to mettle their therapeutic potential. Here, lipopolyplexes (LPR) bearing tri-mannose-lipid (TM) are used to target mannose receptor on dendritic cells. We investigated the impact of the net charge and percentage of TM units on the binding, uptake, transfection efficiency (TE) and RNA sensors activation. Binding and uptake capacities of naked and targeted LPR increase with the percent of cationic lipid, but the latter are 2-fold more up taken by the cells. Cationic LPR bearing 5 % and 10 % TM were localized in acidic compartments in contrast to naked LPR and 2.5 % TM-LPR. The drawback is the dramatic decrease of TE as the number of TM-units increases. Cationic LPR bearing 5 % and 10 % TM strongly induced NF-κB and PKR phosphorylation at 6 h. Conversely, mTOR is less activated in line with their low TE. Those side effects are overcome by using 5-methoxyuridine mRNA resulting in an improved TE due to non-phosphorylation of NF-κB and PKR and mTOR activation. Our results point out that targeting DC via mannose receptor triggers a higher uptake of cationic LPRs and fast routing to acidic compartments, and that efficient TE requires low number of TM units use or modified mRNA to escape RNA sensors activation to enhance the translation.
Collapse
Affiliation(s)
- Christophe Delehedde
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France; Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Ivan Ciganek
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France
| | - Nathalie Rameix
- Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Nabila Laroui
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France
| | - Luc Even
- Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, F-45071, Orléans cedex 02, France; Inserm UMS 55 ART ARNm and University of Orléans, F-45100 Orléans; Institut Universitaire de France, 1 rue Descartes, F-75035 Paris, France.
| |
Collapse
|
3
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Delehedde C, Even L, Midoux P, Pichon C, Perche F. Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13070945. [PMID: 34202584 PMCID: PMC8308975 DOI: 10.3390/pharmaceutics13070945] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Messenger RNA (mRNA) is being extensively used in gene therapy and vaccination due to its safety over DNA, in the following ways: its lack of integration risk, cytoplasmic expression, and transient expression compatible with fine regulations. However, clinical applications of mRNA are limited by its fast degradation by nucleases, and the activation of detrimental immune responses. Advances in mRNA applications, with the recent approval of COVID-19 vaccines, were fueled by optimization of the mRNA sequence and the development of mRNA delivery systems. Although delivery systems and mRNA sequence optimization have been abundantly reviewed, understanding of the intracellular processing of mRNA is mandatory to improve its applications. We will focus on lipid nanoparticles (LNPs) as they are the most advanced nanocarriers for the delivery of mRNA. Here, we will review how mRNA therapeutic potency can be affected by its interactions with cellular proteins and intracellular distribution.
Collapse
Affiliation(s)
- Christophe Delehedde
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Sanofi R&D, Integrated Drug Discovery, 91385 Chilly-Mazarin, France;
| | - Luc Even
- Sanofi R&D, Integrated Drug Discovery, 91385 Chilly-Mazarin, France;
| | - Patrick Midoux
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
| | - Chantal Pichon
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Correspondence: (C.P.); (F.P.); Tel.: +33-2-3825-5595 (C.P.); Tel.: +33-2-3825-5544 (F.P.)
| | - Federico Perche
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Correspondence: (C.P.); (F.P.); Tel.: +33-2-3825-5595 (C.P.); Tel.: +33-2-3825-5544 (F.P.)
| |
Collapse
|
5
|
Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines. Pharmaceutics 2020; 13:pharmaceutics13010045. [PMID: 33396817 PMCID: PMC7823281 DOI: 10.3390/pharmaceutics13010045] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA)-based vaccines have shown promise against infectious diseases and several types of cancer in the last two decades. Their promise can be attributed to their safety profiles, high potency, and ability to be rapidly and affordably manufactured. Now, many RNA-based vaccines are being evaluated in clinical trials as prophylactic and therapeutic vaccines. However, until recently, their development has been limited by their instability and inefficient in vivo transfection. The nanodelivery system plays a dual function in RNA-based vaccination by acting as a carrier system and as an adjuvant. That is due to its similarity to microorganisms structurally and size-wise; the nanodelivery system can augment the response by the immune system via simulating the natural infection process. Nanodelivery systems allow non-invasive mucosal administration, targeted immune cell delivery, and controlled delivery, reducing the need for multiple administrations. They also allow co-encapsulating with immunostimulators to improve the overall adjuvant capacity. The aim of this review is to discuss the recent developments and applications of biodegradable nanodelivery systems that improve RNA-based vaccine delivery and enhance the immunological response against targeted diseases.
Collapse
|
6
|
Abstract
Messenger RNA (mRNA) has immense potential for developing a wide range of therapies, including immunotherapy and protein replacement. As mRNA presents no risk of integration into the host genome and does not require nuclear entry for transfection, which allows protein production even in nondividing cells, mRNA-based approaches can be envisioned as safe and practical therapeutic strategies. Nevertheless, mRNA presents unfavorable characteristics, such as large size, immunogenicity, limited cellular uptake, and sensitivity to enzymatic degradation, which hinder its use as a therapeutic agent. While mRNA stability and immunogenicity have been ameliorated by direct modifications on the mRNA structure, further improvements in mRNA delivery are still needed for promoting its activity in biological settings. In this regard, nanomedicine has shown the ability for spatiotemporally controlling the function of a myriad of bioactive agents in vivo. Direct engineering of nanomedicine structures for loading, protecting, and releasing mRNA and navigating in biological environments can then be applied for promoting mRNA translation toward the development of effective treatments. Here, we review recent approaches aimed at enhancing mRNA function and its delivery through nanomedicines, with particular emphasis on their applications and eventual clinical translation.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| | - Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France.,Faculty of Sciences and Techniques, University of Orléans, Orléans 45071 Cedex 02, France
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| |
Collapse
|
7
|
Comparative binding and uptake of liposomes decorated with mannose oligosaccharides by cells expressing the mannose receptor or DC-SIGN. Carbohydr Res 2020; 487:107877. [DOI: 10.1016/j.carres.2019.107877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
|
8
|
Perche F, Clemençon R, Schulze K, Ebensen T, Guzmán CA, Pichon C. Neutral Lipopolyplexes for In Vivo Delivery of Conventional and Replicative RNA Vaccine. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:767-775. [PMID: 31446119 PMCID: PMC6716064 DOI: 10.1016/j.omtn.2019.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Nucleic acid vaccination relies on injecting DNA or RNA coding antigen(s) to induce a protective immune response. RNA vaccination is being increasingly used in preclinical and clinical studies. However, few delivery systems have been reported for in vivo delivery of RNA of different sizes. Using a tripartite formulation with RNA, cationic polymer, and anionic liposomes, we were able to encapsulate RNA into neutral lipopolyplexes (LPPs). LPPs were stable in vitro and successfully delivered conventional RNA and replicative RNA to dendritic cells in cellulo. Their injection led to reporter gene expression in mice. Finally, administration of LPP-Replicon RNA (RepRNA) led to an adaptive immune response against the antigen coded by the RepRNA. Accordingly, LPPs may represent a universal formulation for RNA delivery.
Collapse
Affiliation(s)
- Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France.
| | - Rudy Clemençon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France.
| |
Collapse
|
9
|
Van der Jeught K, De Koker S, Bialkowski L, Heirman C, Tjok Joe P, Perche F, Maenhout S, Bevers S, Broos K, Deswarte K, Malard V, Hammad H, Baril P, Benvegnu T, Jaffrès PA, Kooijmans SAA, Schiffelers R, Lienenklaus S, Midoux P, Pichon C, Breckpot K, Thielemans K. Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. ACS NANO 2018; 12:9815-9829. [PMID: 30256609 DOI: 10.1021/acsnano.8b00966] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro transcribed mRNA constitutes a versatile platform to encode antigens and to evoke CD8 T-cell responses. Systemic delivery of mRNA packaged into cationic liposomes (lipoplexes) has proven particularly powerful in achieving effective antitumor immunity in animal models. Yet, T-cell responses to mRNA lipoplexes critically depend on the induction of type I interferons (IFN), potent pro-inflammatory cytokines, which inflict dose-limiting toxicities. Here, we explored an advanced hybrid lipid polymer shell mRNA nanoparticle (lipopolyplex) endowed with a trimannose sugar tree as an alternative delivery vehicle for systemic mRNA vaccination. Like mRNA lipoplexes, mRNA lipopolyplexes were extremely effective in conferring antitumor T-cell immunity upon systemic administration. Conversely to mRNA lipoplexes, mRNA lipopolyplexes did not rely on type I IFN for effective T-cell immunity. This differential mode of action of mRNA lipopolyplexes enabled the incorporation of N1 methyl pseudouridine nucleoside modified mRNA to reduce inflammatory responses without hampering T-cell immunity. This feature was attributed to mRNA lipopolyplexes, as the incorporation of thus modified mRNA into lipoplexes resulted in strongly weakened T-cell immunity. Taken together, we have identified lipopolyplexes containing N1 methyl pseudouridine nucleoside modified mRNA as potent yet low-inflammatory alternatives to the mRNA lipoplexes currently explored in early phase clinical trials.
Collapse
Affiliation(s)
- Kevin Van der Jeught
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | | | - Lukasz Bialkowski
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Patrick Tjok Joe
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Federico Perche
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | | | - Sanne Bevers
- eTheRNA Immunotherapies NV , Niel 2845 , Belgium
| | - Katrijn Broos
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Kim Deswarte
- VIB Inflammation Research Center , UGent , Ghent 9052 , Belgium
| | - Virginie Malard
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | - Hamida Hammad
- VIB Inflammation Research Center , UGent , Ghent 9052 , Belgium
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | - Thierry Benvegnu
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR6226 , Rennes 35708 , France
| | - Paul-Alain Jaffrès
- CEMA, CNRS UMR 6521, SFR148 ScInBioS , Université de Brest , Brest 29238 , France
| | - Sander A A Kooijmans
- University Medical Center Utrecht, Universiteit Utrecht , Utrecht 3584 , Netherlands
| | - Raymond Schiffelers
- University Medical Center Utrecht, Universiteit Utrecht , Utrecht 3584 , Netherlands
| | | | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, University and Inserm , Orléans 45071 , France
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences , Vrije Universiteit Brussel (VUB) , Brussels 1090 , Belgium
| |
Collapse
|
10
|
Le Moignic A, Malard V, Benvegnu T, Lemiègre L, Berchel M, Jaffrès PA, Baillou C, Delost M, Macedo R, Rochefort J, Lescaille G, Pichon C, Lemoine FM, Midoux P, Mateo V. Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J Control Release 2018; 278:110-121. [PMID: 29630987 DOI: 10.1016/j.jconrel.2018.03.035] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/28/2022]
Abstract
Clinical trials with direct administration of synthetic mRNAs encoding tumor antigens demonstrated safety and induction of tumor-specific immune responses. Their proper delivery to dendritic cells (DCs) requires their protection against RNase degradation and more specificity for dose reduction. Lipid-Polymer-RNA lipopolyplexes (LPR) are attractive mRNA delivery systems and their equipment with mannose containing glycolipid, specific of endocytic receptors present on the membrane of DCs is a valuable strategy. In this present work, we evaluated the capacity of LPR functionalized with a tri-antenna of α-d-mannopyranoside (triMN-LPR) concerning (i) their binding to CD209/DC-SIGN and CD207/Langerin expressing cell lines, human and mouse DCs and other hematopoietic cell populations, (ii) the nature of induced immune response after in vivo immunization and (iii) their therapeutic anti-cancer vaccine efficiency. We demonstrated that triMN-LPR provided high induction of a local inflammatory response two days after intradermal injection to C57BL/6 mice, followed by the recruitment and activation of DCs in the corresponding draining lymph nodes. This was associated with skin production of CCR7 and CXCR4 at vaccination sites driving DC migration. High number of E7-specific T cells was detected after E7-encoded mRNA triMN-LPR vaccination. When evaluated in three therapeutic pre-clinical murine tumor models such as E7-expressing TC1 cells, OVA-expressing EG7 cells and MART-1-expressing B16F0 cells, triMN-LPR carrying mRNA encoding the respective antigens significantly exert curative responses in mice vaccinated seven days after initial tumor inoculation. These results provide evidence that triMN-LPR give rise to an efficient stimulatory immune response allowing for therapeutic anti-cancer vaccination in mice. This mRNA formulation should be considered for anti-cancer vaccination in Humans.
Collapse
Affiliation(s)
- A Le Moignic
- Sorbonne Universite, Paris, France; UMR-S INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France
| | - V Malard
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | | | | | - M Berchel
- CEMCA, CNRS UMR 6521, SFR148 ScInBioS, Université de Brest, Brest, France
| | - P-A Jaffrès
- CEMCA, CNRS UMR 6521, SFR148 ScInBioS, Université de Brest, Brest, France
| | - C Baillou
- Sorbonne Universite, Paris, France; UMR-S INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France
| | - M Delost
- UMR-S INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France
| | - R Macedo
- UMR-S INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France
| | - J Rochefort
- UMR-S INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France; Paris Diderot/Paris 07, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Department of Odontology, Paris, France
| | - G Lescaille
- UMR-S INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France; Paris Diderot/Paris 07, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Department of Odontology, Paris, France
| | - C Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - F M Lemoine
- Sorbonne Universite, Paris, France; UMR-S INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Cell and Gene Therapy Unit, Paris, France.
| | - P Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France.
| | - V Mateo
- Sorbonne Universite, Paris, France; UMR-S INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|