1
|
Bhatia HS, Becker RC, Leibundgut G, Patel M, Lacaze P, Tonkin A, Narula J, Tsimikas S. Lipoprotein(a), platelet function and cardiovascular disease. Nat Rev Cardiol 2024; 21:299-311. [PMID: 37938756 PMCID: PMC11216952 DOI: 10.1038/s41569-023-00947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Lipoprotein(a) (Lp(a)) is associated with atherothrombosis through several mechanisms, including putative antifibrinolytic properties. However, genetic association studies have not demonstrated an association between high plasma levels of Lp(a) and the risk of venous thromboembolism, and studies in patients with highly elevated Lp(a) levels have shown that Lp(a) lowering does not modify the clotting properties of plasma ex vivo. Lp(a) can interact with several platelet receptors, providing biological plausibility for a pro-aggregatory effect. Observational clinical studies suggest that elevated plasma Lp(a) concentrations are associated with worse long-term outcomes in patients undergoing revascularization. Furthermore, in these patients, those with elevated plasma Lp(a) levels derive more benefit from prolonged dual antiplatelet therapy than those with normal Lp(a) levels. The ASPREE trial in healthy older individuals treated with aspirin showed a reduction in ischaemic events in those who had a single-nucleotide polymorphism in LPA that is associated with elevated Lp(a) levels in plasma, without an increase in bleeding events. In this Review, we re-examine the role of Lp(a) in the regulation of platelet function and suggest areas of research to define further the clinical relevance to cardiovascular disease of the observed associations between Lp(a) and platelet function.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregor Leibundgut
- Division of Cardiology, University Hospital of Basel, Basel, Switzerland
| | - Mitul Patel
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew Tonkin
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Abstract
Prolonged or excessive exposure to oxidized phospholipids (OxPLs) generates chronic inflammation. OxPLs are present in atherosclerotic lesions and can be detected in plasma on apolipoprotein B (apoB)-containing lipoproteins. When initially conceptualized, OxPL-apoB measurement in plasma was expected to reflect the concentration of minimally oxidized LDL, but, surprisingly, it correlated more strongly with plasma lipoprotein(a) (Lp(a)) levels. Indeed, experimental and clinical studies show that Lp(a) particles carry the largest fraction of OxPLs among apoB-containing lipoproteins. Plasma OxPL-apoB levels provide diagnostic information on the presence and extent of atherosclerosis and improve the prognostication of peripheral artery disease and first and recurrent myocardial infarction and stroke. The addition of OxPL-apoB measurements to traditional cardiovascular risk factors improves risk reclassification, particularly in patients in intermediate risk categories, for whom improving decision-making is most impactful. Moreover, plasma OxPL-apoB levels predict cardiovascular events with similar or greater accuracy than plasma Lp(a) levels, probably because this measurement reflects both the genetics of elevated Lp(a) levels and the generalized or localized oxidation that modifies apoB-containing lipoproteins and leads to inflammation. Plasma OxPL-apoB levels are reduced by Lp(a)-lowering therapy with antisense oligonucleotides and by lipoprotein apheresis, niacin therapy and bariatric surgery. In this Review, we discuss the role of role OxPLs in the pathophysiology of atherosclerosis and Lp(a) atherogenicity, and the use of OxPL-apoB measurement for improving prognosis, risk reclassification and therapeutic interventions.
Collapse
Affiliation(s)
- Sotirios Tsimikas
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Taleb A, Willeit P, Amir S, Perkmann T, Kozma MO, Watzenböck ML, Binder CJ, Witztum JL, Tsimikas S. High immunoglobulin-M levels to oxidation-specific epitopes are associated with lower risk of acute myocardial infarction. J Lipid Res 2023; 64:100391. [PMID: 37211249 PMCID: PMC10275726 DOI: 10.1016/j.jlr.2023.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
Immunoglobulin M (IgM) autoantibodies to oxidation-specific epitopes (OSEs) can be present at birth and protect against atherosclerosis in experimental models. This study sought to determine whether high titers of IgM titers to OSE (IgM OSE) are associated with a lower risk of acute myocardial infarction (AMI) in humans. IgM to malondialdehyde (MDA)-LDL, phosphocholine-modified BSA, IgM apolipoprotein B100-immune complexes, and a peptide mimotope of MDA were measured within 24 h of first AMI in 4,559 patients and 4,617 age- and sex-matched controls in the Pakistan Risk of Myocardial Infarction Study. Multivariate-adjusted logistic regression was used to estimate odds ratio (OR) and 95% confidence interval for AMI. All four IgM OSEs were lower in AMI versus controls (P < 0.001 for all). Males, smokers and individuals with hypertension and diabetes had lower levels of all four IgM OSE than unaffected individuals (P < 0.001 for all). Compared to the lowest quintile, the highest quintiles of IgM MDA-LDL, phosphocholine-modified BSA, IgM apolipoprotein B100-immune complexes, and MDA mimotope P1 had a lower OR of AMI: OR (95% confidence interval) of 0.67 (0.58-0.77), 0.64 (0.56-0.73), 0.70 (0.61-0.80) and 0.72 (0.62-0.82) (P < 0.001 for all), respectively. Upon the addition of IgM OSE to conventional risk factors, the C-statistic improved by 0.0062 (0.0028-0.0095) and net reclassification by 15.5% (11.4-19.6). These findings demonstrate that IgM OSE provides clinically meaningful information and supports the hypothesis that higher levels of IgM OSE may be protective against AMI.
Collapse
Affiliation(s)
- Adam Taleb
- Division of Cardiovascular Medicine, Vascular Medicine Program, University of California San Diego, La Jolla, CA, USA
| | - Peter Willeit
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Shahzada Amir
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna Austria
| | - Maria Ozsvar Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Vienna Austria
| | - Martin L Watzenböck
- Department of Laboratory Medicine, Medical University of Vienna, Vienna Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna Austria
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Vascular Medicine Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Li J, Jiang XJ, Wang QH, Wu XL, Qu Z, Song T, Wan WG, Zheng XX, Yi X. Data-independent acquisition proteomics reveals circulating biomarkers of coronary chronic total occlusion in humans. Front Cardiovasc Med 2022; 9:960105. [PMID: 36561774 PMCID: PMC9764215 DOI: 10.3389/fcvm.2022.960105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction The pathophysiology of coronary chronic total occlusion (CTO) has not been fully elucidated. Methods In the present study, we aimed to investigate the potential plasma biomarkers associated with the pathophysiologic progression of CTO and identify protein dynamics in the plasma of CTO vessels immediately after successful revascularization. We quantitatively analyzed the plasma proteome profiles of controls (CON, n = 10) and patients with CTO pre- and post- percutaneous coronary intervention (PCI) (CTO, n = 10) by data-independent acquisition proteomics. We performed enzyme-linked immunosorbent assay (ELISA) to further confirm the common DEPs in the two-group comparisons (CON vs. CTO and CTO vs. CTO-PCI). Results A total of 1936 proteins with 69 differentially expressed proteins (DEPs) were detected in the plasma of patients with CTO through quantitative proteomics analysis. For all these DEPs, gene ontology (GO) analysis and protein-protein interaction (PPI) analysis were performed. The results showed that most of the proteins were related to the negative regulation of proteolysis, regulation of peptidase activity, negative regulation of hydrolase activity, humoral immune response, and lipid location. Furthermore, we identified 1927 proteins with 43 DEPs in the plasma of patients with CTO vessels after immediately successful revascularization compared to pre-PCI. GO analysis revealed that the above DEPs were enriched in the biological processes of extracellular structure organization, protein activation cascade, negative regulation of response to external stimulus, plasminogen activation, and fibrinolysis. More importantly, we generated a Venn diagram to identify the common DEPs in the two-group comparisons. Seven proteins, ADH4, CSF1, galectin, LPL, IGF2, IgH, and LGALS1, were found to be dynamically altered in plasma during the pathophysiological progression of CTO vessels and following successful revascularization, moreover, CSF1 and LGALS1 were validated via ELISA. Conclusions The results of this study reveal a dynamic pattern of the molecular response after CTO vessel immediate reperfusion, and identified seven proteins which would be the potential targets for novel therapeutic strategies to prevent coronary CTO.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xue-Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qun-Hui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xing-Liang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhe Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei-Guo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiao-Xin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Xin Yi
| |
Collapse
|
5
|
Ruder S, Mansfield B, Immelman AR, Varki N, Miu P, Raal F, Tsimikas S. Lp(a), oxidized phospholipids and oxidation-specific epitopes are increased in subjects with keloid formation. Lipids Health Dis 2022; 21:113. [PMID: 36320028 PMCID: PMC9623907 DOI: 10.1186/s12944-022-01720-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Keloid formation following trauma or surgery is common among darkly pigmented individuals. Since lipoprotein(a) [Lp(a)] has been postulated to have a putative role in wound healing, and also mediates atherosclerotic cardiovascular disease, it was assessed whether Lp(a), its associated oxidized phospholipids and other oxidation-specific biomarkers were associated with keloid formation. METHODS This case-control study included darkly pigmented individuals of African ancestry, 100 with keloid scarring and 100 non-keloid controls. The lipid panel, hsCRP, Lp(a), oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB), IgG and IgM apoB-immune complexes and IgG and IgM autoantibodies to a malondialdehyde mimotope (MDA-mimotope) were measured. Immunohistochemistry of keloid specimens was performed for both Lp(a) and OxPL staining. RESULTS Cases and controls were well matched for age, sex and lipid profile. Mean Lp(a) (57.8 vs. 44.2 mg/dL; P = 0.01, OxPL-apoB 17.4 vs. 15.7 nmol/L; P = 0.009) and IgG and IgM apoB-immune complexes and IgG and IgM MDA-mimotope levels were significantly higher in keloid cases. Keloid tissue stained strongly for OxPL. CONCLUSION Darkly pigmented individuals of African ancestry with keloids have higher plasma levels of Lp(a), OxPL-apoB and oxidation-specific epitopes. The commonality of excessive wound healing in keloids and chronic complications from coronary revascularization suggests avenues of investigation to define a common mechanism driven by Lp(a) and the innate response to oxidized lipids.
Collapse
Affiliation(s)
- Sundeep Ruder
- Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Brett Mansfield
- Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew Ronald Immelman
- Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nissi Varki
- Department of Pathology, University of California, San Diego, USA
| | - Phuong Miu
- Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine, University of California, 9500 Gilman Drive, 92093- 0682 San Diego, USA
| | - Frederick Raal
- Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine, University of California, 9500 Gilman Drive, 92093- 0682 San Diego, USA
| |
Collapse
|
6
|
Clarke R, Hammami I, Sherliker P, Valdes-Marquez E, Watkins H, Hill M, Yang X, Tsimikas S, Hopewell JC. Oxidized phospholipids on apolipoprotein B-100 versus plasminogen and risk of coronary heart disease in the PROCARDIS study. Atherosclerosis 2022; 354:15-22. [PMID: 35803063 DOI: 10.1016/j.atherosclerosis.2022.06.1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Oxidized phospholipids carried on the apolipoprotein B-100 (OxPL-apoB) component of Lp(a) are predictive of coronary heart disease (CHD), but the role of oxidized phospholipids carried on plasminogen (OxPL-PLG) is unknown. We examined the independent effects of OxPL-apoB and OxPL-PLG for risk of CHD before and after adjustment for Lp(a). METHODS Plasma levels of OxPL-apoB, OxPL-PLG, plasminogen and Lp(a) were measured in the PROCARDIS study of early-onset CHD (906 cases/858 controls). Multivariable logistic regression was used to estimate the odds ratios (OR) for each biomarker with CHD after adjustment for established risk factors. RESULTS Mean levels of OxPL-apoB were higher in cases than controls, but levels of OxPL-PLG and plasminogen were similar. For OxPL-apoB, individuals in the top vs bottom fifth had 2-fold higher age and sex-adjusted OR of CHD (OR = 2.61 [95%CI: 1.91, 3.55]), which were partially attenuated after adjustment for established risk factors. The findings for OxPL-apoB and CHD in PROCARDIS were comparable with those of a meta-analysis of all such studies. However, the associations of OxPL-apoB with CHD were fully attenuated by additional adjustment for Lp(a) (OR = 0.93 [0.54,1.60]). Neither OxPL-PLG nor plasminogen were associated with CHD. Overall, there were no differences in the predictive value for CHD of high vs normal levels (<20th or >80th percentile) of OxPL-apoB, OxPL-PLG, plasminogen or Lp(a) after stratifying for each other. CONCLUSIONS These results highlight the context-dependency of OxPL in plasma and suggest that their associated risk of CHD is chiefly mediated by their carriage on Lp(a).
Collapse
Affiliation(s)
- Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Imen Hammami
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Paul Sherliker
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Elsa Valdes-Marquez
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Hill
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Xiaohong Yang
- Division of Cardiovascular Diseases, University of California, San Diego, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Diseases, University of California, San Diego, USA
| | - Jemma C Hopewell
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
7
|
Koschinsky ML, Boffa MB. Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis 2022; 349:92-100. [DOI: 10.1016/j.atherosclerosis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023]
|
8
|
Tsimikas S, Narula J. Lipoprotein(a) and CT Angiography. J Am Coll Cardiol 2022; 79:234-237. [DOI: 10.1016/j.jacc.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
|
9
|
Tsimikas S, Reeves RR, Patel MP. Always Present, But Now Rediscovered: Lp(a) as a Predictor of Long-Term Outcomes in PCI. JACC Cardiovasc Interv 2021; 14:2069-2072. [PMID: 34556281 DOI: 10.1016/j.jcin.2021.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California-San Diego, La Jolla, California, USA.
| | - Ryan R Reeves
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California-San Diego, La Jolla, California, USA
| | - Mitul P Patel
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Nakagawa K, Tanaka M, Hahm TH, Nguyen HN, Matsui T, Chen YX, Nakashima Y. Accumulation of Plasma-Derived Lipids in the Lipid Core and Necrotic Core of Human Atheroma: Imaging Mass Spectrometry and Histopathological Analyses. Arterioscler Thromb Vasc Biol 2021; 41:e498-e511. [PMID: 34470476 DOI: 10.1161/atvbaha.121.316154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kazunori Nakagawa
- Pathophysiological and Experimental Pathology, Graduate School of Medical Sciences (K.N., Y.-X.C., Y.N.), Kyushu University, Fukuoka, Japan
| | - Mitsuru Tanaka
- Laboratory of Food Analysis, Department of Bioscience and Biotechnology, Faculty of Agriculture (M.T., T.-H.H., T.M.), Kyushu University, Fukuoka, Japan
| | - Tae-Hun Hahm
- Laboratory of Food Analysis, Department of Bioscience and Biotechnology, Faculty of Agriculture (M.T., T.-H.H., T.M.), Kyushu University, Fukuoka, Japan
| | - Huu-Nghi Nguyen
- Department of Science and International Collaboration, Institute for Research and Development of Organic Products, Hanoi, Vietnam (H.-N.N.)
| | - Toshiro Matsui
- Laboratory of Food Analysis, Department of Bioscience and Biotechnology, Faculty of Agriculture (M.T., T.-H.H., T.M.), Kyushu University, Fukuoka, Japan
| | - Yong-Xiang Chen
- Pathophysiological and Experimental Pathology, Graduate School of Medical Sciences (K.N., Y.-X.C., Y.N.), Kyushu University, Fukuoka, Japan.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada (Y.-X.C.)
| | - Yutaka Nakashima
- Pathophysiological and Experimental Pathology, Graduate School of Medical Sciences (K.N., Y.-X.C., Y.N.), Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Xu X, Liu X, Yu L, Ma J, Yu S, Ni M. Impact of intracoronary nicorandil before stent deployment in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Exp Ther Med 2019; 19:137-146. [PMID: 31853283 PMCID: PMC6909796 DOI: 10.3892/etm.2019.8219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to clarify the effect of bolus intracoronary nicorandil on inflammatory, oxidative and adherent indicators in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). This randomized controlled trial (RCT) was performed to detect the inflammation and oxidative stress in intracoronary blood both before and after PCI. In total, 65 consecutive patients undergoing PCI were classified into a nicorandil therapy group (n=32) or a placebo group (n=33). All procedures were performed at Shandong University Qilu Hospital, China, during the period from March, 2016 to May, 2017. Intracoronary blood from patients who received nicorandil therapy during PCI showed no change in soluble CD40 ligand (sCD40L) concentration (1.86±0.08 vs. 1.90±0.09 ng/ml, P=0.12) but a significant increase was noted in the control group (1.87±0.17 vs. 2.82±0.26 ng/ml, P<0.01). This indicated a relative reduction in sCD40L level after PCI in the nicorandil group. We further demonstrated an increase in superoxide dismutase (SOD) activity (29.37±0.81 vs. 31.03±0.60 U/ml, P<0.001) and a reduction in lipid peroxidation (3.84±0.99 vs. 4.23±0.13 U/ml, P=0.001) in the nicorandil group but observed no change in the placebo group. ICAM-1 levels showed no change in the nicorandil group (69.54±6.89 vs. 72.01±8.25 ng/ml, P=0.83) but a significant increase in the control group after PCI in intracoronary blood (56.57±4.96 vs. 76.81±6.88 ng/ml, P=0.002). No changes were found in hs-CRP, TNFα and sVCAM-1 levels in coronary blood for both groups before and after PCI in ACS patients. Our findings demonstrate that intracoronary bolus nicorandil therapy has a significant effect on the inhibition of inflammatory indicators and oxidative stress in patients with ACS during PCI. This suggests a possible medical application of nicorandil for reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Xingli Xu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoling Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liwen Yu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Sufang Yu
- Department of Neurology, The Fourth People's Hospital, Liaocheng, Shandong 252002, P.R. China
| | - Mei Ni
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
van den Berg VJ, Vroegindewey MM, Kardys I, Boersma E, Haskard D, Hartley A, Khamis R. Anti-Oxidized LDL Antibodies and Coronary Artery Disease: A Systematic Review. Antioxidants (Basel) 2019; 8:antiox8100484. [PMID: 31618991 PMCID: PMC6826549 DOI: 10.3390/antiox8100484] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 01/11/2023] Open
Abstract
Antibodies to oxidized LDL (oxLDL) may be associated with improved outcomes in cardiovascular disease. However, analysis is restricted by heterogenous study design and endpoints. Our objective was to conduct a comprehensive systematic review assessing anti-oxLDL antibodies in relation to coronary artery disease (CAD). Through a systematic literature search, we identified all studies assessing the relationship of either, IgG or IgM ox-LDL/ copper-oxLDL/ malondialdehyde-LDL, with coronary atherosclerosis or cardiovascular events in populations with, and without, established CAD. Systematic review best practices were adhered to and study quality was assessed. An initial electronic database search identified 2059 records, which was subsequently followed by abstract and full-text review. Finally, we included 18 studies with over 1811 patients with CAD. The studies varied according to populations studied, conventional cardiovascular risk factors and interventional modalities used to assess CAD. IgM anti-oxLDL antibodies were found to indicate protection from more severe CAD and possibly cardiovascular events, whilst the relationship with IgG is more complex and difficult to elucidate, with studies reporting divergent results. In this systematic review, there is evidence that suggests a relationship between anti-oxLDL antibodies and CAD, especially for the IgM subclass. However, further studies, with well-characterized prospective cohorts, will be important to clarify these associations.
Collapse
Affiliation(s)
- Victor J van den Berg
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Maxime M Vroegindewey
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Isabella Kardys
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Dorian Haskard
- National Heart and Lung Institute, Imperial College London W12 0NN London, UK.
| | - Adam Hartley
- National Heart and Lung Institute, Imperial College London W12 0NN London, UK.
| | - Ramzi Khamis
- National Heart and Lung Institute, Imperial College London W12 0NN London, UK.
| |
Collapse
|
13
|
Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit Rev Clin Lab Sci 2017; 55:33-54. [PMID: 29262744 DOI: 10.1080/10408363.2017.1415866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). Genetic, epidemiological and in vitro data provide strong evidence for a pathogenic role for Lp(a) in the progression of atherothrombotic disease. Despite these advancements and a race to develop new Lp(a) lowering therapies, there are still many unanswered and emerging questions about the metabolism and pathophysiology of Lp(a). New studies have drawn attention to Lp(a) as a contributor to novel pathogenic processes, yet the mechanisms underlying the contribution of Lp(a) to CVD remain enigmatic. New therapeutics show promise in lowering plasma Lp(a) levels, although the complete mechanisms of Lp(a) lowering are not fully understood. Specific agents targeted to apolipoprotein(a) (apo(a)), namely antisense oligonucleotide therapy, demonstrate potential to decrease Lp(a) to levels below the 30-50 mg/dL (75-150 nmol/L) CVD risk threshold. This therapeutic approach should aid in assessing the benefit of lowering Lp(a) in a clinical setting.
Collapse
Affiliation(s)
- Corey A Scipione
- a Department of Advanced Diagnostics , Toronto General Hospital Research Institute, UHN , Toronto , Canada
| | - Marlys L Koschinsky
- b Robarts Research Institute , Western University , London , Canada.,c Department of Physiology & Pharmacology , Schulich School of Medicine & Dentistry, Western University , London , Canada
| | - Michael B Boffa
- d Department of Biochemistry , Western University , London , Canada
| |
Collapse
|
14
|
Saleheen D, Haycock PC, Zhao W, Rasheed A, Taleb A, Imran A, Abbas S, Majeed F, Akhtar S, Qamar N, Zaman KS, Yaqoob Z, Saghir T, Rizvi SNH, Memon A, Mallick NH, Ishaq M, Rasheed SZ, Memon FUR, Mahmood K, Ahmed N, Frossard P, Tsimikas S, Witztum JL, Marcovina S, Sandhu M, Rader DJ, Danesh J. Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a mendelian randomisation analysis. Lancet Diabetes Endocrinol 2017; 5:524-533. [PMID: 28408323 PMCID: PMC5483508 DOI: 10.1016/s2213-8587(17)30088-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND The lipoprotein(a) pathway is a causal factor in coronary heart disease. We used a genetic approach to distinguish the relevance of two distinct components of this pathway, apolipoprotein(a) isoform size and circulating lipoprotein(a) concentration, to coronary heart disease. METHODS In this mendelian randomisation study, we measured lipoprotein(a) concentration and determined apolipoprotein(a) isoform size with a genetic method (kringle IV type 2 [KIV2] repeats in the LPA gene) and a serum-based electrophoretic assay in patients and controls (frequency matched for age and sex) from the Pakistan Risk of Myocardial Infarction Study (PROMIS). We calculated odds ratios (ORs) for myocardial infarction per 1-SD difference in either LPA KIV2 repeats or lipoprotein(a) concentration. In a genome-wide analysis of up to 17 503 participants in PROMIS, we identified genetic variants associated with either apolipoprotein(a) isoform size or lipoprotein(a) concentration. Using a mendelian randomisation study design and genetic data on 60 801 patients with coronary heart disease and 123 504 controls from the CARDIoGRAMplusC4D consortium, we calculated ORs for myocardial infarction with variants that produced similar differences in either apolipoprotein(a) isoform size in serum or lipoprotein(a) concentration. Finally, we compared phenotypic versus genotypic ORs to estimate whether apolipoprotein(a) isoform size, lipoprotein(a) concentration, or both were causally associated with coronary heart disease. FINDINGS The PROMIS cohort included 9015 patients with acute myocardial infarction and 8629 matched controls. In participants for whom KIV2 repeat and lipoprotein(a) data were available, the OR for myocardial infarction was 0·93 (95% CI 0·90-0·97; p<0·0001) per 1-SD increment in LPA KIV2 repeats after adjustment for lipoprotein(a) concentration and conventional lipid concentrations. The OR for myocardial infarction was 1·10 (1·05-1·14; p<0·0001) per 1-SD increment in lipoprotein(a) concentration, after adjustment for LPA KIV2 repeats and conventional lipids. Genome-wide analysis identified rs2457564 as a variant associated with smaller apolipoprotein(a) isoform size, but not lipoprotein(a) concentration, and rs3777392 as a variant associated with lipoprotein(a) concentration, but not apolipoprotein(a) isoform size. In 60 801 patients with coronary heart disease and 123 504 controls, OR for myocardial infarction was 0·96 (0·94-0·98; p<0·0001) per 1-SD increment in apolipoprotein(a) protein isoform size in serum due to rs2457564, which was directionally concordant with the OR observed in PROMIS for a similar change. The OR for myocardial infarction was 1·27 (1·07-1·50; p=0·007) per 1-SD increment in lipoprotein(a) concentration due to rs3777392, which was directionally concordant with the OR observed for a similar change in PROMIS. INTERPRETATION Human genetic data suggest that both smaller apolipoprotein(a) isoform size and increased lipoprotein(a) concentration are independent and causal risk factors for coronary heart disease. Lipoprotein(a)-lowering interventions could be preferentially effective in reducing the risk of coronary heart disease in individuals with smaller apolipoprotein(a) isoforms. FUNDING British Heart Foundation, US National Institutes of Health, Fogarty International Center, Wellcome Trust, UK Medical Research Council, UK National Institute for Health Research, and Pfizer.
Collapse
Affiliation(s)
- Danish Saleheen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Centre for Non-Communicable Diseases, Karachi, Pakistan.
| | - Philip C Haycock
- Medical Research Council (MRC)/British Heart Foundation (BHF) Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Adam Taleb
- University of California San Diego, La Jolla, CA, USA
| | - Atif Imran
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Shahid Abbas
- Faisalabad Institute of Cardiology, Faisalabad, Pakistan
| | - Faisal Majeed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Saba Akhtar
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Nadeem Qamar
- National Institute of Cardiovascular Disorders, Karachi, Pakistan
| | - Khan Shah Zaman
- National Institute of Cardiovascular Disorders, Karachi, Pakistan
| | - Zia Yaqoob
- National Institute of Cardiovascular Disorders, Karachi, Pakistan
| | - Tahir Saghir
- National Institute of Cardiovascular Disorders, Karachi, Pakistan
| | | | - Anis Memon
- National Institute of Cardiovascular Disorders, Karachi, Pakistan
| | | | | | | | | | | | | | | | | | | | - Santica Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA, USA
| | - Manjinder Sandhu
- Medical Research Council (MRC)/British Heart Foundation (BHF) Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John Danesh
- Medical Research Council (MRC)/British Heart Foundation (BHF) Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; National Institute for Health Research Blood and Transplant Research Unit, University of Cambridge, Cambridge, UK; Cambridge British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Yarlioglues M, Kurtul A. Association of red cell distribution width with noninfarct-related artery-chronic total occlusion in acute myocardial infarction patients. Biomark Med 2017; 11:255-263. [DOI: 10.2217/bmm-2016-0255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: The presence of chronic total occlusion (CTO) in noninfarct-related artery (non-IRA) is an independent predictor of mortality in acute myocardial infarction (AMI). We investigated whether red cell distribution width (RDW) levels are associated with presence of non-IRA-CTO in AMI (ST-elevation myocardial infarction [STEMI] and non-STEMI). Patients and methods: Patients (n = 858) were categorized into three groups: single vessel disease, multivessel disease (MVD) without CTO and MVD with CTO. Results: MVD with CTO group had higher RDW levels than single vessel disease and MVD without CTO groups (14.87 ± 1.09% vs 13.82 ± 1.01% and 13.87 ± 0.87%, respectively, p < 0.001). In-hospital mortality was also higher in patients with MVD with CTO (p < 0.001). On multivariate analysis, RDW (odds ratio [OR]: 1.761; p < 0.001), age (OR: 1.04; p < 0.001), creatinine (OR: 3.524; p = 0.027), current smoker (OR: 0.489; p = 0.022), hemoglobin (OR: 0.826; p = 0.044), and non-STEMI (OR: 3.065; p < 0.001) were predictors of occurrence of non-IRA-CTO. Conclusion: Increased RDW is independently associated with presence of non-IRA-CTO in AMI patients.
Collapse
Affiliation(s)
- Mikail Yarlioglues
- Department of Cardiology, Ankara Education & Research Hospital, Ankara, Turkey
| | - Alparslan Kurtul
- Department of Cardiology, Ankara Education & Research Hospital, Ankara, Turkey
| |
Collapse
|
16
|
Byun YS, Yang X, Bao W, DeMicco D, Laskey R, Witztum JL, Tsimikas S. Oxidized Phospholipids on Apolipoprotein B-100 and Recurrent Ischemic Events Following Stroke or Transient Ischemic Attack. J Am Coll Cardiol 2017; 69:147-158. [DOI: 10.1016/j.jacc.2016.10.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
|
17
|
Leibundgut G, Lee JH, Strauss BH, Segev A, Tsimikas S. Acute and long-term effect of percutaneous coronary intervention on serially-measured oxidative, inflammatory, and coagulation biomarkers in patients with stable angina. J Thromb Thrombolysis 2016; 41:569-80. [PMID: 26964999 DOI: 10.1007/s11239-016-1351-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To derive insights into the temporal changes in oxidative, inflammatory and coagulation biomarkers in patients with stable angina undergoing percutaneous coronary intervention (PCI). PCI is associated with a variety of biochemical and mechanical stresses to the vessel wall. Oxidized phospholipids are present on plasminogen (OxPL-PLG) and potentiate fibrinolysis in vitro. We recently showed that OxPL-PLG increase following acute myocardial infarction, suggesting that they are involved in atherothrombosis. Plasma samples were collected before, immediately after, 6 and 24 h, 3 and 7 days, and 1, 3, and 6 months after PCI in 125 patients with stable angina undergoing uncomplicated PCI. Plasminogen levels, OxPL-PLG, and an array of 16 oxidative, inflammatory and coagulation biomarkers were measured with established assays. OxPL-PLG and plasminogen declined significantly immediately post-PCI, rebounded to baseline, peaked at 3 days and slowly returned to baseline by 6 months (p < 0.0001 by ANOVA). The temporal trends to maximal peak in biomarkers were as follows: immediately post PCI: OxPL-apoB and lipoprotein (a); Day 1-the inflammatory biomarker IL-6; Day 3-CRP and coagulation biomarkers OxPL-PLG, plasminogen and tissue plasminogen activity; Day 3 to 7-plasminogen activator inhibitor activity, and complement factor H binding to malondialdehyde-LDL and MDA-LDL IgG; Day 7-30 MDA-LDL IgM, CuOxLDL IgM, and ApoB-IC IgM and IgG; >30 days uPA activity, uPA antigen, CuOxLDL IgG and peptide mimotope to MDA-LDL. Most of the biomarkers trended to baseline by 6 months. PCI results in a specific, temporal sequence of changes in plasma biomarkers. These observations provide insights into the effects of iatrogenic barotrauma and plaque disruption during PCI and suggest avenues of investigation to explain complications of PCI and development of targeted therapies to enhance procedural success.
Collapse
Affiliation(s)
- Gregor Leibundgut
- Division of Cardiology, University of Basel, Basel, Switzerland.,Vascular Medicine Program, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92993-0682, USA
| | - Jun-Hee Lee
- Division of Cardiology, Kang-Dong Sacred Heart Hospital, Hallym University Medical Center, Seoul, Korea
| | - Bradley H Strauss
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada.,Schulich Heart Center, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| | - Amit Segev
- The Heart Centre, Chaim Sheba Medical Centre, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sotirios Tsimikas
- Vascular Medicine Program, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92993-0682, USA.
| |
Collapse
|
18
|
DeFilippis AP, Chernyavskiy I, Amraotkar AR, Trainor PJ, Kothari S, Ismail I, Hargis CW, Korley FK, Leibundgut G, Tsimikas S, Rai SN, Bhatnagar A. Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction. J Thromb Thrombolysis 2016; 42:61-76. [PMID: 26510751 PMCID: PMC5403145 DOI: 10.1007/s11239-015-1292-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidized phospholipids (OxPL) are abundant in atherosclerotic plaques. They are also bound to circulating plasminogen after myocardial infarction (MI), and their binding to plasminogen may accentuate fibrinolysis. We sought to assess whether circulating levels of plasminogen and OxPL bound to plasminogen (OxPL-PLG) increase following acute MI and whether this increase differs between atherothrombotic (Type 1) and non-atherothrombotic (Type 2) MI. We measured circulating levels of plasminogen and OxPL-PLG at 0, 6, 24, 48 h, and >3 months (stable state) following acute MI and following an angiogram for stable coronary artery disease (CAD). Forty-nine subjects met the criteria for acute MI, of whom 34 had clearly defined atherothrombotic (n = 22) or non-atherothrombotic (n = 12) MI; 15 patients met the criteria for stable CAD. Mean baseline levels of plasminogen and OxPL-PLG were lower in the acute MI group than in the stable CAD group (9.75 vs 20.2, p < 0.0001 for plasminogen and 165.5 vs 275.1, p = 0.0002 for OxPL-PLG) and did not change over time or between time points, including the 3-month follow-up. Mean baseline levels of plasminogen and OxPL-PLG were also lower in atherothrombotic (Type 1) than in non-atherothrombotic (Type 2) MI subjects (8.65 vs 12.1, p < 0.03 for plasminogen and 164.5 vs 245.7, p = 0.02 for OxPL-PLG), and this relationship did not change over time or between time points. Plasminogen and OxPL-PLG were lower in patients presenting with an acute MI than in those with stable CAD and also in those with atherothrombotic MI (Type 1) vs. those with non-atherothrombotic MI (Type 2). These findings persisted at a median follow-up of 3 months post-MI. The association of plasminogen and OxPL-PLG with acute MI, particularly atherothrombotic MI (Type 1), could reflect a reduced fibrinolytic capacity, associated with an increased risk of atherothrombotic events differentiating stable CAD from unstable CAD and atherothrombotic MI (Type 1) from non-atherothrombotic MI (Type 2). Additional study with a larger sample size is warranted.
Collapse
Affiliation(s)
- Andrew P DeFilippis
- Division of Cardiovascular Medicine, Department of Medicine, KentuckyOne/Jewish Hospital, University of Louisville, 550 South Jackson Street, Louisville, KY, 40202, USA.
- Johns Hopkins University, Baltimore, MD, USA.
| | - Ilya Chernyavskiy
- Department of Physiology, University of Louisville, Louisville, KY, USA
| | - Alok R Amraotkar
- Division of Cardiovascular Medicine, Department of Medicine, KentuckyOne/Jewish Hospital, University of Louisville, 550 South Jackson Street, Louisville, KY, 40202, USA
| | - Patrick J Trainor
- Division of Cardiovascular Medicine, and Bioinformatics, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Shalin Kothari
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imtiaz Ismail
- Department of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Charles W Hargis
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Frederick K Korley
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shesh N Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, Department of Medicine, KentuckyOne/Jewish Hospital, University of Louisville, 550 South Jackson Street, Louisville, KY, 40202, USA
| |
Collapse
|
19
|
Near Infrared Fluorescence (NIRF) Molecular Imaging of Oxidized LDL with an Autoantibody in Experimental Atherosclerosis. Sci Rep 2016; 6:21785. [PMID: 26911995 PMCID: PMC4766560 DOI: 10.1038/srep21785] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
We aimed to develop a quantitative antibody-based near infrared fluorescence (NIRF) approach for the imaging of oxidized LDL in atherosclerosis. LO1, a well- characterized monoclonal autoantibody that reacts with malondialdehyde-conjugated LDL, was labeled with a NIRF dye to yield LO1-750. LO1-750 specifically identified necrotic core in ex vivo human coronary lesions. Injection of LO1-750 into high fat (HF) fed atherosclerotic Ldlr−/− mice led to specific focal localization within the aortic arch and its branches, as detected by fluorescence molecular tomography (FMT) combined with micro-computed tomography (CT). Ex vivo confocal microscopy confirmed LO1-750 subendothelial localization of LO1-750 at sites of atherosclerosis, in the vicinity of macrophages. When compared with a NIRF reporter of MMP activity (MMPSense-645-FAST), both probes produced statistically significant increases in NIRF signal in the Ldlr−/− model in relation to duration of HF diet. Upon withdrawing the HF diet, the reduction in oxLDL accumulation, as demonstrated with LO1-750, was less marked than the effect seen on MMP activity. In the rabbit, in vivo injected LO1-750 localization was successfully imaged ex vivo in aortic lesions with a customised intra-arterial NIRF detection catheter. A partially humanized chimeric LO1-Fab-Cys localized similarly to the parent antibody in murine atheroma showing promise for future translation.
Collapse
|
20
|
Trpkovic A, Resanovic I, Stanimirovic J, Radak D, Mousa SA, Cenic-Milosevic D, Jevremovic D, Isenovic ER. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci 2014; 52:70-85. [DOI: 10.3109/10408363.2014.992063] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Ravandi A, Leibundgut G, Hung MY, Patel M, Hutchins PM, Murphy RC, Prasad A, Mahmud E, Miller YI, Dennis EA, Witztum JL, Tsimikas S. Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J Am Coll Cardiol 2014; 63:1961-71. [PMID: 24613321 DOI: 10.1016/j.jacc.2014.01.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study sought to assess whether oxidized lipids are released downstream from obstructive plaques after percutaneous coronary and peripheral interventions using distal protection devices. BACKGROUND Oxidation of lipoproteins generates multiple bioactive oxidized lipids that affect atherothrombosis and endothelial function. Direct evidence of their role during therapeutic procedures, which may result in no-reflow phenomenon, myocardial infarction, and stroke, is lacking. METHODS The presence of specific oxidized lipids was assessed in embolized material captured by distal protection filter devices during uncomplicated saphenous vein graft, carotid, renal, and superficial femoral artery interventions. The presence of oxidized phospholipids (OxPL) and oxidized cholesteryl esters (OxCE) was evaluated in 24 filters using liquid chromatography, tandem mass spectrometry, enzyme-linked immunosorbent assays, and immunostaining. RESULTS Phosphatidylcholine-containing OxPL, including (1-palmitoyl-2-[9-oxo-nonanoyl] PC), representing a major phosphatidylcholine-OxPL molecule quantitated within plaque material, [1-palmitoyl-2-(5-oxo-valeroyl)-sn-glycero-3-phosphocholine], and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, were identified in the extracted lipid portion from all vascular beds. Several species of OxCE, such as keto, hydroperoxide, hydroxy, and epoxy cholesteryl ester derivatives from cholesteryl linoleate and cholesteryl arachidonate, were also present. The presence of OxPL was confirmed using enzyme-linked immunoassays and immunohistochemistry of captured material. CONCLUSIONS This study documents the direct release and capture of OxPL and OxCE during percutaneous interventions from multiple arterial beds in humans. Entrance of bioactive oxidized lipids into the microcirculation may mediate adverse clinical outcomes during therapeutic procedures.
Collapse
Affiliation(s)
- Amir Ravandi
- St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medicine, University of California-San Diego, La Jolla, California
| | - Gregor Leibundgut
- Department of Medicine, University of California-San Diego, La Jolla, California; University of Basel, Basel, Switzerland
| | - Ming-Yow Hung
- Department of Medicine, University of California-San Diego, La Jolla, California; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Mitul Patel
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Patrick M Hutchins
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Anand Prasad
- Department of Medicine, University of California-San Diego, La Jolla, California; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ehtisham Mahmud
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Yury I Miller
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Edward A Dennis
- Department of Pharmacology and Chemistry and Biochemistry, University of California, La Jolla, California
| | - Joseph L Witztum
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Sotirios Tsimikas
- Department of Medicine, University of California-San Diego, La Jolla, California.
| |
Collapse
|
22
|
Leibundgut G, Scipione C, Yin H, Schneider M, Boffa MB, Green S, Yang X, Dennis E, Witztum JL, Koschinsky ML, Tsimikas S. Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a). J Lipid Res 2013; 54:2815-30. [PMID: 23828779 DOI: 10.1194/jlr.m040733] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp(55/57)→Ala(55/57) substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp(57)→Ala(57) substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)'s pro-atherogenic potential.
Collapse
Affiliation(s)
- Gregor Leibundgut
- Departments of Medicine, University of California, San Diego, La Jolla, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fang L, Miller YI. Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids. Free Radic Biol Med 2012; 53:1411-20. [PMID: 22906686 PMCID: PMC3448821 DOI: 10.1016/j.freeradbiomed.2012.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/16/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
With the advent of genetic engineering, zebrafish (Danio rerio) were recognized as an attractive model organism to study many biological processes. Remarkably, the small size and optical transparency of zebrafish larvae enable high-resolution imaging of live animals. Zebrafish respond to various environmental and pathological factors with robust oxidative stress. In this article, we provide an overview of the molecular mechanisms involved in oxidative stress and antioxidant response in zebrafish. Existing applications of genetically encoded fluorescent sensors allow imaging, in real time, of the production of H(2)O(2) and studying its involvement in inflammatory responses, as well as activation of the oxidation-sensitive transcription factors HIF and NRF2. Oxidative stress, combined with hyperlipidemia, leads to oxidation of lipoproteins, the process that contributes significantly to the development of atherosclerosis in humans. Recent work found that feeding zebrafish a high-cholesterol diet results in hypercholesterolemia, vascular lipid accumulation, and extreme lipoprotein oxidation. Generation of a transgenic zebrafish expressing a green fluorescent protein-tagged human antibody to malondialdehyde (MDA)-modified LDL makes possible the in vivo visualization of MDA epitopes in the vascular wall and testing of the efficacy of antioxidants and dietary interventions. Thus, using zebrafish as a model organism provides important advantages in studying the roles of reactive oxygen species and lipid oxidation in basic biologic and pathologic processes.
Collapse
Affiliation(s)
- Longhou Fang
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|