1
|
Bogunovic N, Meekel JP, Majolée J, Hekhuis M, Pyszkowski J, Jockenhövel S, Kruse M, Riesebos E, Micha D, Blankensteijn JD, Hordijk PL, Ghazanfari S, Yeung KK. Patient-Specific 3-Dimensional Model of Smooth Muscle Cell and Extracellular Matrix Dysfunction for the Study of Aortic Aneurysms. J Endovasc Ther 2021; 28:604-613. [PMID: 33902345 PMCID: PMC8276336 DOI: 10.1177/15266028211009272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Abdominal aortic aneurysms (AAAs) are associated with overall high mortality in case of rupture. Since the pathophysiology is unclear, no adequate pharmacological therapy exists. Smooth muscle cells (SMCs) dysfunction and extracellular matrix (ECM) degradation have been proposed as underlying causes. We investigated SMC spatial organization and SMC-ECM interactions in our novel 3-dimensional (3D) vascular model. We validated our model for future use by comparing it to existing 2-dimensional (2D) cell culture. Our model can be used for translational studies of SMC and their role in AAA pathophysiology. MATERIALS AND METHODS SMC isolated from the medial layer of were the aortic wall of controls and AAA patients seeded on electrospun poly-lactide-co-glycolide scaffolds and cultured for 5 weeks, after which endothelial cells (EC) are added. Cell morphology, orientation, mechanical properties and ECM production were quantified for validation and comparison between controls and patients. RESULTS We show that cultured SMC proliferate into multiple layers after 5 weeks in culture and produce ECM proteins, mimicking their behavior in the medial aortic layer. EC attach to multilayered SMC, mimicking layer interactions. The novel SMC model exhibits viscoelastic properties comparable to biological vessels; cytoskeletal organization increases during the 5 weeks in culture; increased cytoskeletal alignment and decreased ECM production indicate different organization of AAA patients' cells compared with control. CONCLUSION We present a valuable preclinical model of AAA constructed with patient specific cells with applications in both translational research and therapeutic developments. We observed SMC spatial reorganization in a time course of 5 weeks in our robust, patient-specific model of SMC-EC organization and ECM production.
Collapse
Affiliation(s)
- Natalija Bogunovic
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jorn P. Meekel
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Marije Hekhuis
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | | | - Stefan Jockenhövel
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| | - Magnus Kruse
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
- Institut für Textiltechnik der RWTH Aachen University, Aachen, Germany
| | - Elise Riesebos
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Dimitra Micha
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jan D. Blankensteijn
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| | - Kak K. Yeung
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|