1
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
2
|
McDonagh P, Skillen N, Robertson P, McCrudden D. In situ electrochemical determination of 2,5-diformylfuran (DFF) from the photocatalytic oxidation of 5-hydroxymethylfurfural (HMF). Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Selective oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran by TEMPO-assisted magnetic Fe3O4@SiO2@mSiO2-NH2-Cu(II) catalytic system. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Hoang Tran P. Recent Approaches in the Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Diformylfuran. CHEMSUSCHEM 2022; 15:e202200220. [PMID: 35307983 DOI: 10.1002/cssc.202200220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The conversion of biomass into a great variety of valuable chemicals, polymers, and fuels gives a sustainable alternative for the insufficiency of non-renewable fossil fuel resources and reduces environmental pollution. 5-Hydroxymethylfurfural (HMF), converted from sustainable carbohydrates, is a significant building block chemical, and the selective oxidation of HMF into 2,5-diformylfuran (DFF) presents an ongoing challenge. DFF is a versatile platform molecule derived from biomass and has promising application in pharmaceuticals and polymers. This Review provides an overview of the latest developments of efficient catalytic systems for the sustainable conversion of HMF to DFF.
Collapse
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Chen L, Xiong Y, Qin H, Qi Z. Advances of Ionic Liquids and Deep Eutectic Solvents in Green Processes of Biomass-Derived 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202102635. [PMID: 35088547 DOI: 10.1002/cssc.202102635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (HMF) is identified as an important bio-based platform chemical to bridge petroleum-based and biomass-based resources. It can be obtained through dehydration of various carbohydrates as well as converted to value-added fuels and chemicals. As designer solvents, ionic liquids (ILs) and deep eutectic solvents (DESs) have been widely used in catalytic transformation of biomass derivatives to various chemicals. This Review summarizes recent progress in experimental and theoretical studies on dehydration of carbohydrates such as fructose, glucose, sucrose, cellobiose, chitosan, cellulose, inulin, and even raw biomass to generate HMF using ILs and DESs as catalysts/cocatalysts and/or solvents/cosolvents. It also gives an overview of IL and DES-involved catalytic transformation of HMF to downstream products via oxidation, reduction, esterification, decarboxylation, and so forth. Challenges and prospects of ILs and DESs are also proposed for further production of HMF and HMF derivatives from biomass in green and sustainable processes.
Collapse
Affiliation(s)
- Lifang Chen
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yuhang Xiong
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hao Qin
- Chair for Process Systems Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106, Magdeburg, Germany
| | - Zhiwen Qi
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
6
|
Liu J, Wen S, Wang F, Zhu X, Zeng Z, Yin D. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst. Front Chem 2022; 10:853112. [PMID: 35372283 PMCID: PMC8967152 DOI: 10.3389/fchem.2022.853112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
2, 5-Furandicarboxylic acid (FDCA) is an important bio-monomer that can potentially replace terephthalic acid to synthesize degradable polyesters. Efficient selective oxidation of biomass-based 5-hydroxymethylfurfural (HMF) to FDCA has been a significant but challenging work in the past decades. In this study, a novel molybdenum-vanadium oxide (Mo-V-O) catalyst was prepared by a simple method and showed excellent catalytic activity for converting HMF to FDCA. A high FDCA selectivity of 94.5 and 98.2% conversion of HMF were achieved under the optimal conditions with tert-butyl hydroperoxide as the oxidant. FT-IR, SEM, XRD and TG were applied to investigate the properties of Mo-V-O catalyst. After fitting experimental data with the first-order kinetics equation, the evaluated apparent activation energies of HMF oxidation were obtained. The experimental design and study were carried out by response surface methodology (RSM) to test the effects of reaction conditions on the catalytic process.
Collapse
|
7
|
Keshavarz R, Farahi M. Novel cellulose supported 1,2-bis(4-aminophenylthio)ethane Ni(ii) complex (Ni II(BAPTE)(NO 3) 2-Cell) as an efficient nanocatalyst for the synthesis of spirooxindole derivatives. RSC Adv 2022; 12:3584-3592. [PMID: 35425356 PMCID: PMC8979259 DOI: 10.1039/d1ra08182a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Cellulose was used as a support for immobilizing a Ni(ii) complex of 1,2-bis(4-aminophenylthio)ethane to prepare NiII(BAPTE)(NO3)2-Cell as a new organo-inorganic hybrid nanocatalyst. The properties of the prepared catalyst were studied using various analyses such as FT-IR, XRD, SEM, TGA and EDX. NiII(BAPTE)(NO3)2-Cell was employed as a reusable catalyst for the synthesis of spirooxindole derivatives via a three-component condensation of isatin, malononitrile and reactive methylene compounds. The nanocatalyst can be readily and quickly separated from the reaction mixture and can be reused for at least eight successive reaction cycles without a significant reduction in efficiency. The facile accessibility to the starting materials, use of green solvents and conducting the reactions in eco-friendly and cost-effective conditions have made this protocol a suitable method for preparing spirooxindole derivatives.
Collapse
Affiliation(s)
- Raziyeh Keshavarz
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +987412242167e
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +987412242167e
| |
Collapse
|
8
|
Nasrollahzadeh M, Ghasemzadeh M, Gharoubi H, Nezafat Z. Progresses in polysaccharide and lignin-based ionic liquids: Catalytic applications and environmental remediation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Kashparova VP, Chernysheva DV, Klushin VA, Andreeva VE, Kravchenko OA, Smirnova NV. Furan monomers and polymers from renewable plant biomass. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Phan HB, Thi Nguyen QB, Luong CM, Tran KN, Tran PH. A green and highly efficient synthesis of 5-hydroxymethylfurfural from monosaccharides using a novel binary ionic liquid mixture. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Zhou W, Kong Z, Wu Z, Yang S, Wang Y, Liu Y. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-diformylfuran catalyzed by NiMn layered double hydroxide. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
Gupta SSR, Vinu A, Kantam ML. Ultrafine Copper Oxide Particles Dispersed on Nitrogen-Doped Hollow Carbon Nanospheres for Oxidative Esterification of Biomass-Derived 5-Hydroxymethylfurfural. Chempluschem 2021; 86:259-269. [PMID: 33559290 DOI: 10.1002/cplu.202000713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Indexed: 11/07/2022]
Abstract
One-pot synthesis of furan-2,5-dimethylcarboxylate (FDMC) from 5-hydroxymethylfurfural (HMF) is highly demanding for the commercial production of polyethylene furanoate (PEF). Herein, a direct synthesis of FDMC is reported from oxidative esterification of HMF using ultrafine CuO particles dispersed on nitrogen-doped hollow carbon nanospheres (CuO/N-C-HNSs) as a catalyst and tert-butyl hydroperoxide (TBHP) as an oxidizing and methylating reagent. The CuO/N-C-HNSs was prepared through a template protection-sacrifice strategy using SiO2 as a sacrificial template and histidine as the precursor for N and C. N-doping facilitated a strong interaction between the support and copper species, affording formation of CuO nanoparticles of less than 10 nm in size. By virtue of the highly dispersed CuO nanoparticles and a high BET surface area 373 m2 /g, the CuO/N-C-HNSsshows excellent catalytic performance in the selective conversion of HMF into FDMC affording 93 % yield of the desired product with a TON value of 49. Furthermore, the oxidative esterification involving SP3 C-H bond functionalization is also demonstrated using the same catalyst.
Collapse
Affiliation(s)
- Shyam Sunder R Gupta
- Department of Chemical Engineering, Institute of ChemicalTechnology, Matunga (E), Mumbai, Maharashtra, 400019, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mannepalli Lakshmi Kantam
- Department of Chemical Engineering, Institute of ChemicalTechnology, Matunga (E), Mumbai, Maharashtra, 400019, India
| |
Collapse
|
13
|
Pawar HS. Polymethylaminosiloxane Grafted Transition Metal Catalyst DIC
A
T‐V for Chemoselective Aerobic Oxidation of 5‐HMF into 2,5‐Diformyl Furan. ChemistrySelect 2020. [DOI: 10.1002/slct.202001896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hitesh S. Pawar
- DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Matunga Mumbai 400 019 India
| |
Collapse
|
14
|
Ayoub N, Bergère C, Toufaily J, Guénin E, Enderlin G. A gram scale selective oxidation of 5-hydroxymethylfurfural to diformylfuran in the presence of oxone and catalyzed by 2-iodobenzenesulfonic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01653e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, an alternative system of 5-hydroxymethylfurfural (HMF) oxidation was studied, in an attempt to avoid the use of expensive metal catalysts, polluting systems and high pressures.
Collapse
Affiliation(s)
- Nadim Ayoub
- Université de Technologie de Compiègne
- ESCOM
- TIMR (Integrated Transformations of Renewable Matter)
- Centre de recherche Royallieu
- CS 6031960203 Compiègne Cedex
| | - Carla Bergère
- Université de Technologie de Compiègne
- ESCOM
- TIMR (Integrated Transformations of Renewable Matter)
- Centre de recherche Royallieu
- CS 6031960203 Compiègne Cedex
| | - Joumana Toufaily
- Laboratoire de Matériaux
- Catalyse
- Environnement et Méthodes analytiques (MCEMA-CHAMSI)
- EDST
- Université Libanaise
| | - Erwann Guénin
- Université de Technologie de Compiègne
- ESCOM
- TIMR (Integrated Transformations of Renewable Matter)
- Centre de recherche Royallieu
- CS 6031960203 Compiègne Cedex
| | - Gérald Enderlin
- Université de Technologie de Compiègne
- ESCOM
- TIMR (Integrated Transformations of Renewable Matter)
- Centre de recherche Royallieu
- CS 6031960203 Compiègne Cedex
| |
Collapse
|