1
|
Kumar S, Choudhary P, Sharma D, Sajwan D, Kumar V, Krishnan V. Tailored Engineering of Layered Double Hydroxide Catalysts for Biomass Valorization: A Way Towards Waste to Wealth. CHEMSUSCHEM 2024; 17:e202400737. [PMID: 38864756 DOI: 10.1002/cssc.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
Layered double hydroxides (LDH) have significant attention in recent times due to their unique characteristic properties, including layered structure, variable compositions, tunable acidity and basicity, memory effect, and their ability to transform into various kinds of catalysts, which make them desirable for various types of catalytic applications, such as electrocatalysis, photocatalysis, and thermocatalysis. In addition, the upcycling of lignocellulose biomass and its derived compounds has emerged as a promising strategy for the synthesis of valuable products and fine chemicals. The current review focuses on recent advancements in LDH-based catalysts for biomass conversion reactions. Specifically, this review highlights the structural features and advantages of LDH and LDH-derived catalysts for biomass conversion reactions, followed by a detailed summary of the different synthesis methods and different strategies used to tailor their properties. Subsequently, LDH-based catalysts for hydrogenation, oxidation, coupling, and isomerization reactions of biomass-derived molecules are critically summarized in a very detailed manner. The review concludes with a discussion on future research directions in this field which anticipates that further exploration of LDH-based catalysts and integration of cutting-edge technologies into biomass conversion reactions hold promise for addressing future energy challenges, potentially leading to a carbon-neutral or carbon-positive future.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Vinit Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
2
|
Cao YD, Mu WX, Gong M, Fan LL, Han J, Liu H, Qi B, Gao GG. Enhanced catalysis of a vanadium-substituted Keggin-type polyoxomolybdate supported on the M 3O 4/C (M = Fe or Co) surface enables efficient and recyclable oxidation of HMF to DFF. Dalton Trans 2023; 52:16303-16314. [PMID: 37855372 DOI: 10.1039/d3dt02935b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the reaction of oxidizing 5-hydroxymethylfurfural (HMF), attaining high efficiency and selectivity in the conversion of HMF into DFF presents a challenge due to the possibility of forming multiple products. Polyoxometalates are considered highly active catalysts for HMF oxidation. However, the over-oxidation of products poses a challenge, leading to decreased purity and yield. In this work, metal-organic framework-derived Fe3O4/C and Co3O4/C were designed as carriers for the vanadium-substituted Keggin-type polyoxomolybdate H5PMo10V2O40·35H2O (PMo10V2). In this complex system, spinel oxides can effectively adsorb HMF molecules and cooperate with PMo10V2 to catalyze the aerobic oxidation of HMF. As a result, the as-prepared PMo10V2@Fe3O4/C and PMo10V2@Co3O4/C catalysts can achieve efficient conversion of HMF into DFF with almost 100% selectivity. Among them, PMo10V2@Fe3O4/C exhibits a higher conversion rate (99.1%) under milder reaction conditions (oxygen pressure of 0.8 MPa). Both catalysts exhibited exceptional stability and retained their activity and selectivity even after undergoing multiple cycles. Studies on mechanisms by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy revealed that the V5+ and Mo6+ in PMo10V2, together with the metal ions in the spinel oxides, act as active centers for the catalytic conversion of HMF. Therefore, it is proposed that PMo10V2 and M3O4/C (M = Fe, Co) cooperatively catalyze the transformation of HMF into DFF via a proton-coupled electron transfer mechanism. This study offers an innovative approach for designing highly selective and recyclable biomass oxidation catalysts.
Collapse
Affiliation(s)
- Yun-Dong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Wen-Xia Mu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Mengdi Gong
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Lin-Lin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong, China
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Bin Qi
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
3
|
Palermo V, Camargo López JM, Brijaldo MH, Acevedo S, Mancipe S, Castillo JC, Rojas HA, Passos FB, Romanelli GP, Martínez JJ. Biochar-MgO from Soursop Seeds in the Production of Biofuel Additive Intermediates. Chempluschem 2023; 88:e202300401. [PMID: 37827994 DOI: 10.1002/cplu.202300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The conversion of residual biomass from fruit seeds into biochar can be achieved using MgCl2 as an activating agent and calcining at 700 °C. The resulting MgO-biochars were employed in the aldol condensation reaction between furfural and acetone. This reaction is essential as the first step in the obtention of biofuels derived from biomass. The biochars were characterized through various physicochemical techniques, revealing that the presence of MgO nanoparticles deposited on the carbon surface modifies the structural and acidic-basic properties of the carbonaceous materials with a graphitic structure. The biochar with a surface content of MgO of 0.34 % w/w enables the achievement of 100 % of selectivity towards 4-(2-furanyl)-3-buten-2-one (I) with quantitative conversions under optimized conditions. This property highlights the potential of using this type of biochar, commonly used for CO2 capture, as a versatile acidic-basic catalyst, thereby introducing a novel approach to sustainable chemistry.
Collapse
Affiliation(s)
- Valeria Palermo
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CINDECA-CCT La Plata-CONICET-CIC-PBA), Universidad Nacional de La Plata, Calle 47 No 257, B1900AJK, La Plata, Argentina
| | - Jhoan M Camargo López
- Escuela de Ciencias Administrativas y Económicas, Facultad de estudios a Distancia, Universidad Pedagógica y Tecnológica de Colombia, Av. Central Norte 39-115, Tunja, 150003, Colombia
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC, Av. Central Norte, vía Paipa, Tunja, Boyacá, 150003, Colombia
| | - María H Brijaldo
- Escuela de Ciencias Administrativas y Económicas, Facultad de estudios a Distancia, Universidad Pedagógica y Tecnológica de Colombia, Av. Central Norte 39-115, Tunja, 150003, Colombia
| | - Sergio Acevedo
- Escuela de Ciencias Administrativas y Económicas, Facultad de estudios a Distancia, Universidad Pedagógica y Tecnológica de Colombia, Av. Central Norte 39-115, Tunja, 150003, Colombia
- Escuela de Ciencias Básicas, Universidad Nacional Abierta y a Distancia UNAD, Calle 5 # 1-08, Sogamoso, Colombia
| | - Sonia Mancipe
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC, Av. Central Norte, vía Paipa, Tunja, Boyacá, 150003, Colombia
| | - Juan-Carlos Castillo
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC, Av. Central Norte, vía Paipa, Tunja, Boyacá, 150003, Colombia
| | - Hugo A Rojas
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC, Av. Central Norte, vía Paipa, Tunja, Boyacá, 150003, Colombia
| | - Fabio B Passos
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Niterói, 24210-240, Brazil
| | - Gustavo P Romanelli
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CINDECA-CCT La Plata-CONICET-CIC-PBA), Universidad Nacional de La Plata, Calle 47 No 257, B1900AJK, La Plata, Argentina
| | - José J Martínez
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC, Av. Central Norte, vía Paipa, Tunja, Boyacá, 150003, Colombia
| |
Collapse
|
4
|
Rana AK, Guleria S, Gupta VK, Thakur VK. Cellulosic pine needles-based biorefinery for a circular bioeconomy. BIORESOURCE TECHNOLOGY 2023; 367:128255. [PMID: 36347478 DOI: 10.1016/j.biortech.2022.128255] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Pine needles (PNs) are one of the largest bio-polymer produced worldwide. Its waste, i.e., fallen PNs, is mostly responsible for forest fires and is a major challenge. In present article, we have reviewed differenteffortsmadeto tackle this situation. PNs have been used in various fields such asin composite, water purification industries,electronic devices, etc. Gasification is one of the appealing processes for turning PNs into bio-energy; pyrolysis technique has been employed to create various carbon-based water purification materials; saccharification combined with fermentation produced good yields of bio-ethanol; Pd or Ni/PNs biocatalyst showed good catalytic properties in variousreactionsand pyrolysis with or without catalyst is an alluring technique to prepare bio-fuel. Nano cellulose extracted from PNs showed appealing thermal and mechanical strength. The air quality of nearbyenvironment was examinedby studying the magnetic properties of PNs. Packing materials made of PNs showed exceptional ethylene scavenging abilities.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Department of Chemistry, Sri Sai University, Palampur 176061 India
| | - Sanjay Guleria
- Natural Product-cum-Nano Lab, Division of Biochemistry, Faculty of Basic Sciences, Sher-e- Kashmir University of Agricultural Sciences and Technology of Jammu, J&Kashmir, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India.
| |
Collapse
|
5
|
Ariga K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. MICROMACHINES 2022; 14:mi14010025. [PMID: 36677086 PMCID: PMC9860627 DOI: 10.3390/mi14010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
This review will focus on micromachines and microrobots, which are objects at the micro-level with similar machine functions, as well as nano-level objects such as molecular machines and nanomachines. The paper will initially review recent examples of molecular machines and microrobots that are not limited to interfaces, noting the diversity of their functions. Next, examples of molecular machines and micromachines/micro-robots functioning at the air-water interface will be discussed. The behaviors of molecular machines are influenced significantly by the specific characteristics of the air-water interface. By placing molecular machines at the air-water interface, the scientific horizon and depth of molecular machine research will increase dramatically. On the other hand, for microrobotics, more practical and advanced systems have been reported, such as the development of microrobots and microswimmers for environmental remediations and biomedical applications. The research currently being conducted on the surface of water may provide significant basic knowledge for future practical uses of molecular machines and microrobots.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Sangsiri P, Laosiripojana N, Laosiripojana W, Daorattanachai P. Activity of a Sulfonated Carbon-Based Catalyst Derived from Organosolv Lignin toward Esterification of Stearic Acid under Near-Critical Alcohol Conditions. ACS OMEGA 2022; 7:40025-40033. [PMID: 36385830 PMCID: PMC9648150 DOI: 10.1021/acsomega.2c04693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In this study, an environmentally benign carbon-based catalyst derived from extracted bagasse lignin (EL) was successfully synthesized by solvothermal carbonization and sulfonation with methane sulfonic acid (MSA). Interestingly, the results indicated that the use of MSA as a sulfonation agent made a catalyst with higher thermal stability than conventional sulfuric acid. Thus, in comparison to the catalyst prepared by using sulfuric acid, the catalyst prepared by using MSA (EL-MSA) exhibited higher catalytic activity in the esterification of stearic acid under near-critical methanol conditions. Under optimum conditions (260 °C for 5 min, a 9:1 methanol-to-stearic-acid molar ratio, 5 wt % catalyst loading, and 10% v/v toluene), the esterification over the EL-MSA catalyst promoted a 91.1% methyl stearate yield. Moreover, the results also revealed that the high thermal stability of the EL-MSA catalyst not only affects its great catalytic activity, but it also prevents damage to the porous structure and decomposition of acidic surface oxygen-containing functional groups. It contributes to the excellent reusability of the catalyst. After the fifth run, a high yield of 82.8% was obtained. The effect of alcohol type on the catalyst performance was also studied. It was found that the EL-MSA catalyst also presented good performance toward esterification with ethanol and propanol, from which ethyl stearate and propyl stearate with a more than 80% ester yield can be achieved.
Collapse
Affiliation(s)
- Pimpajee Sangsiri
- The
Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok10140, Thailand
| | - Navadol Laosiripojana
- The
Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok10140, Thailand
| | - Weerawan Laosiripojana
- Department
of Tool and Materials Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok10140, Thailand
| | - Pornlada Daorattanachai
- The
Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok10140, Thailand
| |
Collapse
|
7
|
Feng JC, Xia H. Application of nanoarchitectonics in moist-electric generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1185-1200. [PMID: 36348936 PMCID: PMC9623139 DOI: 10.3762/bjnano.13.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/30/2022] [Indexed: 05/09/2023]
Abstract
The consumption of energy is an important resource that cannot be ignored in modern society. Non-renewable forms of energy, such as coal, natural gas, and oil, have always been important strategic resources and are always facing a crisis of shortage. Therefore, there is an urgent need for green renewable forms of energy. As an emerging green energy source, the moist-electric generator (MEG) has been studied in recent years and may become an energy source that can be utilized in daily life. Along with the advancement of technological means, nanoarchitectonics play an important role in MEG devices. This review aims to provide a comprehensive summary of the fundamentals of the MEG from the perspective of different material classifications and to provide guidance for future work in the field of MEGs. The effects of various parameters and structural designs on the output power, recent important literature and works, the mechanism of liquid-solid interactions at the nanoscale, and the application status and further potential of MEG devices are discussed in this review. It is expected that this review may provide valuable knowledge for future MEG research.
Collapse
Affiliation(s)
- Jia-Cheng Feng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| |
Collapse
|
8
|
Wang X, Lu N, Fu Y, Lu C, Guan M, Wang KH, Yu H. Chromium oxide modified mesoporous zirconium dioxide: Efficient heterogeneous catalysts for the synthesis of 5-hydroxymethylfurfural. Chem Asian J 2022; 17:e202200653. [PMID: 35925020 DOI: 10.1002/asia.202200653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Achieving the highly efficient carbohydrates conversion to 5-hydroxymethylfurfural (5-HMF) is a promising method to achieve green and sustainable development. However, most currently reported strategies are energy consuming and the 5-HMF yield is relatively lower in the aqueous phase. Herein, a facile method was reported to obtain the effective Cr/ZrO2 catalysts with high acidity and their catalytic performances were investigated for catalyzing fructose to 5-HMF at different temperatures and times. With the catalysis of 15% Cr/ZrO2 catalyst, the highest fructose conversion of 98%, 5-HMF yield of 48.8%, and 5-HMF selectivity of 49.8% are achieved in green solvent with good recyclability. The possible reaction process of the improved catalysis performance is attributed to the highly crystalline and strong acidity of the Cr/ZrO2 catalyst. The Lewis acid sites could increase the overall rate of fructose conversion by promoting side reactions and might suppressing fructose to glucose isomerization. In addition, Cr leakage during the reaction might act as the Bronsted acids to catalyze the fructose dehydration to 5-HMF. The reported method of introducing chromium oxides into ZrO2 catalyst will open a new avenue to promote the practical application of biomass and sustainable development in the future.
Collapse
Affiliation(s)
- Xiaojun Wang
- Shandong University of Science and Technology, College of Energy Storage Technology, CHINA
| | - Ni Lu
- Shandong University of Science and Technology, College of Chemical and Biological Engineering, CHINA
| | - Yuanyi Fu
- Shandong University of Science and Technology, College of Chemical and Biological Engineering, CHINA
| | - Chang Lu
- Shandong University of Science and Technology, College of Energy Storage Technology, CHINA
| | - Meili Guan
- Shandong University of Science and Technology, College of Chemical and Biological Engineering, CHINA
| | - Kun-Hua Wang
- Shandong University of Science and Technology, College of Chemical and Biological Engineering, 579 Qianwangang Road, 266590, Qingdao, CHINA
| | - Hao Yu
- Shandong University of Science and Technology, College of Energy Storage Technology, CHINA
| |
Collapse
|
9
|
Lignin-Derived Ternary Polymeric Carbon as a Green Catalyst for Ethyl Levulinate Upgrading from Fructose. Catalysts 2022. [DOI: 10.3390/catal12070778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Currently, the utilization of lignocellulose mainly focuses on the conversion of polysaccharide components to value-added chemicals, such as ethyl levulinate (EL). Lignin is an important component of lignocellulosic biomass that is often neglected. Herein, ternary polymeric carbon (TPC–S) was synthesized by polymerization of mixed monomers (4-methylphenol, 4-ethylphenol, and 4-propylphenol) derived from lignin and subsequent sulfonation, which was used as a heterogeneous catalyst for the transformation of fructose to EL. Through a series of characterization methods, it was illustrated that the prepared catalyst had a layered porous structure. The calculated carbon layer spacing is 0.413 nm, and the average pore size is 5.1 nm. This structure greatly increases the specific surface area (165.2 m2/g) of the catalyst, which makes it possible to introduce more –SO3H species in the process of sulfonation, thus furnishing EL with increased yield. The effects of reaction temperature, time, catalyst dosage, and fructose initial concentration on the production of EL were investigated. It was found that 70.3% EL yield was detected at 130 °C for 10 h. In addition, the catalyst had good stability and could obtain 65.6% yield of EL in the fourth cycle. The obtained catalyst has the advantages of low cost, easy preparation, and high catalytic efficiency, which is expected to achieve efficient utilization of lignin and provide a potential solution for the future production of EL.
Collapse
|