Masuda M, Motoyama Y, Kuwahara J, Nakamura N, Ohno H. A paradoxical method for NAD+/NADH accumulation on an electrode surface using a hydrophobic ionic liquid.
Biosens Bioelectron 2012;
39:334-7. [PMID:
22902533 DOI:
10.1016/j.bios.2012.07.051]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022]
Abstract
In this communication, we describe a novel and facile method for the immobilization of NAD(+)/NADH on an electrode surface using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][Tf(2)N]). By taking advantage of the insolubility of NAD(+)/NADH in hydrophobic ionic liquids, it is expected that NAD(+)/NADH can be retained on the electrode's surface. Alcohol dehydrogenase (ADH) and NAD(+)/NADH were immobilized with a gelatin hydrogel on an electrode that was modified with an electropolymerized ruthenium complex containing 5-amino-1,10-phenanthroline (pAPRu) as a mediator for NADH oxidation. The (ADH, NAD(+))/pAPRu-immobilized electrode exhibited the electrocatalytic oxidation of ethanol in [C4mim][Tf(2)N]. The obtained catalytic current in [C4mim][Tf(2)N] was comparable to that in buffer solution containing NAD(+). It was confirmed by UV-vis spectroscopy that NAD(+) did not dissolve in the [C4mim][Tf(2)N] and was retained on the electrode's surface. Furthermore, we succeeded in constructing an ethanol/O(2) biofuel cell comprised of an (ADH, NAD(+))/pAPRu anode and a bilirubin oxidase cathode using [C4mim][Tf(2)N] as an electrolyte.
Collapse