1
|
Singh S, Nara R, Yadav M, Sharma C, Agrawal S, Kumar A. Oil palm biomass: a potential feedstock for lignocellulolytic enzymes and biofuels production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11791-11814. [PMID: 40234315 DOI: 10.1007/s11356-025-36379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
The availability of low-cost feedstocks for the production of lignocellulolytic enzymes and bioenergy products is a major challenge for biofuel industry. Oil palm processing generates huge amount of residual biomass that can be utilized for cost-effective production of lignocellulolytic enzymes and second-generation biofuels. The cultivation of oil palm and extraction of oil generates residues in the form of oil palm empty fruit bunches, oil palm frond, and oil palm trunk that are rich source of cellulose and hemicelluloses. The integration of these oil palm-based residues to circular economy mitigates wastes disposal problems and provides clean energy. Oil palm biomass has also been proved as cost-effective substrates for the production enzymes under solid-state and submerged fermentation especially using fungi. The rapidly increasing global renewable energy demand requires the potential sources. The oil palm biomass can be suitable resource for generation of renewable energy. The conversion of oil palm biomass into biofuels requires efficient, cost-effective, and environmentally friendly pretreatment. Physical, chemical, and biological pretreatments and their combinations have been employed to remove lignin and to enhance the digestibility of carbohydrates available in oil palm-based residues. The advancement in pretreatment technologies and enzymatic hydrolysis resulted in release of maximum amount of sugars for biofuels production. This paper investigates the recent research progress on valorization of oil palm-based residues into cellulases, xylanases, ligninolytic enzymes, bioethanol, biobutanol, biomethane, bio-oil, and xylitol.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Rachna Nara
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Chhavi Sharma
- University Centre for Research and Development (UCRD), University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Sharad Agrawal
- Department of Life Sciences, SBSR, Sharda University, Greater Noida, UP, India
| | - Amit Kumar
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India.
| |
Collapse
|
2
|
Sama FJ, Doyle RA, Kariuki BM, Pridmore NE, Sparkes HA, Wingad RL, Wass DF. Backbone-functionalised ruthenium diphosphine complexes for catalytic upgrading of ethanol and methanol to iso-butanol. Dalton Trans 2024; 53:8005-8010. [PMID: 38651270 DOI: 10.1039/d4dt00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Efficient catalysts for Guerbet-type ethanol/methanol upgrading to iso-butanol have been developed via Michael addition of a variety of amines to ruthenium-coordinated dppen (1,1-bis(diphenylphosphino)ethylene). All catalysts produce over 50% iso-butanol yield with >90% selectivity in 2 h with catalyst 1 showing the best activity (74% yield after this time). The selectivity and turnover number approach 100% and 1000 respectively using catalyst 6. The presence of uncoordinated functionalised donor groups in these complexes results in a more stable catalyst compared to unfunctionalised analogues.
Collapse
Affiliation(s)
- Folasade J Sama
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Wales, CF24 4HQ, UK.
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Rachel A Doyle
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Benson M Kariuki
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Wales, CF24 4HQ, UK.
| | | | - Hazel A Sparkes
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Richard L Wingad
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Wales, CF24 4HQ, UK.
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Duncan F Wass
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Wales, CF24 4HQ, UK.
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
3
|
Tekin N, Ertuğrul Karatay S, Dönmez G. Third generation biobutanol production by Clostridium beijerinckii in a medium containing mixotrophically cultivated Dunaliella salina biomass. Prep Biochem Biotechnol 2024; 54:483-493. [PMID: 37610720 DOI: 10.1080/10826068.2023.2248298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
This study aims the third generation biobutanol production in P2 medium supplemented D. salina biomass mixotrophically cultivated with marble waste (MW). The wastes derived from the marble industry contain approximately 90% of carbon-rich compounds. Microalgal growth in mixotrophic conditions was optimized in the 0.4-2 g/L of MW concentration range. The highest microalgal concentration was obtained as 0.481 g/L in the presence of 1 g/L MW. Furthermore, some important parameters for the production of biobutanol, such as microalgal cultivation conditions, initial mixotrophic microalgal biomass loading (50-300 g/L), and fermentation time (24-96 h) were optimized. The highest biobutanol, total ABE, biobutanol yield and productivity were determined as 11.88 g/L, 13.89 g/L, 0.331 g/g and 0.165 g/L/h at the end of 72 h in P2 medium including 60 g/L glucose and 200 g/L microalgal biomass cultivated in 1 g/L MW, respectively. The results show that D. salina is a suitable raw material for supporting Clostridium beijerinckii DSMZ 6422 cells on biobutanol production. To the best of our knowledge, this is the first study on the use of MW which is a promising feedstock on the mixotrophic cultivation of D. salina for biobutanol production.
Collapse
Affiliation(s)
- Nazlıhan Tekin
- Science Faculty, Biology Department, Ankara University, Beşevler, Turkey
| | | | - Gönül Dönmez
- Science Faculty, Biology Department, Ankara University, Beşevler, Turkey
| |
Collapse
|
4
|
Zhang X, Ni L, He A, Yang L, Noda I, Ozaki Y, Guo R, Xu Y. A new apparatus and the relevant method to retrieve IR spectra of solutes from the corresponding aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122598. [PMID: 36996520 DOI: 10.1016/j.saa.2023.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
An apparatus and relevant approach to obtaining IR spectra of solutes from the corresponding aqueous solution were developed. In the experiment, aqueous solutions were converted into aerosols using an ultrasonic or a pneumatic device. Subsequently, water in the nebulized solution is completely gasified under a high-speed flow and low vacuum environment. Via this process, the aqueous solution changes into a mixture of a solute or solutes and gaseous water, whose single-beam IR spectra are collected. Then, the newly developed RMF (retrieving moisture-free IR spectrum) method and the relevant approach described in our recent papers have been adopted to treat the resultant single-beam sample spectrum. As a result, the spectral contribution of the vibrational-rotational peaks of gaseous water can be removed or significantly attenuated, and IR spectra of solutes can be obtained. The approach shows an obvious advantage in retrieving the IR spectrum of volatile solutes from its aqueous solution. This capability is showcased by obtaining IR spectra of isopropanol and ethyl acetate successfully. IR spectra of these compounds can be retrieved even if the concentration of the solute is below 10 wt%. Moreover, atomization via ultrasonic/pneumatic methods offers a mild way to gasify solutes whose boiling points are remarkably higher than that of water. This advantage is manifested by acquiring IR spectra of 1-butanol and 1,2-propanediol in the gaseous phase under ambient conditions.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Lei Ni
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1330, Japan
| | - Ran Guo
- PerkinElmer Inc., Jiuxianqiao Road, 14, Chaoyang District, Beijing 100015, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
5
|
Xiao Y, Zhan N, Li J, Tan Y, Ding Y. Highly Selective and Stable Cu Catalysts Based on Ni-Al Catalytic Systems for Bioethanol Upgrading to n-Butanol. Molecules 2023; 28:5683. [PMID: 37570654 PMCID: PMC10419762 DOI: 10.3390/molecules28155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The catalytic upgrading of ethanol into butanol through the Guerbet coupling reaction has received increasing attention recently due to the sufficient supply of bioethanol and the versatile applications of butanol. In this work, four different supported Cu catalysts, i.e., Cu/Al2O3, Cu/NiO, Cu/Ni3AlOx, and Cu/Ni1AlOx (Ni2+/Al3+ molar ratios of 3 and 1), were applied to investigate the catalytic performances for ethanol conversion. From the results, Ni-containing catalysts exhibit better reactivity; Al-containing catalysts exhibit better stability; but in terms of ethanol conversion, butanol selectivity, and catalyst stability, a corporative effect between Ni-Al catalytic systems can be clearly observed. Combined characterizations such as XRD, TEM, XPS, H2-TPR, and CO2/NH3-TPD were applied to analyze the properties of different catalysts. Based on the results, Cu species provide the active sites for ethanol dehydrogenation/hydrogenation, and the support derived from Ni-Al-LDH supplies appropriate acid-base sites for the aldol condensation, contributing to the high butanol selectivity. In addition, catalysts with strong reducibility (i.e., Cu/NiO) may be easily deconstructed during catalysis, leading to fast deactivation of the catalysts in the Guerbet coupling process.
Collapse
Affiliation(s)
- Yan Xiao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Nannan Zhan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Jie Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
6
|
Patterson SBH, Wong R, Barker G, Vilela F. Advances in continuous polymer analysis in flow with application towards biopolymers. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
AbstractBiopolymers, polymers derived from renewable biomass sources, have gained increasing attention in recent years due to their potential to replace traditional petroleum-based polymers in a range of applications. Among the many advantages of biopolymers can be included their biocompatibility, excellent mechanical properties, and availability from renewable feedstock. However, the development of biopolymers has been limited by a lack of understanding of their properties and processing behaviours. Continuous analysis techniques have the potential to hasten progress in this area by providing real-time insights into the properties and processing of biopolymers. Significant research in polymer chemistry has focused on petroleum-derived polymers and has thus provided a wealth of synthetic and analytical methodologies which may be applied to the biopolymer field. Of particular note is the application of flow technology in polymer science and its implications for accelerating progress towards more sustainable and environmentally friendly alternatives to traditional petroleum-based polymers. In this mini review we have outlined several of the most prominent use cases for biopolymers along with the current state-of-the art in continuous analysis of polymers in flow, including defining and differentiating atline, inline, online and offline analysis. We have found several examples for continuous flow analysis which have direct application to the biopolymer field, and we demonstrate an atline continuous polymer analysis method using size exclusion chromatography.
Graphical abstract
Collapse
|
7
|
Wang Z, Yin M, Pang J, Wu P, Song L, Li X, Zheng M. Enhanced Conversion of Ethanol into n-Butanol over NiCeO 2@CNTs Catalysts with Pore Enrichment Effects. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zhinuo Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, Liaoning116028, China
| | - Ming Yin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Pengfei Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Lei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning116023, China
| |
Collapse
|
8
|
Zhou BC, Li WC, Lv WL, Xiang SY, Gao XQ, Lu AH. Enhancing Ethanol Coupling to Produce Higher Alcohols by Tuning H 2 Partial Pressure over a Copper-Hydroxyapatite Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bai-Chuan Zhou
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen-Cui Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen-Lu Lv
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shi-Yu Xiang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin-Qian Gao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Portillo Crespo MA, Vidal-Barrero F, Azancot L, Reina TR, Campoy M. Insights on Guerbet Reaction: Production of Biobutanol From Bioethanol Over a Mg–Al Spinel Catalyst. Front Chem 2022; 10:945596. [PMID: 35910746 PMCID: PMC9329697 DOI: 10.3389/fchem.2022.945596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The production of biobutanol from bioethanol by the Guerbet reaction is an alternative pathway to renewable sources. The commercial viability of this green route requires improvements in the process development. This study experimentally examines the influence of operating conditions on the performance of a Mg–Al spinel catalyst prepared from hydrotalcite precursors. This catalyst demonstrates an exceptional performance in the Guerbet reaction with a promising activity/butanol selectivity balance, excellent long-term stability, and very-low-carbon footprint (CO2 generation as by-products is minimal). This study showcases a systematic strategy to optimize the reaction parameters in the Guerbet reaction for biobutanol production using an advanced spinel catalyst. Upon carefully adjusting temperature, pressure, space velocity, and reactants co-feeding, very promising conversion (35%) and butanol selectivity values (48%) were obtained.
Collapse
Affiliation(s)
- M. A. Portillo Crespo
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
| | - F. Vidal-Barrero
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
- *Correspondence: F. Vidal-Barrero,
| | - Lola Azancot
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Tomas Ramírez Reina
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, Universidad de Sevilla-CSIC, Sevilla, Spain
- Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - M. Campoy
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
10
|
Catalytic upgrading of ethanol to n-butanol over a novel Ca-Fe modified mixed oxide Mg-Al catalyst from hydrotalcite-base precursor. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Polyhydroxyalkanoate (PHA) Biopolyesters - Emerging and Major Products of Industrial Biotechnology. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background: Industrial Biotechnology (“White Biotechnology”) is the large-scale production of materials and chemicals using renewable raw materials along with biocatalysts like enzymes derived from microorganisms or by using microorganisms themselves (“whole cell biocatalysis”). While the production of ethanol has existed for several millennia and can be considered a product of Industrial Biotechnology, the application of complex and engineered biocatalysts to produce industrial scale products with acceptable economics is only a few decades old. Bioethanol as fuel, lactic acid as food and PolyHydroxyAlkanoates (PHA) as a processible material are some examples of products derived from Industrial Biotechnology.
Purpose and Scope: Industrial Biotechnology is the sector of biotechnology that holds the most promise in reducing our dependence on fossil fuels and mitigating environmental degradation caused by pollution, since all products that are made today from fossil carbon feedstocks could be manufactured using Industrial Biotechnology – renewable carbon feedstocks and biocatalysts. To match the economics of fossil-based bulk products, Industrial Biotechnology-based processes must be sufficiently robust. This aspect continues to evolve with increased technological capabilities to engineer biocatalysts (including microorganisms) and the decreasing relative price difference between renewable and fossil carbon feedstocks. While there have been major successes in manufacturing products from Industrial Biotechnology, challenges exist, although its promise is real. Here, PHA biopolymers are a class of product that is fulfilling this promise.
Summary and Conclusion: The authors illustrate the benefits and challenges of Industrial Biotechnology, the circularity and sustainability of such processes, its role in reducing supply chain issues, and alleviating societal problems like poverty and hunger. With increasing awareness among the general public and policy makers of the dangers posed by climate change, pollution and persistent societal issues, Industrial Biotechnology holds the promise of solving these major problems and is poised for a transformative upswing in the manufacture of bulk chemicals and materials from renewable feedstocks and biocatalysts.
Collapse
|
12
|
Lakshmi NM, Binod P, Sindhu R, Awasthi MK, Pandey A. Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered 2021; 12:12308-12321. [PMID: 34927549 PMCID: PMC8809953 DOI: 10.1080/21655979.2021.1978189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fermentation-derived alcohols have gained much attention as an alternate fuel due to its minimal effects on atmosphere. Besides its application as biofuel it is also used as raw material for coating resins, deicing fluid, additives in polishes, etc. Among the liquid alcohol type of fuels, isobutanol has more advantage than ethanol. Isobutanol production is reported in native yeast strains, but the production titer is very low which is about 200 mg/L. In order to improve the production, several genetic and metabolic engineering approaches have been carried out. Genetically engineered organism has been reported to produce maximum of 50 g/L of isobutanol which is far more than the native strain without any modification. In bacteria mostly last two steps in Ehrlich pathway, catalyzed by enzymes ketoisovalerate decarboxylase and alcohol dehydrogenase, are heterologously expressed to improve the production. Native Saccharomyces cerevisiae can produce isobutanol in negligible amount since it possesses the pathway for its production through valine degradation pathway. Further modifications in the existing pathways made the improvement in isobutanol production in many microbial strains. Fermentation using cost-effective lignocellulosic biomass and an efficient downstream process can yield isobutanol in environment friendly and sustainable manner. The present review describes the various genetic and metabolic engineering practices adopted to improve the isobutanol production in microbial strains and its downstream processing.
Collapse
Affiliation(s)
- Nair M Lakshmi
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, Uttar Pradesh India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West a & F University, Yangling, Shaanxi China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (Csir-iitr), Lucknow India.,Centre for Energy and Environmental Sustainability, Lucknow Uttar Pradesh, India
| |
Collapse
|
13
|
Bai W, Ranaivoarisoa TO, Singh R, Rengasamy K, Bose A. n-Butanol production by Rhodopseudomonas palustris TIE-1. Commun Biol 2021; 4:1257. [PMID: 34732832 PMCID: PMC8566592 DOI: 10.1038/s42003-021-02781-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2 to biofuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis adversely affects biofuel production efficiency. To produce n-butanol (biofuel) from CO2, here we introduce an n-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph, Rhodopseudomonas palustris TIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieve n-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produce the highest n-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant produces n-butanol using CO2, solar panel-generated electricity, and light with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutral n-butanol bioproduction using sustainable, renewable, and abundant resources.
Collapse
Affiliation(s)
- Wei Bai
- grid.4367.60000 0001 2355 7002Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Tahina Onina Ranaivoarisoa
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Rajesh Singh
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Karthikeyan Rengasamy
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Arpita Bose
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
14
|
Stalidzans E, Dace E. Sustainable metabolic engineering for sustainability optimisation of industrial biotechnology. Comput Struct Biotechnol J 2021; 19:4770-4776. [PMID: 34504669 PMCID: PMC8411201 DOI: 10.1016/j.csbj.2021.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/26/2022] Open
Abstract
Industrial biotechnology represents one of the most innovating and labour-productive industries with an estimated stable economic growth, thus giving space for improvement of the existing and setting up new value chains. In addition, biotechnology has clear environmental advantages over the chemical industry. Still, biotechnology’s environmental contribution is sometimes valued with controversy and societal aspects are frequently ignored. Environmental, economic and societal sustainability of various bioprocesses becomes increasingly important due to the growing understanding about complex and interlinked consequences of different human activities. Neglecting the sustainability issues in the development process of novel solutions may lead to sub-optimal biotechnological production, causing adverse environmental and societal problems proportional to the production volumes. In the paper, sustainable metabolic engineering (SME) concept is proposed to assess and optimize the sustainability of biotechnological production that can be derived from the features of metabolism of the exploited organism. The SME concept is optimization of metabolism where economic, environmental and societal sustainability parameters of all incoming and outgoing fluxes and produced biomass of the applied organisms are considered. The extension of characterising features of strains designed by metabolic engineering methods with sustainability estimation enables ab initio improvement of the biotechnological production design.
Collapse
Affiliation(s)
- Egils Stalidzans
- Institute of Microbiology and Biotechnology, University of Latvia, 1 Jelgavas Street, Riga LV1004, Latvia
| | - Elina Dace
- Institute of Microbiology and Biotechnology, University of Latvia, 1 Jelgavas Street, Riga LV1004, Latvia
| |
Collapse
|
15
|
Li Q, Hu N, Zhang S, Wu Q, Qi J. Energy-saving heat integrated extraction-azeotropic distillation for separating isobutanol-ethanol-water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Wang Z, Pang J, Song L, Li X, Yuan Q, Li X, Liu S, Zheng M. Conversion of Ethanol to n-Butanol over NiCeO2 Based Catalysts: Effects of Metal Dispersion and NiCe Interactions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhinuo Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028, People’s Republic of China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Lei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Qiang Yuan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| | - Xinsheng Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Shimin Liu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028, People’s Republic of China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
| |
Collapse
|
17
|
de Souza EF, Pacheco HP, Miyake N, Davis RJ, Toniolo FS. Computational and Experimental Mechanistic Insights into the Ethanol-to-Butanol Upgrading Reaction over MgO. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eugenio F. de Souza
- Chemical Engineering Program of COPPE/UFRJ, Federal University of Rio de Janeiro, P.O. Box 68502, CEP 21941-972 Rio de Janeiro, Brazil
| | - Henrique P. Pacheco
- Chemical Engineering Program of COPPE/UFRJ, Federal University of Rio de Janeiro, P.O. Box 68502, CEP 21941-972 Rio de Janeiro, Brazil
| | - Naomi Miyake
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, Charlottesville, 22904-4741 Virginia, United States
| | - Robert J. Davis
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, Charlottesville, 22904-4741 Virginia, United States
| | - Fabio S. Toniolo
- Chemical Engineering Program of COPPE/UFRJ, Federal University of Rio de Janeiro, P.O. Box 68502, CEP 21941-972 Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Catalytic upgrading of ethanol to butanol over a binary catalytic system of FeNiO and LiOH. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63541-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Hu Y, Liu C, Wang P, Li G, Wang A, Cong Y, Liang X, Li W, Zhang X, Li N. Sustainable Production of Safe Plasticizers with Bio-Based Fumarates and 1,3-Dienes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yancheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Chunwei Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Pan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangyi Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Aiqin Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yu Cong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wei Li
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xiuli Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ning Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
20
|
Drying of the Natural Fibers as A Solvent-Free Way to Improve the Cellulose-Filled Polymer Composite Performance. Polymers (Basel) 2020; 12:polym12020484. [PMID: 32098150 PMCID: PMC7077673 DOI: 10.3390/polym12020484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 01/21/2023] Open
Abstract
When considering cellulose (UFC100) modification, most of the processes employ various solvents in the role of the reaction environment. The following article addresses a solvent-free method, thermal drying, which causes a moisture content decrease in cellulose fibers. Herein, the moisture content in UFC100 was analyzed with spectroscopic methods, thermogravimetric analysis, and differential scanning calorimetry. During water desorption, a moisture content drop from approximately 6% to 1% was evidenced. Moreover, drying may bring about a specific variation in cellulose's chemical structure. These changes affected the cellulose-filled polymer composite's properties, e.g., an increase in tensile strength from 17 MPa for the not-dried UFC100 to approximately 30 MPa (dried cellulose; 24 h, 100 °C) was observed. Furthermore, the obtained tensile test results were in good correspondence with Payne effect values, which changed from 0.82 MPa (not-dried UFC100) to 1.21 MPa (dried fibers). This raise proves the reinforcing nature of dried UFC100, as the Payne effect is dependent on the filler structure's development within a polymer matrix. This finding paves new opportunities for natural fiber applications in polymer composites by enabling a solvent-free and efficient cellulose modification approach that fulfils the sustainable development rules.
Collapse
|
21
|
Sutiono S, Satzinger K, Pick A, Carsten J, Sieber V. To beat the heat - engineering of the most thermostable pyruvate decarboxylase to date. RSC Adv 2019; 9:29743-29746. [PMID: 35531508 PMCID: PMC9071941 DOI: 10.1039/c9ra06251c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Pyruvate decarboxylase (PDC) is a key enzyme for the production of ethanol at high temperatures and for cell-free butanol synthesis. Thermostable, organic solvent stable PDC was evolved from bacterial PDCs. The new variant shows >1500-fold-improved half-life at 75 °C and >5000-fold-increased half-life in the presence of 9 vol% butanol at 50 °C.
Collapse
Affiliation(s)
- Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Katharina Satzinger
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - André Pick
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Jörg Carsten
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
- Catalytic Research Center, Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
- Catalytic Research Center, Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching Germany
- Straubing Branch BioCat Fraunhofer IGB Schulgasse 11a 94315 Straubing Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland 68 Copper Road St. Lucia 4072 Australia
| |
Collapse
|
22
|
Vlasenko NV, Kyriienko PI, Yanushevska OI, Valihura KV, Soloviev SO, Strizhak PE. The Effect of Ceria Content on the Acid–Base and Catalytic Characteristics of ZrO2–CeO2 Oxide Compositions in the Process of Ethanol to n-Butanol Condensation. Catal Letters 2019. [DOI: 10.1007/s10562-019-02937-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
|
24
|
Wang D, Liu Z, Liu Q. Efficient conversion of ethanol to 1-butanol and C5–C9 alcohols over calcium carbide. RSC Adv 2019; 9:18941-18948. [PMID: 35516851 PMCID: PMC9065079 DOI: 10.1039/c9ra02568e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Production of 1-butanol or alcohols with 4–9 carbon atoms (C4–C9 alcohols) from widely available bio-ethanol has attracted much interest in recent years in academia and industry of renewable chemicals and liquid fuels. This work discloses for the first time that calcium carbide (CaC2) has a superior catalytic activity in condensation of ethanol to C4–C9 alcohols at 275–300 °C. The 1-butanol yield reached up to 24.5% with ethanol conversion of 62.4% at the optimized conditions. The by-products are mainly alcohols with 5–9 carbons besides 2-butanol, and the total yield of all the alcohols reached up to 56.3%. The reaction route was investigated through controlled experiments and quantitative analysis of the products. Results indicated that two reaction routes, aldol-condensation and self-condensation, took place simultaneously. The aldol-condensation route involves coupling of ethanol with acetaldehyde (formed from ethanol dehydrogenation) to form 2-butenol, which is subsequently hydrogenated to 1-butanol. The alkynyl moiety in CaC2 plays an important role in the catalytic pathways of both routes and affords the good activity of CaC2. CaC2 is converted to acetylene [C2H2] and calcium hydroxide [Ca(OH)2] simultaneously by the H2O that was generated from the condensation of alcohols. Efficient synthesis of 1-butanol and C5–C9 alcohols from widely available bio-ethanol over CaC2 and reaction mechanism were investigated in this work.![]()
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zhenyu Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Qingya Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
25
|
|
26
|
Engel M, Holtmann D, Ulber R, Tippkötter N. Increased Biobutanol Production by Mediator‐Less Electro‐Fermentation. Biotechnol J 2018; 14:e1800514. [DOI: 10.1002/biot.201800514] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Mareike Engel
- Bioprocess EngineeringUniversity of Kaiserslautern67663 KaiserslauternGermany
| | - Dirk Holtmann
- Industrial BiotechnologyDECHEMA Research Institute60486 Frankfurt am MainGermany
| | - Roland Ulber
- Bioprocess EngineeringUniversity of Kaiserslautern67663 KaiserslauternGermany
| | - Nils Tippkötter
- Bioprocess EngineeringUniversity of Applied Science AachenHeinrich‐Mußmann‐Straße 152428 JülichGermany
| |
Collapse
|
27
|
Md Razali NAA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S. Optimisation of Simultaneous Saccharification and Fermentation (SSF) for Biobutanol Production Using Pretreated Oil Palm Empty Fruit Bunch. Molecules 2018; 23:molecules23081944. [PMID: 30081514 PMCID: PMC6222772 DOI: 10.3390/molecules23081944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.
Collapse
Affiliation(s)
- Nur Atheera Aiza Md Razali
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Ezyana Kamal Bahrin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
28
|
Calvo-Flores FG, Monteagudo-Arrebola MJ, Dobado JA, Isac-García J. Green and Bio-Based Solvents. Top Curr Chem (Cham) 2018; 376:18. [DOI: 10.1007/s41061-018-0191-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 01/13/2023]
|
29
|
Khlestkin VK, Peltek SE, Kolchanov NA. Review of direct chemical and biochemical transformations of starch. Carbohydr Polym 2018; 181:460-476. [DOI: 10.1016/j.carbpol.2017.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/19/2023]
|
30
|
Biswas S, Katiyar R, Gurjar BR, Pruthi V. Role of Different Feedstocks on the Butanol Production Through Microbial and Catalytic Routes. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2018. [DOI: 10.1515/ijcre-2016-0215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Among the renewable fuels, butanol has become an attractive, economic and sustainable choice because of cost elevation in petroleum fuel, diminishing the oil reserves and an increase of green house effect. Butanol can be derived from renewable sources by using the natural bio-resources and agro-wastes such as orchard wastes, peanut wastes, wheat straw, barley straw and grasses via Acetone Butanol Ethanol (ABE) process. On the other hand, butanol can be directly formed from chemical route involving catalysts also such as from ethanol through aldol condensation. This review presents extensive evaluation for the production of butanol deploying microbial and catalytic routes.
Collapse
Affiliation(s)
- Shalini Biswas
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Richa Katiyar
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - B. R. Gurjar
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Vikas Pruthi
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
- Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
31
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
32
|
New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527. Appl Biochem Biotechnol 2017; 183:1008-1025. [PMID: 28474218 DOI: 10.1007/s12010-017-2479-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/11/2017] [Indexed: 01/24/2023]
Abstract
In the present study, press mud, a sugar industry waste, was explored for biobutanol production to strengthen agricultural economy. The fermentative production of biobutanol was investigated via series of steps, viz. characterization, drying, acid hydrolysis, detoxification, and fermentation. Press mud contains an adequate amount of cellulose (22.3%) and hemicellulose (21.67%) on dry basis, and hence, it can be utilized for further acetone-butanol-ethanol (ABE) production. Drying experiments were conducted in the temperature range of 60-120 °C to circumvent microbial spoilage and enhance storability of press mud. Furthermore, acidic pretreatment variables, viz. sulfuric acid concentration, solid to liquid ratio, and time, were optimized using response surface methodology. The corresponding values were found to be 1.5% (v/v), 1:5 g/mL, and 15 min, respectively. In addition, detoxification studies were also conducted using activated charcoal, which removed almost 93-97% phenolics and around 98% furans, which are toxic to microorganisms during fermentation. Finally, the batch fermentation of detoxified press mud slurry (the sample dried at 100 °C and pretreated) using Clostridium acetobutylicum NRRL B-527 resulted in a higher butanol production of 4.43 g/L with a total ABE of 6.69 g/L.
Collapse
|
33
|
Wong SS, Mi L, Liao JC. Microbial Production of Butanols. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sio Si Wong
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - Luo Mi
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - James C. Liao
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| |
Collapse
|
34
|
Structure and Transport Properties of Mixed-Matrix Membranes Based on Polyimides with ZrO₂ Nanostars. Polymers (Basel) 2016; 8:polym8110403. [PMID: 30974679 PMCID: PMC6431868 DOI: 10.3390/polym8110403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/02/2022] Open
Abstract
Mixed-matrix membranes based on amorphous and semi-crystalline polyimides with zirconium dioxide (ZrO2) nanostars were synthesized. Amorphous poly(4,4′-oxydiphenylenepyromellitimide) and semi-crystalline polyimide prepared from 1,4-bis(4-aminophenoxy)benzene and 4,4’-oxydiphthalic anhydride were used. The effect of ZrO2 nanostars on the structure and morphology of nanocomposite membranes was studied by wide-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and contact angle measurements. Thermal properties and stability were investigated by thermogravimetric analysis and differential scanning calorimetry. Transport properties of hybrid membranes containing 5 wt % ZrO2 were tested for pervaporation of a mixture of butanol–water with 10 wt % H2O content. It was found that a significant amount of the ZrO2 added to the semi-crystalline polyimide is encapsulated inside spherulites. Therefore, the beneficial influence of inorganic filler on the selectivity of mixed-matrix membrane with respect to water was hampered. Mixed-matrix membranes based on amorphous polymer demonstrated the best performance, because water molecules had higher access to inorganic particles.
Collapse
|
35
|
Van Hecke W, Vandezande P, Dubreuil M, Uyttebroek M, Beckers H, De Wever H. Biobutanol production from C5/C6 carbohydrates integrated with pervaporation: experimental results and conceptual plant design. ACTA ACUST UNITED AC 2016; 43:25-36. [DOI: 10.1007/s10295-015-1717-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/29/2015] [Indexed: 01/06/2023]
Abstract
Abstract
In this study, a simulated lignocellulosic hydrolyzate was used in a continuous two-stage fermentor setup for production of acetone, butanol and ethanol. An organophilic pervaporation unit was coupled to the second fermentor. The dilution rate in the first fermentor was kept constant at 0.109 h−1, while the dilution rate in the second fermentor was gradually decreased from 0.056 to 0.020 h−1. Glucose was completely consumed, while 61 % of the xylose was consumed at the lowest dilution rate, leading to an overall solvent productivity of 0.65 g L−1 h−1 and a high concentration of 185 g kg−1 solvents in the permeate in the last fermentation zone during 192 h. Based on the experimental results, a process integrated with organophilic pervaporation was conceptually designed and compared with a base-case. Chemcad simulations indicate an energy reduction of ~50 % when organophilic pervaporation is used. This study also demonstrates significant reductions in process flows and energy consumption by the use of organophilic pervaporation as in situ product recovery technology.
Collapse
Affiliation(s)
- Wouter Van Hecke
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Pieter Vandezande
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Marjorie Dubreuil
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Maarten Uyttebroek
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Herman Beckers
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Heleen De Wever
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| |
Collapse
|
36
|
Ndaba B, Chiyanzu I, Marx S. n-Butanol derived from biochemical and chemical routes: A review. ACTA ACUST UNITED AC 2015; 8:1-9. [PMID: 28352567 PMCID: PMC4980751 DOI: 10.1016/j.btre.2015.08.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/24/2015] [Accepted: 08/01/2015] [Indexed: 10/31/2022]
Abstract
Traditionally, bio-butanol is produced with the ABE (Acetone Butanol Ethanol) process using Clostridium species to ferment sugars from biomass. However, the route is associated with some disadvantages such as low butanol yield and by-product formation (acetone and ethanol). On the other hand, butanol can be directly produced from ethanol through aldol condensation over metal oxides/ hydroxyapatite catalysts. This paper suggests that the chemical conversion route is more preferable than the ABE process, because the reaction proceeds more quickly compared to the fermentation route and fewer steps are required to get to the product.
Collapse
Affiliation(s)
- B Ndaba
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - I Chiyanzu
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - S Marx
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|
37
|
Clark JH, Farmer TJ, Hunt AJ, Sherwood J. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. Int J Mol Sci 2015; 16:17101-59. [PMID: 26225963 PMCID: PMC4581186 DOI: 10.3390/ijms160817101] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023] Open
Abstract
The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.
Collapse
Affiliation(s)
- James H Clark
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Thomas J Farmer
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Andrew J Hunt
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - James Sherwood
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
38
|
Galadima A, Muraza O. Catalytic Upgrading of Bioethanol to Fuel Grade Biobutanol: A Review. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01443] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ahmad Galadima
- Center of Research Excellence in Nanotechnology, ‡Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Oki Muraza
- Center of Research Excellence in Nanotechnology, ‡Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|