1
|
Tacias-Pascacio VG, Abellanas-Perez P, de Andrades D, Tavano O, Mendes AA, Berenguer-Murcia Á, Fernandez-Lafuente R. A comprehensive review of lipase-catalyzed acidolysis as a method for producing structured glycerides. Int J Biol Macromol 2025; 309:142878. [PMID: 40194578 DOI: 10.1016/j.ijbiomac.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The production of structured lipids is a current trend in food technology in order to enhance the properties of fats and oils. Lipases have been utilized in many instances for this purpose, in most examples in an immobilized form. In this review, after discussing the different strategies to produce artificial lipids using lipases (esterification, transesterification, interesterification), we have focused on acidolysis. The reaction commences with hydrolysis at one position of the triglyceride molecule and is followed by the esterification between the released hydroxyl group and the target fatty acid (although other carboxylic acids can be used, such as phenolic acid derivatives). This means that water plays a double role, as substrate in the first step and as an undesired by-product in the second one. Therefore, the control of water activity becomes critical in these reactions. This review discusses the advantages, possibilities and drawbacks of this strategy to produce tailor-made designed lipids, summarizing many of the papers related to this strategy. The summarized results show the complexity of this reaction that can make the understanding and reproducibility of the reactions complex if there are no strict controls of all parameters determining the final yields.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
2
|
Abellanas-Perez P, de Andrades D, Alcantara AR, Rocha-Martin J, Polizeli MDLTDM, Fernandez-Lafuente R. Vinyl sulfone-amino-alkyl supports: heterofunctional matrixes to prevent enzyme release and stabilize lipases via covalent immobilization. Int J Biol Macromol 2025; 310:143305. [PMID: 40253040 DOI: 10.1016/j.ijbiomac.2025.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
New trifunctional supports were prepared (amino-octyl-vinyl sulfone (VS)- and amino-hexyl-VS-agarose) and compared to octyl-VS-agarose. They were utilized to immobilize the lipases A and B from Candida antarctica (CALA and CALB). After incubation to generate some enzyme-support bonds and blocking with different nucleophiles, SDS-PAGE analyses showed that all enzyme molecules become covalently immobilized on the support. In all VS biocatalysts, the blocking reagent presented a great effect in the properties of enzymes. The best blocking agents promoted a significant enzyme stabilization compared to the enzyme stability using the amino-alkyl-agarose supports, higher than that using octyl-VS-agarose supports, although these remained the most stable ones in most cases, as the octyl-biocatalysts were significantly more stable than the enzyme immobilized on amino-alkyl-support. Enzyme activities and specificities could be also greatly tuned by the immobilization in the new trifunctional supports, with enzyme activities in many instances enhancing that of the best non-covalently immobilized enzyme. That way, the results on this paper show that the properties of the enzymes when immobilized on these new trifunctional supports may be significantly tuned by the nature of the acyl chain in the support and the nature of the reagent used to block the reactivity of the remaining VS groups.
Collapse
Affiliation(s)
- Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Andres R Alcantara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid 28040, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
3
|
de Andrades D, Abellanas-Perez P, Rocha-Martin J, Lopez-Gallego F, Alcántara AR, Polizeli MDLTDM, Fernandez-Lafuente R. Effect of the support alkyl chain nature in the functional properties of the immobilized lipases. Enzyme Microb Technol 2025; 184:110583. [PMID: 39813903 DOI: 10.1016/j.enzmictec.2025.110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Supports coated with amino-hexyl and amino octyl have been prepared from glyoxyl agarose beads and compared in their performance with octyl-agarose to immobilize lipases A and B from Candida antarctica (CALA and CALB). Immobilization courses were similar using all supports, but enzyme release was more difficult using the amino-alkyl supports suggesting a mixed interfacial activation/ionic exchange immobilization. The enzyme activity and specificity (using p-nitrophenyl propionate, triacetin and both isomers of methyl mandelate) greatly depended on the support. In many instances the enzymes immobilized on the new supports offered higher activities and enantiospecificity in the hydrolysis of both enantiomers of methyl mandelate (mainly using CALB). This was coupled to a lower enzyme stability using the new supports, even in the presence of high ionic strength, suggesting that the amphipathic could be responsible of the enzyme lower stability. Using CALB, it was possible to detect a higher exposition of the enzyme Trp groups to the medium by florescence spectra after its immobilization on the amino-alkyl-supports, correlating to the higher activity and lower stability results.
Collapse
Affiliation(s)
- Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, Madrid 28049, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, Madrid 28049, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | - Fernando Lopez-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paséo Miramón, 194, Donostia-San Sebastián 20014, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao 48013, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid 28040, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
4
|
Monteiro RRC, Berenguer-Murcia Á, Rocha-Martin J, Vieira RS, Fernandez-Lafuente R. Biocatalytic production of biolubricants: Strategies, problems and future trends. Biotechnol Adv 2023; 68:108215. [PMID: 37473819 DOI: 10.1016/j.biotechadv.2023.108215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The increasing worries by the inadequate use of energy and the preservation of nature are promoting an increasing interest in the production of biolubricants. After discussing the necessity of producing biolubricants, this review focuses on the production of these interesting molecules through the use of lipases, discussing the different possibilities (esterification of free fatty acids, hydroesterification or transesterification of oils and fats, transesterification of biodiesel with more adequate alcohols, estolides production, modification of fatty acids). The utilization of discarded substrates has special interest due to the double positive ecological impact (e.g., oil distillated, overused oils). Pros and cons of all these possibilities, together with general considerations to optimize the different processes will be outlined. Some possibilities to overcome some of the problems detected in the production of these interesting compounds will be also discussed.
Collapse
Affiliation(s)
- Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | - Javier Rocha-Martin
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rodrigo S Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil.
| | | |
Collapse
|
5
|
Souza PMP, Carballares D, Gonçalves LRB, Fernandez-Lafuente R, Rodrigues S. Immobilization of Lipase B from Candida antarctica in Octyl-Vinyl Sulfone Agarose: Effect of the Enzyme-Support Interactions on Enzyme Activity, Specificity, Structure and Inactivation Pathway. Int J Mol Sci 2022; 23:ijms232214268. [PMID: 36430745 PMCID: PMC9697615 DOI: 10.3390/ijms232214268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
Lipase B from Candida antarctica was immobilized on heterofunctional support octyl agarose activated with vinyl sulfone to prevent enzyme release under drastic conditions. Covalent attachment was established, but the blocking step using hexylamine, ethylenediamine or the amino acids glycine (Gly) and aspartic acid (Asp) altered the results. The activities were lower than those observed using the octyl biocatalyst, except when using ethylenediamine as blocking reagent and p-nitrophenol butyrate (pNPB) as substrate. The enzyme stability increased using these new biocatalysts at pH 7 and 9 using all blocking agents (much more significantly at pH 9), while it decreased at pH 5 except when using Gly as blocking agent. The stress inactivation of the biocatalysts decreased the enzyme activity versus three different substrates (pNPB, S-methyl mandelate and triacetin) in a relatively similar fashion. The tryptophane (Trp) fluorescence spectra were different for the biocatalysts, suggesting different enzyme conformations. However, the fluorescence spectra changes during the inactivation were not too different except for the biocatalyst blocked with Asp, suggesting that, except for this biocatalyst, the inactivation pathways may not be so different.
Collapse
Affiliation(s)
- Priscila M. P. Souza
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Food Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 858, Fortaleza CEP 60440-900, CE, Brazil
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
| | - Luciana R. B. Gonçalves
- Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (R.F.-L.); (S.R.)
| | - Sueli Rodrigues
- Food Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 858, Fortaleza CEP 60440-900, CE, Brazil
- Correspondence: (R.F.-L.); (S.R.)
| |
Collapse
|
6
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Biocatalysis at Extreme Temperatures: Enantioselective Synthesis of both Enantiomers of Mandelic Acid by Transesterification Catalyzed by a Thermophilic Lipase in Ionic Liquids at 120 °C. Catalysts 2020. [DOI: 10.3390/catal10091055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of biocatalysts in organic chemistry for catalyzing chemo-, regio- and stereoselective transformations has become an usual tool in the last years, both at lab and industrial scale. This is not only because of their exquisite precision, but also due to the inherent increase in the process sustainability. Nevertheless, most of the interesting industrial reactions involve water-insoluble substrates, so the use of (generally not green) organic solvents is generally required. Although lipases are capable of maintaining their catalytic precision working in those solvents, reactions are usually very slow and consequently not very appropriate for industrial purposes. Increasing reaction temperature would accelerate the reaction rate, but this should require the use of lipases from thermophiles, which tend to be more enantioselective at lower temperatures, as they are more rigid than those from mesophiles. Therefore, the ideal scenario would require a thermophilic lipase capable of retaining high enantioselectivity at high temperatures. In this paper, we describe the use of lipase from Geobacillus thermocatenolatus as catalyst in the ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic to furnish both enantiomers of mandelic acid, an useful intermediate in the synthesis of many drugs and active products. The catalytic performance at high temperature in a conventional organic solvent (isooctane) and four imidazolium-based ionic liquids was assessed. The best results were obtained using 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMIMBF4) and 1-ethyl-3-methyl imidazolium hexafluorophosphate (EMIMPF6) at temperatures as high as 120 °C, observing in both cases very fast and enantioselective kinetic resolutions, respectively leading exclusively to the (S) or to the (R)-enantiomer of mandelic acid, depending on the anion component of the ionic liquid.
Collapse
|
9
|
Kornecki JF, Carballares D, Morellon-Sterling R, Siar EH, Kashefi S, Chafiaa M, Arana-Peña S, Rios NS, Gonçalves LR, Fernandez-Lafuente R. Influence of phosphate anions on the stability of immobilized enzymes. Effect of enzyme nature, immobilization protocol and inactivation conditions. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Efficient immobilization of phospholipase D on novel polymer supports with hierarchical pore structures. Int J Biol Macromol 2019; 141:60-67. [DOI: 10.1016/j.ijbiomac.2019.08.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
|
11
|
Tufiño C, Bernal C, Ottone C, Romero O, Illanes A, Wilson L. Synthesis with Immobilized Lipases and Downstream Processing of Ascorbyl Palmitate. Molecules 2019; 24:E3227. [PMID: 31491845 PMCID: PMC6767233 DOI: 10.3390/molecules24183227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/02/2023] Open
Abstract
Ascorbyl palmitate is a fatty acid ester endowed with antioxidant properties, used as a food additive and cosmetic ingredient, which is presently produced by chemical synthesis. Ascorbyl palmitate was synthesized from ascorbic acid and palmitic acid with a Pseudomonas stutzeri lipase immobilized on octyl silica, and also with the commercial immobilized lipase Novozym 435. The latter was selected for optimizing the reaction conditions because of its high reactivity and stability in the solvent 2-methyl-2-butanol used as reaction medium. The reaction of the synthesis was studied considering temperature and molar ratio of substrates as variables and synthesis yield as response parameter. The highest yield in the synthesis of ascorbyl palmitate was 81%, obtained at 55 °C and an ascorbic acid to palmitic acid molar ratio of 1:8, both variables having a strong effect on yield. The synthesized ascorbyl palmitate was purified to 94.4%, with a purification yield of 84.2%. The use of generally recognized as safe (GRAS) certified solvents with a polarity suitable for the solubilization of the compounds made the process a viable alternative for the synthesis and downstream processing of ascorbyl palmitate.
Collapse
Affiliation(s)
- Carolina Tufiño
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2085, Chile.
| | - Claudia Bernal
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán, La Serena 1305, Chile.
| | - Carminna Ottone
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2085, Chile.
| | - Oscar Romero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2085, Chile.
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2085, Chile.
| | - Lorena Wilson
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2085, Chile.
| |
Collapse
|
12
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
13
|
Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:741-747. [DOI: 10.1016/j.bbapap.2019.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/26/2023]
|
14
|
Arana-Peña S, Mendez-Sanchez C, Rios NS, Ortiz C, Gonçalves LR, Fernandez-Lafuente R. New applications of glyoxyl-octyl agarose in lipases co-immobilization: Strategies to reuse the most stable lipase. Int J Biol Macromol 2019; 131:989-997. [DOI: 10.1016/j.ijbiomac.2019.03.163] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
|
15
|
Increased Selectivity of Novozym 435 in the Asymmetric Hydrolysis of a Substrate with High Hydrophobicity Through the Use of Deep Eutectic Solvents and High Substrate Concentrations. Molecules 2019; 24:792. [PMID: 30813241 PMCID: PMC6412981 DOI: 10.3390/molecules24040792+10.3390/molecules24040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The effects of the reaction medium and substrate concentration were studied on the selectivity of Novozym 435 using the asymmetric hydrolysis of dimethyl-3-phenylglutarate as a model reaction. Results show that the use of choline chloride ChCl:urea/phosphate buffer 50% (v/v) as a reaction medium increased the selectivity of Novozym 435 by 16% (e.e = 88%) with respect to the one in 100% phosphate buffer (e.e = 76%). Best results were obtained when high substrate concentrations (well above the solubility limit, 27-fold) and ChCl:urea/phosphate buffer 50% (v/v) as reaction medium at pH 7 and 30 °C were used. Under such conditions, the R-monoester was produced with an enantiomeric purity of 99%. Novozym 435 was more stable in ChCl:urea/phosphate buffer 50% (v/v) than in phosphate buffer, retaining a 50% of its initial activity after 27 h of incubation at pH 7 and 40 °C. Results suggest that the use of deep eutectic solvents (ChCl:urea/phosphate buffer) in an heterogeneous reaction system (high substrate concentration) is a viable and promising strategy for the synthesis of chiral drugs from highly hydrophobic substrates.
Collapse
|
16
|
Fredes Y, Chamorro L, Cabrera Z. Increased Selectivity of Novozym 435 in the Asymmetric Hydrolysis of a Substrate with High Hydrophobicity Through the Use of Deep Eutectic Solvents and High Substrate Concentrations. Molecules 2019; 24:molecules24040792. [PMID: 30813241 PMCID: PMC6412981 DOI: 10.3390/molecules24040792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 02/01/2023] Open
Abstract
The effects of the reaction medium and substrate concentration were studied on the selectivity of Novozym 435 using the asymmetric hydrolysis of dimethyl-3-phenylglutarate as a model reaction. Results show that the use of choline chloride ChCl:urea/phosphate buffer 50% (v/v) as a reaction medium increased the selectivity of Novozym 435 by 16% (e.e = 88%) with respect to the one in 100% phosphate buffer (e.e = 76%). Best results were obtained when high substrate concentrations (well above the solubility limit, 27-fold) and ChCl:urea/phosphate buffer 50% (v/v) as reaction medium at pH 7 and 30 °C were used. Under such conditions, the R-monoester was produced with an enantiomeric purity of 99%. Novozym 435 was more stable in ChCl:urea/phosphate buffer 50% (v/v) than in phosphate buffer, retaining a 50% of its initial activity after 27 h of incubation at pH 7 and 40 °C. Results suggest that the use of deep eutectic solvents (ChCl:urea/phosphate buffer) in an heterogeneous reaction system (high substrate concentration) is a viable and promising strategy for the synthesis of chiral drugs from highly hydrophobic substrates.
Collapse
Affiliation(s)
- Yerko Fredes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso; Avda. Brasil 2085 Valparaíso, Chile.
| | - Lesly Chamorro
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso; Avda. Brasil 2085 Valparaíso, Chile.
| | - Zaida Cabrera
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso; Avda. Brasil 2085 Valparaíso, Chile.
| |
Collapse
|
17
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
18
|
da Silva RAC, de Mesquita BM, de Farias IF, do Nascimento PGG, de Lemos TLG, Queiroz Monte FJ. Enzymatic chemical transformations of aldehydes, ketones, esters and alcohols using plant fragments as the only biocatalyst: Ximenia americana grains. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Sun X, Zhu W, Matyjaszewski K. Protection of opening lids: very high catalytic activity of lipase immobilized on core-shell nanoparticles. Macromolecules 2018; 51:289-296. [PMID: 29983451 PMCID: PMC6029252 DOI: 10.1021/acs.macromol.7b02361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Various hydrophobic supports have been used for lipase immobilization since the active site of lipase can be opened in a hydrophobic environment. Nevertheless, the increase of lipase activity is still limited. This study demonstrates a hyperactivation-protection strategy of lipase after immobilization on poly(n-butyl acrylate)-polyaldehyde dextran (PBA-PAD) core-shell nanoparticles. The inner hydrophobic PBA domain helps to rearrange lipase conformation to a more active form after immobilization into the PAD shell. More importantly, the outer PAD shell with dense polysaccharide chains prevents the immobilized lipase from contact with outside aqueous medium and revert its conformation back to an inactive form. As a result, under optimal conditions the activity of lipase immobilized in PBA-PAD nanoparticles was enhanced 40 times over the free one, much higher than in any previous report. Furthermore, the immobilized lipase retained more than 80 % of its activity after 10 reaction cycles.
Collapse
Affiliation(s)
- Xuefei Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
20
|
Zaak H, Sassi M, Fernandez-Lafuente R. A new heterofunctional amino-vinyl sulfone support to immobilize enzymes: Application to the stabilization of β-galactosidase from A spergillus oryzae. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzyme Microb Technol 2017; 106:67-74. [DOI: 10.1016/j.enzmictec.2017.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/11/2023]
|
22
|
Effect of high salt concentrations on the stability of immobilized lipases: Dramatic deleterious effects of phosphate anions. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Vescovi V, dos Santos JBC, Tardioli PW. Porcine pancreatic lipase hydrophobically adsorbed on octyl-silica: A robust biocatalyst for syntheses of xylose fatty acid esters. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1335717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vinicius Vescovi
- Department of Chemical Engineering, Graduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Paulo Waldir Tardioli
- Department of Chemical Engineering, Graduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
24
|
Pavel IA, Prazeres SF, Montalvo G, Garcı A Ruiz C, Nicolas V, Celzard A, Dehez F, Canabady-Rochelle L, Canilho N, Pasc A. Effect of Meso vs Macro Size of Hierarchical Porous Silica on the Adsorption and Activity of Immobilized β-Galactosidase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3333-3340. [PMID: 28301164 DOI: 10.1021/acs.langmuir.7b00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
β-Galactosidase (β-Gal) is one of the most important enzymes used in milk processing for improving their nutritional quality and digestibility. Herein, β-Gal has been entrapped into a meso-macroporous material (average pore size 9 and 200 nm, respectively) prepared by a sol-gel method from a silica precursor and a dispersion of solid lipid nanoparticles in a micelle phase. The physisorption of the enzyme depends on the concentration of the feed solution and on the pore size of the support. The enzyme is preferentially adsorbed either in mesopores or in macropores, depending on its initial concentration. Moreover, this selective adsorption, arising from the oligomeric complexation of the enzyme (monomer/dimer/tetramer), has an effect on the catalytic activity of the material. Indeed, the enzyme encapsulated in macropores is more active than the enzyme immobilized in mesopores. Designed materials containing β-Gal are of particular interest for food applications and potentially extended to bioconversion, bioremediation, or biosensing when coupling the designed support with other enzymes.
Collapse
Affiliation(s)
- Ileana-Alexandra Pavel
- SRSMC UMR 7565 CNRS-Université de Lorraine, Bvd des Aiguillettes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Sofia F Prazeres
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá , E-28871 Alcala de Henares, Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá , E-28871 Alcala de Henares, Spain
- University Institute of Research in Police Sciences (IUICP) , E-28871 Alcalá de Henares, Madrid, Spain
| | - Carmen Garcı A Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá , E-28871 Alcala de Henares, Spain
- University Institute of Research in Police Sciences (IUICP) , E-28871 Alcalá de Henares, Madrid, Spain
| | - Vincent Nicolas
- Institut Jean Lamour UMR 7198 CNRS-Université de Lorraine, ENSTIB, 27 rue Philippe Séguin, CS 60036, 88026 Cedex Epinal, France
| | - Alain Celzard
- Institut Jean Lamour UMR 7198 CNRS-Université de Lorraine, ENSTIB, 27 rue Philippe Séguin, CS 60036, 88026 Cedex Epinal, France
| | - François Dehez
- SRSMC UMR 7565 CNRS-Université de Lorraine, Bvd des Aiguillettes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Laetitia Canabady-Rochelle
- LRGP UMR 7274 CNRS-Université de Lorraine, ENSAIA, 2, avenue de la forêt de Hayes, 54500 Vandoeuvre-lès-Nancy, France
| | - Nadia Canilho
- SRSMC UMR 7565 CNRS-Université de Lorraine, Bvd des Aiguillettes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Andreea Pasc
- SRSMC UMR 7565 CNRS-Université de Lorraine, Bvd des Aiguillettes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
25
|
Fernandez-Lopez L, Pedrero SG, Lopez-Carrobles N, Virgen-Ortíz JJ, Gorines BC, Otero C, Fernandez-Lafuente R. Physical crosslinking of lipase from Rhizomucor miehei immobilized on octyl agarose via coating with ionic polymers. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Vescovi V, Giordano RLC, Mendes AA, Tardioli PW. Immobilized Lipases on Functionalized Silica Particles as Potential Biocatalysts for the Synthesis of Fructose Oleate in an Organic Solvent/Water System. Molecules 2017; 22:molecules22020212. [PMID: 28146090 PMCID: PMC6155854 DOI: 10.3390/molecules22020212] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 02/02/2023] Open
Abstract
Lipases from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) wereimmobilized on functionalized silica particles aiming their use in the synthesis of fructose oleate in a tert-butyl alcohol/water system. Silica particles were chemically modified with octyl (OS), octyl plus glutaraldehyde (OSGlu), octyl plus glyoxyl(OSGlx), and octyl plus epoxy groups(OSEpx). PFL was hyperactivated on all functionalized supports (more than 100% recovered activity) using low protein loading (1 mg/g), however, for TLL, this phenomenon was observed only using octyl-silica (OS). All prepared biocatalysts exhibited high stability by incubating in tert-butyl alcohol (half-lives around 50 h at 65 °C). The biocatalysts prepared using OS and OSGlu as supports showed excellent performance in the synthesis of fructose oleate. High estersynthesis was observed when a small amount of water (1%, v/v) was added to the organic phase, allowing an ester productivity until five times (0.88-0.96 g/L.h) higher than in the absence of water (0.18-0.34 g/L.h) under fixed enzyme concentration (0.51 IU/g of solvent). Maximum ester productivity (16.1-18.1 g/L.h) was achieved for 30 min of reaction catalyzed by immobilized lipases on OS and OSGlu at 8.4 IU/mL of solvent. Operational stability tests showed satisfactory stability after four consecutive cycles of reaction.
Collapse
Affiliation(s)
- Vinicius Vescovi
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| | - Raquel L C Giordano
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| | - Paulo W Tardioli
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
27
|
Fernandez-Lopez L, Virgen-OrtÍz JJ, Pedrero SG, Lopez-Carrobles N, Gorines BC, Otero C, Fernandez-Lafuente R. Optimization of the coating of octyl-CALB with ionic polymers to improve stability and decrease enzyme leakage. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2016.1278212] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Jose J. Virgen-OrtÍz
- Catedrático CONACYT – Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) – Centro de Innovación y Desarrollo Agroalimentario de Michoacán, A.C. (CIDAM), Morelia, Michoacán, Mexico
| | - Sara G. Pedrero
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | | | - Beatriz C. Gorines
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | - Cristina Otero
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | | |
Collapse
|
28
|
Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 2017; 5:7461-7490. [DOI: 10.1039/c7tb01639e] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the possible roles of polyethylenimine (PEI) in the design of improved immobilized biocatalysts from diverse perspectives.
Collapse
Affiliation(s)
- Jose J. Virgen-Ortíz
- CONACYT-Centro de Investigación en Alimentación y Desarrollo
- A.C. (CIAD)-Consorcio CIDAM
- 58341 Morelia
- Mexico
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Acarape
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Campus de San Vicente del Raspeig
- Ap. 99-03080 Alicante
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Av. Bento Gonçalves
- Porto Alegre
| | | |
Collapse
|
29
|
Virgen-Ortíz JJ, Tacias-Pascacio VG, Hirata DB, Torrestiana-Sanchez B, Rosales-Quintero A, Fernandez-Lafuente R. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports. Enzyme Microb Technol 2016; 96:30-35. [PMID: 27871382 DOI: 10.1016/j.enzmictec.2016.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/24/2023]
Abstract
Lipase B from Candida antarctica (CALB) has been physically immobilized on octyl-agarose via interfacial activation. The incubation of the enzyme in 80% ethanol at pH 5 and 25°C has not significant effect on enzyme activity. Moreover, the hydrolysis of 100mM tributyrin catalyzed by this biocatalyst exhibited a quite linear reaction course. However, a new cycle of tributyrin hydrolysis showed a drastic drop in the activity. SDS-PAGE gels of the supernatant and the biocatalyst showed a significant enzyme desorption after the reaction. Similar results could be appreciated using triacetin or sunflower oil, while using 300mM methyl phenyl acetate, butyl butyrate or ethyl butyrate most enzyme molecules remained immobilized. The results show that the detergent properties of some reaction products increase the enzyme release from the hydrophobic support, and this problem increased if the concentration of the reactants increased. Using 500mM tributyrin, even in fully aqueous medium, some enzyme desorption from the support may be observed. Thus, the results show a limitation of this kind of biocatalysts that should be considered in the selection of an industrial lipase biocatalyst.
Collapse
Affiliation(s)
- Jose J Virgen-Ortíz
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC, Madrid, Spain; Catedrático CONACYT - Centro de Investigación en Alimentación y Desarrollo, A.C., Centro de Innovación y Desarrollo Agroalimentario de Michoacán, A.C., Antigua Carretera a Pátzcuaro s/n, 58341, Morelia, Michoacán, Mexico
| | - Veymar G Tacias-Pascacio
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC, Madrid, Spain; Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Calzada Miguel A. de Quevedo 2779, 91897, Veracruz, Mexico
| | - Daniela B Hirata
- Instituto de Química, Universidade Federal de Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Beatriz Torrestiana-Sanchez
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Calzada Miguel A. de Quevedo 2779, 91897, Veracruz, Mexico
| | - Arnulfo Rosales-Quintero
- Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez, Chiapas, Mexico
| | | |
Collapse
|
30
|
Albuquerque TL, Rueda N, dos Santos JC, Barbosa O, Ortiz C, Binay B, Özdemir E, Gonçalves LR, Fernandez-Lafuente R. Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Mathesh M, Luan B, Akanbi TO, Weber JK, Liu J, Barrow CJ, Zhou R, Yang W. Opening Lids: Modulation of Lipase Immobilization by Graphene Oxides. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00942] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Motilal Mathesh
- Centre
for Chemistry and Biotechnology, School of Life and Environmental
Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Binquan Luan
- IBM Thomas J. Watson Research Centre, Yorktown Heights, New York 10598, United States
| | - Taiwo O. Akanbi
- Centre
for Chemistry and Biotechnology, School of Life and Environmental
Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Jeffrey K. Weber
- IBM Thomas J. Watson Research Centre, Yorktown Heights, New York 10598, United States
| | - Jingquan Liu
- School
of Materials Science and Engineering, Qingdao University, Qingdao 266071, People’s Republic of China
| | - Colin J. Barrow
- Centre
for Chemistry and Biotechnology, School of Life and Environmental
Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Centre, Yorktown Heights, New York 10598, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wenrong Yang
- Centre
for Chemistry and Biotechnology, School of Life and Environmental
Sciences, Deakin University, Geelong, Victoria 3217, Australia
| |
Collapse
|
32
|
Peirce S, Tacias-Pascacio VG, Russo ME, Marzocchella A, Virgen-Ortíz JJ, Fernandez-Lafuente R. Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI). Molecules 2016; 21:molecules21060751. [PMID: 27338317 PMCID: PMC6274192 DOI: 10.3390/molecules21060751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 01/18/2023] Open
Abstract
Lipase B from Candida antarctica (CALB) was immobilized on octyl agarose (OC) and physically modified with polyethyleneimine (PEI) in order to confer a strong ion exchange character to the enzyme and thus enable the immobilization of other enzymes on its surface. The enzyme activity was fully maintained during the coating and the thermal stability was marginally improved. The enzyme release from the support by incubation in the non-ionic detergent Triton X-100 was more difficult after the PEI-coating, suggesting that some intermolecular physical crosslinking had occurred, making this desorption more difficult. Thermal stability was marginally improved, but the stability of the OCCALB-PEI was significantly better than that of OCCALB during inactivation in mixtures of aqueous buffer and organic cosolvents. SDS-PAGE analysis of the inactivated biocatalyst showed the OCCALB released some enzyme to the medium during inactivation, and this was partially prevented by coating with PEI. This effect was obtained without preventing the possibility of reuse of the support by incubation in 2% ionic detergents. That way, this modified CALB not only has a strong anion exchange nature, while maintaining the activity, but it also shows improved stability under diverse reaction conditions without affecting the reversibility of the immobilization.
Collapse
Affiliation(s)
- Sara Peirce
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain.
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universita' degli Studi di Napoli Federico II, 80125 Napoli, Italy.
| | - Veymar G Tacias-Pascacio
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain.
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Calzada Miguel A. de Quevedo 2779, 91897 Veracruz, Mexico.
| | - Maria Elena Russo
- Istituto di Ricerche sulla Combustione-Consiglio Nazionale delle Ricerche, 80125 Napoli, Italy.
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universita' degli Studi di Napoli Federico II, 80125 Napoli, Italy.
| | - José J Virgen-Ortíz
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
33
|
Rueda N, Albuquerque TL, Bartolome-Cabrero R, Fernandez-Lopez L, Torres R, Ortiz C, Dos Santos JCS, Barbosa O, Fernandez-Lafuente R. Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules 2016; 21:E646. [PMID: 27196882 PMCID: PMC6273131 DOI: 10.3390/molecules21050646] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023] Open
Abstract
Two different heterofunctional octyl-amino supports have been prepared using ethylenediamine and hexylendiamine (OCEDA and OCHDA) and utilized to immobilize five lipases (lipases A (CALA) and B (CALB) from Candida antarctica, lipases from Thermomyces lanuginosus (TLL), from Rhizomucor miehei (RML) and from Candida rugosa (CRL) and the phospholipase Lecitase Ultra (LU). Using pH 5 and 50 mM sodium acetate, the immobilizations proceeded via interfacial activation on the octyl layer, after some ionic bridges were established. These supports did not release enzyme when incubated at Triton X-100 concentrations that released all enzyme molecules from the octyl support. The octyl support produced significant enzyme hyperactivation, except for CALB. However, the activities of the immobilized enzymes were usually slightly higher using the new supports than the octyl ones. Thermal and solvent stabilities of LU and TLL were significantly improved compared to the OC counterparts, while in the other enzymes the stability decreased in most cases (depending on the pH value). As a general rule, OCEDA had lower negative effects on the stability of the immobilized enzymes than OCHDA and while in solvent inactivation the enzyme molecules remained attached to the support using the new supports and were released using monofunctional octyl supports, in thermal inactivations this only occurred in certain cases.
Collapse
Affiliation(s)
- Nazzoly Rueda
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Tiago L Albuquerque
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Departamento de Engenharia Química, Universidade Federal Do Ceará, Campus Do Pici, CEP 60455-760 Fortaleza, Brazil.
| | - Rocio Bartolome-Cabrero
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| | - Laura Fernandez-Lopez
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| | - Rodrigo Torres
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Claudia Ortiz
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Jose C S Dos Santos
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Departamento de Engenharia Química, Universidade Federal Do Ceará, Campus Do Pici, CEP 60455-760 Fortaleza, Brazil.
| | - Oveimar Barbosa
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué 546, Colombia.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| |
Collapse
|
34
|
Selectivity of R-α-monobenzoate glycerol synthesis catalyzed by Candida antarctica lipase B immobilized on heterofunctional supports. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|