1
|
Kalekar VN, Vaidya PD. Hydrogen Production by Aqueous-Phase Reforming of Model Compounds of Wet Biomass over Platinum Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Vinayak N. Kalekar
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Prakash D. Vaidya
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
2
|
Chen R, Chen J, Gao X, Ao Y, Wang P. Probing the role of surface acid sites on the photocatalytic degradation of tetracycline hydrochloride over cerium doped CdS via experiments and theoretical calculations. Dalton Trans 2021; 50:16620-16630. [PMID: 34748622 DOI: 10.1039/d1dt02852a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface acid site regulation of photocatalysts is a promising strategy to improve their performance. Herein, surface acid sites of cadmium sulfide were rationally regulated by cerium doping, which resulted in significantly increased photocatalytic activity for tetracycline hydrochloride (TC-HCl) degradation. The generated Brønsted acid sites were verified to favor the adsorption of organic molecules because of their strong affinity. Meanwhile, Lewis acid sites acted as the active sites for C-C bond cleavage via a nucleophilic substitution process, which was testified by the Fukui function and electrostatic potential. Besides, Ce3+ doping suppressed the recombination of electron-hole pairs, which also boosted the performance of TC-HCl degradation. Moreover, the degradation pathway of TC-HCl was deduced based on theoretical calculations and HPLC-MS results. The toxicity of pollutants and intermediates was also evaluated. This work provided new insight into the rational design and preparation of highly efficient photocatalysts for environmental purification.
Collapse
Affiliation(s)
- Ran Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China. .,College of Life & Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China.
| | - Xin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China.
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China.
| |
Collapse
|
3
|
Hydrogen Generation from Wood Chip and Biochar by Combined Continuous Pyrolysis and Hydrothermal Gasification. ENERGIES 2021. [DOI: 10.3390/en14133793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrothermal gasification (HTG) experiments were carried out to extract hydrogen from biomass. Although extensive research has been conducted on hydrogen production with HTG, limited research exists on the use of biochar as a raw material. In this study, woodland residues (wood chip) and biochar from wood-chip pyrolysis were used in HTG treatment to generate hydrogen. This research investigated the effect of temperature (300–425 °C) and biomass/water (0.5–10) ratio on gas composition. A higher temperature promoted hydrogen production because the water–gas shift reaction and steam-reforming reaction were promoted with an increase in temperature. The methane concentration was related positively to temperature because of the methanation and hydrogenation reactions. A lower biomass/water ratio promoted hydrogen production but suppressed carbon-monoxide production. Most reactions that produce hydrogen consume water, but water also affects the water–gas shift reaction balance, which decreases the carbon-monoxide concentration. By focusing on the practical application of HTG, we attempted biochar treatment by pyrolysis (temperature of heating part: 700 °C), and syngas was obtained from hydrothermal treatment above 425 °C.
Collapse
|
4
|
Nanda S, Berruti F. A technical review of bioenergy and resource recovery from municipal solid waste. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123970. [PMID: 33265011 DOI: 10.1016/j.jhazmat.2020.123970] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 05/07/2023]
Abstract
Population growth, rapid urbanization, industrialization and economic development have led to the magnified municipal solid waste generation at an alarming rate on a global scale. Municipal solid waste seems to be an economically viable and attractive resource to produce green fuels through different waste-to-energy conversion routes. This paper reviews the different waste-to-energy technologies as well as thermochemical and biological conversion technologies for the valorization of municipal solid waste and diversion for recycling. The key waste-to-energy technologies discussed in this review include conventional thermal incineration and the modern hydrothermal incineration. The thermochemical treatments (e.g. pyrolysis, liquefaction and gasification) and biological treatments (e.g. anaerobic digestion and composting) are also elaborated for the transformation of solid wastes to biofuel products. The current status of municipal solid waste management for effective disposal and diversion along with the opportunities and challenges has been comprehensively reviewed. The merits and technical challenges of the waste-to-energy technologies are systematically discussed to promote the diversion of solid wastes from landfill disposal to biorefineries.
Collapse
Affiliation(s)
- Sonil Nanda
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada.
| | - Franco Berruti
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
5
|
Su W, Liu P, Cai C, Ma H, Jiang B, Xing Y, Liang Y, Cai L, Xia C, Le QV, Sonne C, Lam SS. Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123541. [PMID: 32745873 DOI: 10.1016/j.jhazmat.2020.123541] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The dispersion of hyperaccumulators used in the phytoremediation process has caused environmental concerns because of their heavy metal (HM) richness. It is important to reduce the environmental risks and prevent the HM to reenter the ecological cycle and thereby the human food web. In this work, supercritical water gasification (SCWG) technology was used to convert Sedum plumbizincicola into hydrogen (H2) gas and to immobilize HMs into biochar. The H2 production correlated with temperature ranging from 380 to 440 ℃ with the highest H2 yield of 2.74 mol/kg at 440 ℃. The free-radical reaction and steam reforming reaction at high temperatures were likely to be the mechanism behind the H2 production. The analyses of bio-oil by the Gas Chromatography-Mass Spectrometer (GC-MS) and Nuclear magnetic resonance spectroscopy (NMR) illustrated that the aromatic compounds, oxygenated compounds, and phenols were degraded into H2-rich gases. The increase of temperature enhanced the HM immobilization efficiency (>99.2 % immobilization), which was probably due to the quickly formed biochar that helped adsorb HMs. Then those HMs were chemically converted into stable forms through complexation with inorganic components on biochar, e.g., silicates, SiO2, and Al2O3. Consequently, the SCWG process was demonstrated as a promising approach for dispersing hyperaccumulators by immobilizing the hazardous HMs into biochar and simultaneously producing value-added H2-rich gases.
Collapse
Affiliation(s)
- Wei Su
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ping Liu
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Changqing Cai
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Bo Jiang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yi Xing
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yunyi Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Anhui Juke Graphene Technology Co., Ltd., Bozhou, Anhui 233600, China.
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Christian Sonne
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Su Shiung Lam
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Anhui Juke Graphene Technology Co., Ltd., Bozhou, Anhui 233600, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
6
|
Wang C, Wu C, Hornung U, Zhu W, Dahmen N. Suppression of tar and char formation in supercritical water gasification of sewage sludge by additive addition. CHEMOSPHERE 2021; 262:128412. [PMID: 33182157 DOI: 10.1016/j.chemosphere.2020.128412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
This study explored the feasibility of char and tar formation inhibition during supercritical water gasification of sewage sludge (SS) by additive addition. Experiments were conducted in autoclave with 5 wt% additives at 400 °C for 30 min. The non-additive gasification of SS resulted in a higher char yield (12.6%) and tar yield (16.4%). In contrast, the five additives reduced the char yield (3.4-11.2%), the inhibition of char yield by additives was in the order of NaOH > K2CO3 > H2O2 > acetic acid > NiCl2. The inhibition of tar formation was limited, tar yield were 13.3-18.8% with additives. Fourier-transform infrared spectroscopy was used to determine the functional groups of char/tar, and it was observed that the spectra of char were more similar to those of hydrochar obtained in a low-temperature experiment. Model compounds of potential precursors was also tested to study the mechanism of action of additives, the results reveal that additives have different effects on char/tar formation from various components, the inhibitory effects of additives on the yield of char from humus and tar from lignin were limited. Finally, the effects of additives on gasification were also studied. The addition of additives will have an impact on the hydrogen yield and gasification efficiency, which also needs to be considered when use additive to reduce the by-products yield.
Collapse
Affiliation(s)
- Chenyu Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chaoyue Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| | - Ursel Hornung
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany; School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Wei Zhu
- College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China.
| | - Nicolaus Dahmen
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.
| |
Collapse
|
7
|
Abstract
Background:
The development of viable alternative fuel sources is assuming a new urgency
in the face of climate change and environmental degradation linked to the escalating consumption
of fossil fuels. Lignocellulosic biomass is composed primarily of high-energy structural components
such as cellulose, hemicellulose and lignin. The transformation of lignocellulosic biomass to biofuels
requires the application of both pretreatment and conversion technologies.
Methods:
Several pretreatment technologies (e.g. physical, chemical and biological) are used to recover
cellulose, hemicellulose and lignin from biomass and begin the transformation into biofuels.
This paper reviews the thermochemical (e.g. pyrolysis, gasification and liquefaction), hydrothermal
(e.g. subcritical and supercritical water gasification and hydrothermal liquefaction), and biological
(e.g. fermentation) conversion pathways that are used to further transform biomass feedstocks into
fuel products.
Results:
Through several thermochemical and biological conversion technologies, lignocellulosic biomass
and other organic residues can produce biofuels such as bio-oils, biochar, syngas, biohydrogen,
bioethanol and biobutanol, all of which have the potential to replace hydrocarbon-based fossil fuels.
Conclusions:
This review paper describes the conversion technologies used in the transformation of
biomass into viable biofuels. Biofuels produced from lignocellulosic biomass and organic wastes are a
promising potential clean energy source with the potential to be carbon-neutral or even carbonnegative.
Collapse
Affiliation(s)
- Pranav D. Parakh
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janusz A. Kozinski
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
8
|
Application of amine-functioned Fe3O4 nanoparticles with HPEI for effective humic acid removal from aqueous solution: Modeling and optimization. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0411-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Nanda S, Reddy SN, Hunter HN, Vo DVN, Kozinski JA, Gökalp I. Catalytic subcritical and supercritical water gasification as a resource recovery approach from waste tires for hydrogen-rich syngas production. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Nanda S, Rana R, Hunter HN, Fang Z, Dalai AK, Kozinski JA. Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|