1
|
Seenivasan S, Jung H, Han JW, Kim DH. Surface Roughening Strategy for Highly Efficient Bifunctional Electrocatalyst: Combination of Atomic Layer Deposition and Anion Exchange Reaction. SMALL METHODS 2022; 6:e2101308. [PMID: 34970869 DOI: 10.1002/smtd.202101308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalytic water splitting, which is an interface-dominated process, can be significantly accelerated by increasing the number of front-line surface active sites (NA ) of the electrocatalyst. In this study, a unique method is used for increasing the NA by converting the smooth ultrathin atomic-layer-deposited nanoshells of the electrocatalysts into nano-roughened active shell layers using a controlled anion-exchange reaction (AER). The coarse thin nanoshells present abundant surface active sites, which are generated owing to the inherent unit-cell volume mismatch induced during the AER. Consequently, the nano-roughened electrodes accelerate the sluggish water reaction kinetics and lower the overpotentials required for the hydrogen and oxygen evolution reactions. In addition, the electronic modulation induced by the nanoshell layer at the core-nanoshell interface amplifies the local electron density, as confirmed using electrochemical analysis data and density functional theory calculations. Because of the integrity of the composite electrodes during water-splitting half-cell reactions, their durability for industrial seawater electrolysis is evaluated. The results indicate that their electrochemical activity does not change significantly after 10 days of continuous overall water splitting.
Collapse
Affiliation(s)
- Selvaraj Seenivasan
- School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju, 500-757, Republic of Korea
| | - Hyeonjung Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju, 500-757, Republic of Korea
| |
Collapse
|
2
|
Biswas R, Thakur P, Kaur G, Som S, Saha M, Jhajhria V, Singh H, Ahmed I, Banerjee B, Chopra D, Sen T, Haldar KK. Interfacial Engineering of CuCo 2S 4/g-C 3N 4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction. Inorg Chem 2021; 60:12355-12366. [PMID: 34320803 DOI: 10.1021/acs.inorgchem.1c01566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Rathindranath Biswas
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Pooja Thakur
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Gagandeep Kaur
- Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Shubham Som
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Monochura Saha
- Indian Institute of Science Education and Research, Kolkata, Nadia 741246, West Bengal, India
| | - Vandna Jhajhria
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Harjinder Singh
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Imtiaz Ahmed
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Tapasi Sen
- Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Krishna Kanta Haldar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, Punjab, India
| |
Collapse
|
3
|
Chodankar NR, Bagal IV, Ryu S, Han Y, Kim D. Nano‐Micro‐Structured Nickel‐Cobalt Hydroxide/Ni
2
P
2
O
7
Assembly on Nickel Foam: An Outstanding Electrocatalyst for Alkaline Oxygen Evolution Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nilesh R. Chodankar
- School of Chemical EngineeringChonnam National University Gwangju 61186 South Korea) (DHK
- Department of Energy and Materials EngineeringDongguk University Seoul 04620 South Korea
| | - Indrajit V. Bagal
- Department of PhysicsChonnam National University Gwangju 61186 South Korea
| | - Sang‐Wan Ryu
- Department of PhysicsChonnam National University Gwangju 61186 South Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University Seoul 04620 South Korea
| | - Do‐Heyoung Kim
- School of Chemical EngineeringChonnam National University Gwangju 61186 South Korea) (DHK
| |
Collapse
|
4
|
Vo TG, Liu HM, Chiang CY. Highly conformal deposition of ultrathin cobalt acetate on a bismuth vanadate nanostructure for solar water splitting. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00816k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, the effect of photochemically modifying nanoporous bismuth vanadate in Co2+ solution in acetate buffer (abbreviated as Co–Ac) on water oxidation was thoroughly studied.
Collapse
Affiliation(s)
- Truong-Giang Vo
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei-106
- Taiwan
| | - Hsin-Man Liu
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei-106
- Taiwan
| | - Chia-Ying Chiang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei-106
- Taiwan
| |
Collapse
|
5
|
Surface Modification of Hematite Photoanodes for Improvement of Photoelectrochemical Performance. Catalysts 2018. [DOI: 10.3390/catal8110497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Solar water splitting is a promising method for producing renewable fuels. Thermodynamically, the overall water splitting reaction is an uphill reaction involving a multiple electron transfer process. The oxygen evolution reaction (OER) has been identified as the bottleneck process. Hematite (α-Fe2O3) is one of the best photoanode material candidates due to its band gap properties and stability in aqueous solution. However, the reported efficiencies of hematite are notoriously lower than the theoretically predicted value mainly due to poor charge transfer and separation ability, short hole diffusion length as well as slow water oxidation kinetics. In this Review Article, several emerging surface modification strategies to reduce the oxygen evolution overpotential and thus to enhance the water oxidation reaction kinetics will be presented. These strategies include co-catalysts loading, photoabsorption enhancing (surface plasmonic metal and rare earth metal decoration), surface passivation layer deposition, surface chemical etching and surface doping. These methods are found to reduce charge recombination happening at surface trapping states, promote charge separation and diffusion, and accelerate water oxidation kinetics. The detailed surface modification methods, surface layer materials, the photoelectrochemical (PEC) performances including photocurrent and onset potential shift as well as the related proposed mechanisms will be reviewed.
Collapse
|