1
|
Thangamuthu M, Ruan Q, Ohemeng PO, Luo B, Jing D, Godin R, Tang J. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chem Rev 2022; 122:11778-11829. [PMID: 35699661 PMCID: PMC9284560 DOI: 10.1021/acs.chemrev.1c00971] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Qiushi Ruan
- School
of Materials Science and Engineering, Southeast
University, Nanjing 211189, China
| | - Peter Osei Ohemeng
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Bing Luo
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Dengwei Jing
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
2
|
Zhu Y, He L, Ni Y, Li G, Li D, Lin W, Wang Q, Li L, Yang H. Recent Progress on Photoelectrochemical Water Splitting of Graphitic Carbon Nitride (g-CN) Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2374. [PMID: 35889598 PMCID: PMC9321715 DOI: 10.3390/nano12142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
Graphitic carbon nitride (g-CN), a promising visible-light-responsive semiconductor material, is regarded as a fascinating photocatalyst and heterogeneous catalyst for various reactions due to its non-toxicity, high thermal durability and chemical durability, and "earth-abundant" nature. However, practical applications of g-CN in photoelectrochemical (PEC) and photoelectronic devices are still in the early stages of development due to the difficulties in fabricating high-quality g-CN layers on substrates, wide band gaps, high charge-recombination rates, and low electronic conductivity. Various fabrication and modification strategies of g-CN-based films have been reported. This review summarizes the latest progress related to the growth and modification of high-quality g-CN-based films. Furthermore, (1) the classification of synthetic pathways for the preparation of g-CN films, (2) functionalization of g-CN films at an atomic level (elemental doping) and molecular level (copolymerization), (3) modification of g-CN films with a co-catalyst, and (4) composite films fabricating, will be discussed in detail. Last but not least, this review will conclude with a summary and some invigorating viewpoints on the key challenges and future developments.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Liang He
- No. 5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China; (L.H.); (Y.N.)
| | - Yiqiang Ni
- No. 5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China; (L.H.); (Y.N.)
| | - Genzhuang Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Dongshuai Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Wang Lin
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Qiliang Wang
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
- Yibin Research Institute, Jilin University, Yibin 644000, China
| | - Liuan Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
- Yibin Research Institute, Jilin University, Yibin 644000, China
| | - Haibin Yang
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| |
Collapse
|
3
|
Gao H, He Y, Liu J. New Aptamer/MoS 2/Ni-Fe LDH Photoelectric Sensor for Bisphenol A Determination. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:78. [PMID: 35010028 PMCID: PMC8746877 DOI: 10.3390/nano12010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Here, a new type of PEC aptamer sensor for bisphenol A (BPA) detection was developed, in which visible-light active MoS2/Ni-Fe LDH (layered double hydroxide) heterostructure and aptamer were used as photosensitive materials and biometric elements, respectively. The combination of an appropriate amount of MoS2 and Ni-Fe LDH enhances the photocurrent response, thereby promoting the construction of the PEC sensor. Therefore, we used a simple in situ growth method to fabricate a MoS2/Ni-Fe LDH sensor to detect the BPA content. The aptasensor based on aptamer/MoS2/Ni-Fe LDH displayed a linear range toward a BPA of 0.05-10 to 50-40,000 ng L-1, and it has excellent stability, selectivity and reproducibility. In addition, the proposed aptamer sensor is effective in evaluating real water samples, indicating that it has great potential for detecting BPA in real samples.
Collapse
|
4
|
Yang ZZ, Zhang C, Zeng GM, Tan XF, Huang DL, Zhou JW, Fang QZ, Yang KH, Wang H, Wei J, Nie K. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Gao R, Zhu J, Yan D. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review. NANOSCALE 2021; 13:13593-13603. [PMID: 34477633 DOI: 10.1039/d1nr03409j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The conversion of solar energy into usable chemical fuels, such as hydrogen gas, via photo(electro)chemical water splitting is a promising approach for creating a carbon neutral energy ecosystem. The deployment of this technology industrially and at scale requires photoelectrodes that are highly active, cost-effective, and stable. To create these new photoelectrodes, transition metal-based electrocatalysts have been proposed as potential cocatalysts for improving the performance of water splitting catalysts. Layered double hydroxides (LDHs) are a class of clays with brucite like layers and intercalated anions. Transition metal-based LDHs are increasingly popular in the field of photo(electro)chemical water splitting due to their unique physicochemical properties. This article aims to review recent advances in transition metal-based LDHs for photo(electro)chemical water splitting. This article provides a brief overview of the research in a format approachable for the general scientific audience. Specifically, this review examines the following areas: (i) routes for synthesis of transition metal-based LDHs, (ii) recent developments in transition metal-based LDHs for photo(electro)chemical water splitting, and (iii) an overview of the structure-property relationships therein.
Collapse
Affiliation(s)
- Rui Gao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | |
Collapse
|
6
|
Wang T, Fan X, Gao B, Jiang C, Li Y, Li P, Zhang S, Huang X, He J. Self‐Assembled Urchin‐Like CuWO
4
/WO
3
Heterojunction Nanoarrays as Photoanodes for Photoelectrochemical Water Splitting. ChemElectroChem 2020. [DOI: 10.1002/celc.202001154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tao Wang
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Xiaoli Fan
- School of Materials Science and Engineering Nanjing Institute of Technology 211167 Nanjing PR China
| | - Bin Gao
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Cheng Jiang
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yang Li
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Peng Li
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Songtao Zhang
- Testing Center Yangzhou University Yangzhou 225009 PR China
| | - Xianli Huang
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Jianping He
- College of Materials Science and Technology Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| |
Collapse
|
7
|
Qin J, Barrio J, Peng G, Tzadikov J, Abisdris L, Volokh M, Shalom M. Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nat Commun 2020; 11:4701. [PMID: 32943629 PMCID: PMC7499157 DOI: 10.1038/s41467-020-18535-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022] Open
Abstract
A general synthesis of carbon nitride (CN) films with extended optical absorption, excellent charge separation under illumination, and outstanding performance as a photoanode in water-splitting photoelectrochemical cells is reported. To this end, we introduced a universal method to rapidly grow CN monomers directly from a hot saturated solution on various substrates. Upon calcination, a highly uniform carbon nitride layer with tuned structural and photophysical properties and in intimate contact with the substrate is obtained. Detailed photoelectrochemical and structural studies reveal good photoresponse up to 600 nm, excellent hole extraction efficiency (up to 62%) and strong adhesion of the CN layer to the substrate. The best CN photoanode demonstrates a benchmark-setting photocurrent density of 353 µA cm−2 (51% faradaic efficiency for oxygen), and external quantum yield value above 12% at 450 nm at 1.23 V versus RHE in an alkaline solution, as well as low onset potential and good stability. Photoelectrochemical cells (PEC) can convert sunlight and water directly to a hydrogen fuel. Here a robust metal-free carbon nitride-based layer is used as an efficient photoanode for water-splitting PEC.
Collapse
Affiliation(s)
- Jiani Qin
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jesús Barrio
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Guiming Peng
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jonathan Tzadikov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liel Abisdris
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
8
|
Lim Y, Lee DK, Kim SM, Park W, Cho SY, Sim U. Low Dimensional Carbon-Based Catalysts for Efficient Photocatalytic and Photo/Electrochemical Water Splitting Reactions. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E114. [PMID: 31881793 PMCID: PMC6982202 DOI: 10.3390/ma13010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023]
Abstract
A universal increase in energy consumption and the dependency on fossil fuels have resulted in increasing severity of global warming, thus necessitating the search of new and environment-friendly energy sources. Hydrogen is as one of the energy sources that can resolve the abovementioned problems. Water splitting promotes ecofriendly hydrogen production without the formation of any greenhouse gas. The most common process for hydrogen production is electrolysis, wherein water molecules are separated into hydrogen and oxygen through electrochemical reactions. Solar-energy-induced chemical reactions, including photocatalysis and photoelectrochemistry, have gained considerable attention because of the simplicity of their procedures and use of solar radiation as the energy source. To improve performance of water splitting reactions, the use of catalysts has been widely investigated. For example, the novel-metal catalysts possessing extremely high catalytic properties for various reactions have been considered. However, due to the rarity and high costs of the novel-metal materials, the catalysts were considered unsuitable for universal use. Although other transition-metal-based materials have also been investigated, carbon-based materials, which are obtained from one of the most common elements on Earth, have potential as low-cost, nontoxic, high-performance catalysts for both photo and electrochemical reactions. Because abundancy, simplicity of synthesis routes, and excellent performance are the important factors for catalysts, easy optimization and many variations are possible in carbon-materials, making them more attractive. In particular, low-dimensional carbon materials, such as graphene and graphitic carbon nitride, exhibit excellent performance because of their unique electrical, mechanical, and catalytic properties. In this mini-review, we will discuss the performance of low-dimensional carbon-based materials for water splitting reactions.
Collapse
Affiliation(s)
- Yoongu Lim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Korea; (Y.L.); (D.-K.L.)
| | - Dong-Kyu Lee
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Korea; (Y.L.); (D.-K.L.)
| | - Seong Min Kim
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Woosung Park
- Division of Mechanical Systems Engineering, Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
| | - Sung Yong Cho
- Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Uk Sim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Korea; (Y.L.); (D.-K.L.)
| |
Collapse
|