1
|
Zhou W, Wang Z, Long J, Deng Z, Long Y, Chang G, Liu Y. Enhancing glycerol hydrogenolysis to n-propanol: Key role of Lewis acid in HZSM-5 supported Cu catalyst. BIORESOURCE TECHNOLOGY 2025; 417:131879. [PMID: 39592074 DOI: 10.1016/j.biortech.2024.131879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/19/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Glycerol hydrogenolysis to n-propanol (1-PO) represents an approach to realize synthesizing sustainable fuels from biodiesel byproduct. However, it suffers from harsh reaction conditions and noble catalysts. Herein, a simple Cu20/HZSM-5(Si/Al = 120) was fabricated, demonstrating high efficiency under mild conditions for non-noble metal catalysts, achieving a 71.08 % yield of 1-PO and 80.73 % mono-alcohols. The catalyst, characterized by a high density of Lewis acid sites from both CuO and HZSM-5 and a favorable Cu2+/Cu0/1+ ratio, significantly enhances the hydrogenolysis process. Furthermore, it demonstrated superior selectivity for the removal of the secondary -OH group from 1,2-propanediol (1,2-PDO), which is crucial for high yields of 1-PO. This Cu20/HZ-5(120) catalyst showed significant potential for the efficient and selective conversion of glycerol to 1-PO, presenting a promising approach for the sustainable production of value-added chemicals from glycerol.
Collapse
Affiliation(s)
- Wenguang Zhou
- School of Resources & Environment and Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330047, PR China
| | - Zhen Wang
- School of Resources & Environment and Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330047, PR China
| | - Jirong Long
- School of Resources & Environment and Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330047, PR China
| | - Ziqi Deng
- School of Resources & Environment and Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330047, PR China
| | - Yiwei Long
- School of Resources & Environment and Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330047, PR China
| | - Guozhang Chang
- Institute of Yellow River Delta Earth Surface Process and Ecological Integrity, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yong Liu
- School of Resources & Environment and Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330047, PR China.
| |
Collapse
|
2
|
Zhong Z, Ye Y, Zhang Y, Du W, Hou Z. Alkali-Free Oxidation of 1,2-Propanediol to Lactic Acid over Intermetallic Cu 1Pt Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25882-25891. [PMID: 39588808 DOI: 10.1021/acs.langmuir.4c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Polylactic acid (PLA) plastics are the most popular biodegradable and biocompatible materials; however, their monomer, lactic acid (LA), is currently produced via an inefficient fermentation process. Herein, activated carbon-supported Pt-Cu intermetallic compounds were synthesized and utilized in the selective oxidation of 1,2-propanediol (1,2-PDO) toward LA without the participation of homogeneous alkali or a basic support. It was found that rhombohedral intermetallic Cu1Pt compounds exhibited excellent performance and the calculated turnover frequency of each surface Pt atom reached 10 049 h-1. The yield of free LA reached 64.6% with a complete conversion of 1,2-PDO at 100 °C within 2 h. Diverse characterization and DFT calculations revealed that Pt-Cu intermetallic compounds were active for the adsorption and/or activation of molecular oxygen and 1,2-PDO. Raman analysis of adsorbed 1,2-PDO further disclosed that 1,2-PDO contacted with rhombohedral intermetallic Cu1Pt compounds strongly, and then the oxidation of the terminal hydroxyl group was performed preferentially, which promoted the formation of LA.
Collapse
Affiliation(s)
- Zixin Zhong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Yingdan Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Yibin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Weichen Du
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd., Hangzhou 311200, China
| | - Zhaoyin Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd., Hangzhou 311200, China
| |
Collapse
|
3
|
Herrera-Beurnio MC, López-Tenllado FJ, Ariza-Pérez A, Hidalgo-Carrillo J, Estevez R, Martín-Gómez J, Urbano FJ, Marinas A. Valorization of Selected Biomass-Derived Molecules on Olea europaea Leaves-Biotemplated TiO 2-g-C 3N 4 Photocatalysts. Biomimetics (Basel) 2024; 9:726. [PMID: 39727730 DOI: 10.3390/biomimetics9120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO2 semiconductors were synthesized using Olea europaea leaves as templates. Then, g-C3N4 was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol. In glycerol photoreforming, the presence of Pt (superficial or dopant) enhanced hydrogen production, being Pt@AOLCN (a heterojunction containing biotemplated TiO2, g-C3N4, and Pt) the system that exhibited the highest efficiency (3053.4 µmol·gcat-1·h-1). For photoacetalization, while Pt reduced cinnamaldehyde conversion, it improved selectivity when incorporated on TiO2. Notably, carbon nitride (CN) exhibited the highest yield after 16 h of testing. The study emphasizes the importance of tailoring catalyst selection to specific reactions, as efficiency is closely tied to the structural and chemical properties of the materials. These findings contribute to the development of efficient photocatalysts for sustainable biomass valorization processes.
Collapse
Affiliation(s)
- M Carmen Herrera-Beurnio
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain
| | - Francisco J López-Tenllado
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain
| | - Alejandro Ariza-Pérez
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain
| | - Jesús Hidalgo-Carrillo
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain
| | - Rafael Estevez
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain
| | - Juan Martín-Gómez
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain
| | - Francisco J Urbano
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain
| | - Alberto Marinas
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain
| |
Collapse
|
4
|
Denala D, Busayaporn W, Klysubun W, Jitkarnka S. In-depth analysis of embedded-type structures of Ni xMg 4-xAl LDO-composited catalysts and the impacts on glycerol conversion under a base- and H 2-free condition. Heliyon 2024; 10:e30325. [PMID: 38737254 PMCID: PMC11088269 DOI: 10.1016/j.heliyon.2024.e30325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Core-shell composite catalysts composing of AgO@SnO2/ZSM-5 embedded by NixMg4-xAlO LDOs with various Ni/Mg ratios were characterized and tested for the activity on the conversion of glycerol to valuable chemicals under a base-free and external H2-free condition. As a result, the catalytic performance of an embedded composite was found greater than that of its individual constituents, owing to the synergy between a NixMg4-xAlO lodge and embedded AgO@SnO2/ZSM-5. The highest yield of 1,2-propanediol and lactic acid was achieved at the Ni/Mg ratio of 0.2/3.8. NixMg4-xAlO lodges were found to simultaneously drive glycerol dehydration to acetol and glycerol reforming, driven by Ni sites, forming in-situ H2 that enhances 1,2-propanediol formation whereas the AgO@SnO2/ZSM-5 clusters governed acetol oxidation and Cannizzaro reaction that led to the formation of lactic acid. At a high Ni/Mg ratio, the NixMg4-xAlO lodges completely covered AgO@SnO2/ZSM-5 clusters entirely, resulting in the suppression of lactic acid yield due to over-oxidation.
Collapse
Affiliation(s)
- Darine Denala
- The Petroleum and Petrochemical College, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wutthikrai Busayaporn
- Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Sirirat Jitkarnka
- The Petroleum and Petrochemical College, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Nimbalkar AS, Oh KR, Han SJ, Yun GN, Cha SH, Upare PP, Awad A, Hwang DW, Hwang YK. Nickel-Tin Nanoalloy Supported ZnO Catalysts from Mixed-Metal Zeolitic Imidazolate Frameworks for Selective Conversion of Glycerol to 1,2-Propanediol. CHEMSUSCHEM 2024; 17:e202301315. [PMID: 37932870 DOI: 10.1002/cssc.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
The successful synthesis of finely tuned Ni1.5 Sn nanoalloy phases containing ZnO catalyst with a small particle size (6.7 nm) from a mixed-metal zeolitic imidazolate framework (MM-ZIF) is investigated. The catalyst was evaluated for the efficient production of 1,2-propanediol (1,2-PDO) from crude glycerol and comprehensively characterized using several analytical techniques. Among the catalysts, 3Ni1Sn/ZnO (Ni/Sn=3/1) showed the best catalytic performance and produced the highest yield (94.2 %) of 1,2-PDO at ~100 % conversion of glycerol; it also showed low apparent activation energy (15.4 kJ/mol) and excellent stability. The results demonstrated that the synergy between Ni-Sn alloy, finely dispersed Ni metallic sites, and the Lewis acidity of SnOx species-loaded ZnO played a pivotal role in the high activity and selectivity of the catalyst. The confirmation of acetol intermediate and theoretical calculations verify the Ni1.5 Sn phases provide the least energetic pathway for the formation of 1,2-PDO selectively. The reusability of solvent for successive ZIF synthesis, along with the excellent recyclability of the ZIF-derived catalyst, enables an overall sustainable process. We believe that the present synthetic protocol that uses MM-ZIF for the conversion of various biomass-derived platform chemicals into valuable products can be applied to various nanoalloy preparations.
Collapse
Affiliation(s)
- Ajaysing S Nimbalkar
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Kyung-Ryul Oh
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, United States
| | - Seung Ju Han
- C1 Gas and Carbon Convergent Research Center, Korea Research Institute for Chemical Technology, Dajeon, 34114, South Korea
| | - Gwang-Nam Yun
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Seung Hyeok Cha
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | | | - Ali Awad
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Dong Won Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Young Kyu Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| |
Collapse
|
6
|
Gatti MN, Perez FM, Santori GF, Nichio NN, Pompeo F. Heterogeneous Catalysts for Glycerol Biorefineries: Hydrogenolysis to 1,2-Propylene Glycol. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093551. [PMID: 37176434 PMCID: PMC10180530 DOI: 10.3390/ma16093551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Research on the use of biomass resources for the generation of energy and chemical compounds is of great interest worldwide. The development and growth of the biodiesel industry has led to a parallel market for the supply of glycerol, its main by-product. Its wide availability and relatively low cost as a raw material make glycerol a basic component for obtaining various chemical products and allows for the development of a biorefinery around biodiesel plants, through the technological integration of different production processes. This work proposes a review of one of the reactions of interest in the biorefinery environment: the hydrogenolysis of glycerol to 1,2-propylene glycol. The article reviews more than 300 references, covering literature from about 20 years, focusing on the heterogeneous catalysts used for the production of glycol. In this sense, from about 175 catalysts, between bulk and supported ones, were revised and discussed critically, based on noble metals, such as Ru, Pt, Pd, and non-noble metals as Cu, Ni, Co, both in liquid (2-10 MPa, 120-260 °C) and vapor phase (0.1 MPa, 200-300 °C). Then, the effect of the main operational and decision variables, such as temperature, pressure, catalyst/glycerol mass ratio, space velocity, and H2 flow, are discussed, depending on the reactors employed. Finally, the formulation of several kinetic models and stability studies are presented, discussing the main deactivation mechanisms of the catalytic systems such as coking, leaching, and sintering, and the presence of impurities in the glycerol feed. It is expected that this work will serve as a tool for the development of more efficient catalytic materials and processes towards the future projection of glycerol biorefineries.
Collapse
Affiliation(s)
- Martín N Gatti
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Federico M Perez
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Gerardo F Santori
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Nora N Nichio
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Francisco Pompeo
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| |
Collapse
|
7
|
Oberhauser W. Aerobic oxidation of diols to acetic acid in water. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
|
8
|
Luo Z, Zhu Z, Xiao R, Chu D. Selective Production of 1,2-Propanediol or 1,3-Propanediol from Glycerol Hydrogenolysis over Transition Metal Doped Pt/TiO 2. Chem Asian J 2023; 18:e202201046. [PMID: 36546829 DOI: 10.1002/asia.202201046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Selective hydrogenolysis of biomass-derived glycerol to propanediol is important for producing high value-added chemicals from renewable resources but faces a huge challenge. Here we report a transition metal doped Pt/TiO2 catalyst with incorporated Cr, Mo, or W oxides, which exhibits the selective formation of 1,2-propanediol or 1,3-propanediol with a yield from 51.2% to 82.5% toward glycerol hydrogenolysis. In situ experimental studies verify that the surrounding CrOx decreases the hydrogenating ability of Pt, leading to the formation of 1,2-propanediol, while the MoOx or WOx brings the Brønsted acid, giving 1,3-propanediol. This modification based on the catalyst compositions alters the reaction pathway with a different adsorption and bond scission mechanism, which can be extended to other sustainable catalytic systems.
Collapse
Affiliation(s)
- Zhicheng Luo
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, 210096, Nanjing, P. R. China
| | - Zhiguo Zhu
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, P. R. China
| | - Rui Xiao
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, 210096, Nanjing, P. R. China
| | - Dawang Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, P. R. China
| |
Collapse
|
9
|
Xu J, Zhou K, Qin L, Tan Z, Huang S, Duan P, Kang S. One-Pot Tandem Alcoholysis-Hydrogenation of Polylactic Acid to 1,2-Propanediol. Polymers (Basel) 2023; 15:polym15020413. [PMID: 36679291 PMCID: PMC9864359 DOI: 10.3390/polym15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The chemical recycling of end-of-life polylactic acid (PLA) plays roles in mitigating environmental pressure and developing circular economy. In this regard, one-pot tandem alcoholysis and hydrogenation of PLA was carried out to produce 1,2-propanediol, which is a bulk chemical in polymer chemistry. In more detail, the commercially available Raney Co was employed as the catalyst, and transformation was conducted in ethanol, which acted as nucleophilic reagent and solvent. Single-factor analysis and Box-Behnken design were used to optimize the reaction conditions. Under the optimized condition, three kinds of PLA materials were subjected to degradation. Additionally, 74.8 ± 5.5%, 76.5 ± 6.2%, and 71.4 ± 5.7% of 1,2-propanediol was yielded from PLA powder, particle, and straws, respectively, which provided a recycle protocol to convert polylactic acid waste into value-added chemicals.
Collapse
Affiliation(s)
- Jialin Xu
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Kuo Zhou
- Department of Chemistry, Lishui University, Lishui 323000, China
| | - Linlin Qin
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Zaiming Tan
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Shijing Huang
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shimin Kang
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
- Correspondence:
| |
Collapse
|
10
|
Luo S, Li J, Ran J, Yangcheng R, Cui Y, Zhang Y, Wang J. Significant promotion of MgO in bifunctional Pt-WO -MgO catalysts for the chemoselective conversion of glucose to lower polyols. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
Frolich K, Kocík J, Mück J, Kolena J, Skuhrovcová L. The role of Zn in the Cu-Zn-Al mixed oxide catalyst and its effect on glycerol hydrogenolysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Liu B, Nakagawa Y, Li C, Yabushita M, Tomishige K. Selective C–O Hydrogenolysis of Terminal C–OH Bond in 1,2-Diols over Rutile-Titania-Supported Iridium-Iron Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Ben Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Congcong Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Singh R, Biswas P, Jha PK. Study of the Glycerol Hydrogenolysis Reaction on Cu, Cu-Zn, and Cu-ZnO Clusters. ACS OMEGA 2022; 7:33629-33636. [PMID: 36157784 PMCID: PMC9494640 DOI: 10.1021/acsomega.2c05342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Quantum chemistry calculations have been performed to access the efficacy of Cu-based catalysts in various mechanistic steps of the glycerol hydrogenolysis reaction. Calculations are first performed for reactants in the gas phase (noncatalyzed system) and reactants in the gas phase with a 3-atom Cu cluster (catalyzed system). We demonstrate that the glycerol to ethylene glycol conversion is preferred in the noncatalyzed system but glycerol conversion to 1,2-propanediol via the 2-acetol intermediate is preferred in the catalyzed system. We next analyze the adsorption energies of the reactant and product species involved in the glycerol to 1,2-PDO reaction on an 8-atom Cu cluster and Cu cluster doped with a Zn atom or a ZnO molecule. Finally, we study the effects of Zn or ZnO doping on the activation barriers of the two steps of the glycerol to 1,2-PDO reaction.
Collapse
Affiliation(s)
- Ram Singh
- Department of Chemical Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prakash Biswas
- Department of Chemical Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prateek K. Jha
- Department of Chemical Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
14
|
Kashif M, Thangarasu S, Oh TH, Biswas P, Kang D. Vapor-phase hydrogenolysis of glycerol to value-added 1,2-propanediol over copper-nickel bimetallic catalysts supported on activated carbon. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Production of Propanediols through In Situ Glycerol Hydrogenolysis via Aqueous Phase Reforming: A Review. Catalysts 2022. [DOI: 10.3390/catal12090945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Production of 1,2-propanediol and 1,3-propanediol are identified as methods to reduce glycerol oversupply. Hence, glycerol hydrogenolysis is identified as a thermochemical conversion substitute; however, it requires an expensive, high-pressure pure hydrogen supply. Studies have been performed on other potential thermochemical conversion processes whereby aqueous phase reforming has been identified as an excellent substitute for the conversion process due to its low temperature requirement and high H2 yields, factors which permit the process of in-situ glycerol hydrogenolysis which requires no external H2 supply. Hence, this manuscript emphasizes delving into the possibilities of this concept to produce 1,2-propanediol and 1,3-propanediol without “breaking the bank” with expenses. Various heterogenous catalysts of aqueous phase reforming (APR) and glycerol hydrogenolysis were identified, whereby the combination of a noble metal, support, and dopant with a good amount of Brønsted acid sites are identified as the key factors to ensure a high yield of 1,3-propanediol. However, for 1,2-propanediol, a Cu-based catalyst with decent basic support is observed to be the key for good yield and selectivity of product. The findings have shown that it is possible to produce high yields of both 1,2-propanediol and 1,3-propanediol via aqueous phase reforming, specifically 1,2-propanediol, for which some of the findings achieve better selectivity compared to direct glycerol hydrogenolysis to 1,2-propanediol. This is not the case for 1,3-propanediol, for which further studies need to be conducted to evaluate its feasibility.
Collapse
|
16
|
Abstract
Utilization of biofuels generated from renewable sources has attracted broad attention due to their benefits such as reducing consumption of fossil fuels, sustainability, and consequently prevention of global warming. The production of biodiesel causes a huge amount of by-product, crude glycerol, to accumulate. Glycerol, because of its unique structure having three hydroxyl groups, can be converted to a variety of industrially valuable products. In recent decades, increasing studies have been carried out on different catalytic pathways to selectively produce a wide range of glycerol derivatives. In the current review, the main routes including carboxylation, oxidation, etherification, hydrogenolysis, esterification, and dehydration to convert glycerol to value-added products are investigated. In order to achieve more glycerol conversion and higher desired product selectivity, acquisition of knowledge on the catalysts, the type of acidic or basic, the supports, and studying various reaction pathways and operating parameters are necessary. This review attempts to summarize the knowledge of catalytic reactions and mechanisms leading to value-added derivatives of glycerol. Additionally, the application of main products from glycerol are discussed. In addition, an overview on the market of glycerol, its properties, applications, and prospects is presented.
Collapse
|
17
|
High zirconium loads in Zr-SBA-15 mesoporous materials prepared by direct-synthesis and pH-adjusting approaches. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhao M, Yan H, Lu R, Liu Y, Zhou X, Chen X, Feng X, Duan H, Yang C. Insight into the Selective Oxidation Mechanism of Glycerol to 1,3‐Dihydroxyacetone over AuCu‐ZnO Interface. AIChE J 2022. [DOI: 10.1002/aic.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingyue Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Hao Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Ruilong Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Yibin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Xin Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Xiaobo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | | | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| |
Collapse
|
19
|
Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals. Catalysts 2022. [DOI: 10.3390/catal12070767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes in recent decades (as a result of biodiesel production as a byproduct) as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors and other useful chemicals, etc. Biodiesel has presented another challenge in the considerable increase in its byproduct (glycerol). This review provides a recent update on the transformation of glycerol with an exclusive focus on the various catalysts’ performance in designing reaction operation conditions. The different products observed and cataloged in this review involved hydrogen, acetol, acrolein, ethylene glycol, and propylene glycol (1,3-propanediol and 1,2-propanediol) from reforming and dehydration and hydrogenolysis reactions of glycerol conversions. The future prospects and critical challenges are finally presented.
Collapse
|
20
|
Abstract
The growing global demand for renewable energy sources can be reached using biofuels such as biodiesel, for example. The most used route to produce biodiesel is the transesterification reaction of oils or fats with short-chain alcohols, generating fatty acid esters (biodiesel) and a very important by-product, glycerol (Gly). Gly is widely used in different sectors of the industry, and in order to add value to this by-product, heterogeneous catalysis becomes a relevant tool, whether to transform glycerol into other chemical products of interest or even use it in the production of catalysts. Among the several studies found in the literature, the use of low-cost materials and/or wastes from the most diverse activities to prepare active catalytic materials for the transformation of Gly has been increasingly reported due to its valuable advantages, especially related to the cost of raw materials and environmental aspects. Thus, this brief review article presents the relationship between catalysis, low-cost materials, waste, and glycerol, through different studies that show glycerol being transformed through reactions catalyzed by materials produced from low-cost sources/waste or with the glycerol itself used as a catalyst.
Collapse
|
21
|
Fan M, Zhang X, Shao Y, Sun K, Zhang S, Zhang L, Li Q, Hu X. Influence of solvent on aggregation of metallic Cu in Cu/MgO during hydrogenation in liquid phase. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
CuAl2O4–CuO–Al2O3 catalysts prepared by flame-spray pyrolysis for glycerol hydrogenolysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Shen C, Zhao X, He C, Zuo Z. Developmental toxicity and neurotoxicity assessment of R-, S-, and RS-propylene glycol enantiomers in zebrafish (Danio rerio) larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30537-30547. [PMID: 35000155 DOI: 10.1007/s11356-021-17538-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Propylene glycol (PG) is widely used in the foods, pharmaceuticals, oil industry, animal feed, cosmetics and other industries. Because of the existence of a chiral carbon center, PG forms R (Rectus)- and S (Sinister)-enantiomers. Currently, the toxicity study of its R-, S-enantiomers is still very scarce. In this study, we have assessed the developmental toxicity and neurotoxicity of the R-, S-, and RS-PG enantiomers in zebrafish larvae. We found that exposure to R-, S-, and RS-PG enantiomers did not significantly affect the basic developmental endpoints of embryos or larvae (i.e., embryonic movement, hatching, mortality, malformation, heartbeat, body length), indicating that R-, S-, and RS-PG exposures did not exhibit the basic developmental toxicity in zebrafish larvae. The toxicity of three enantiomers was lower than that of ethanol, and there was no significant difference between them. However, R-, S-, and RS-PG exposures with high doses could significantly change the eye diameter and locomotor activity of larval zebrafish, indicating that R-, S-, and RS-PG enantiomers of high doses could potentially exhibit the neurotoxicity and ocular developmental toxicity in zebrafish larvae. Therefore, the potential neurotoxicity and ocular developmental toxicity of R-, S-, and RS-PG enantiomers for infants and toddlers should be considered.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Xijing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
24
|
Beine AK, Wang X, Vennewald M, Schmidt RUS, Glotzbach C, Palkovits R, Hausoul P. On the effect of alkaline earth metal cations in the hydrogenolysis of glycerol over Pt/C – an experimental and theoretical study. ChemCatChem 2022. [DOI: 10.1002/cctc.202101940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Katharina Beine
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion solid molecular catalysts Stiftstr. 36-38 45470 Mülheim an der Ruhr GERMANY
| | - Xinde Wang
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen ITMC GERMANY
| | - Maurice Vennewald
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen ITMC GERMANY
| | | | | | - Regina Palkovits
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen ITMC GERMANY
| | - Peter Hausoul
- RWTH AACHEN ITMC Worringerweg 2 52074 Aachen GERMANY
| |
Collapse
|
25
|
Bellè A, Kusada K, Kitagawa H, Perosa A, Castoldi L, Polidoro D, Selva M. Carbon-supported WOx–Ru-based catalysts for the selective hydrogenolysis of glycerol to 1,2-propanediol. Catal Sci Technol 2022. [DOI: 10.1039/d1cy00979f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A quantitative and highly selective hydrogenolysis of glycerol to 1,2-propanediol was achieved under mild conditions over bifunctional Ru/WOx catalysts.
Collapse
Affiliation(s)
- Alessandro Bellè
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
| | - Kohei Kusada
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
- Graduate School of Science, Kyoto University Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Kitagawa
- Graduate School of Science, Kyoto University Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Alvise Perosa
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
| | - Lidia Castoldi
- Department of Energy, Milan Polytechnic, Campus Bovisa – Via Lambruschini, 4a – 20156 Milano, Italy
| | - Daniele Polidoro
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
| | - Maurizio Selva
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 155 – Venezia Mestre, Italy
| |
Collapse
|
26
|
Fu C, She Q, Tesser R, Zhou CH. Cleaner One-Pot Transformation of Glycerol to Acrylic Acid and 1,2-Propanediol over Cu2O/Montmorillonite Bifunctional Catalysts Without External Oxygen and Hydrogen. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient conversion of glycerol, an inevitable by-product of the transesterification process producing biodiesel, to acrylic acid (AA) and 1,2-propanediol (1,2-PDO) via a cleaner process is much attractive and challenging. In...
Collapse
|
27
|
Xia G, Zhou Z, Qin J, He B, Liu Y, Sun P, Wu W. Synergistic effect of Ni-NbW with binuclear acidity for the hydrogenolysis of Glycerol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Catalytic Conversion of Glycerol into Hydrogen and Value-Added Chemicals: Recent Research Advances. Catalysts 2021. [DOI: 10.3390/catal11121455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent decades, the use of biomass as alternative resources to produce renewable and sustainable biofuels such as biodiesel has gained attention given the situation of the progressive exhaustion of easily accessible fossil fuels, increasing environmental concerns, and a dramatically growing global population. The conventional transesterification of edible, nonedible, or waste cooking oils to produce biodiesel is always accompanied by the formation of glycerol as the by-product. Undeniably, it is essential to economically use this by-product to produce a range of valuable fuels and chemicals to ensure the sustainability of the transesterification process. Therefore, recently, glycerol has been used as a feedstock for the production of value-added H2 and chemicals. In this review, the recent advances in the catalytic conversion of glycerol to H2 and high-value chemicals are thoroughly discussed. Specifically, the activity, stability, and recyclability of the catalysts used in the steam reforming of glycerol for H2 production are covered. In addition, the behavior and performance of heterogeneous catalysts in terms of the roles of active metal and support toward the formation of acrolein, lactic acid, 1,3-propanediol, and 1,2-propanediol from glycerol are reviewed. Recommendations for future research and main conclusions are provided. Overall, this review offers guidance and directions for the sufficient and economical utilization of glycerol to generate fuels and high value chemicals, which will ultimately benefit industry, environment, and economy.
Collapse
|
29
|
Tao YM, Bu CY, Zou LH, Hu YL, Zheng ZJ, Ouyang J. A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:216. [PMID: 34794503 PMCID: PMC8600716 DOI: 10.1186/s13068-021-02067-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
1,2-Propanediol is an important building block as a component used in the manufacture of unsaturated polyester resin, antifreeze, biofuel, nonionic detergent, etc. Commercial production of 1,2-propanediol through microbial biosynthesis is limited by low efficiency, and chemical production of 1,2-propanediol requires petrochemically derived routes involving wasteful power consumption and high pollution emissions. With the development of various strategies based on metabolic engineering, a series of obstacles are expected to be overcome. This review provides an extensive overview of the progress in the microbial production of 1,2-propanediol, particularly the different micro-organisms used for 1,2-propanediol biosynthesis and microbial production pathways. In addition, outstanding challenges associated with microbial biosynthesis and feasible metabolic engineering strategies, as well as perspectives on the future microbial production of 1,2-propanediol, are discussed.
Collapse
Affiliation(s)
- Yuan-Ming Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chong-Yang Bu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li-Hua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yue-Li Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhao-Juan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
30
|
Aqueous phase hydrogenolysis of renewable glycerol to 1, 2-propanediol over bimetallic highly stable and efficient Ni-Cu/Al2O3 catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
1,2—Propanediol Production from Glycerol Derived from Biodiesel’s Production: Technical and Economic Study. ENERGIES 2021. [DOI: 10.3390/en14165081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For every nine tons of produced biodiesel, there is another ton of glycerol as a byproduct. Therefore, glycerol prices dropped significantly worldwide in recent years; the more significant biodiesel production is, the more glycerol exists as a byproduct. glycerol prices also impact the biodiesel manufacturing business, as it could be sold according to its refinement grade. The primary objective of this work was to evaluate the economic potential of the production of 1,2-propanediol derived from the biodiesel produced in Colombia. A plant to produce 1,2-propanediol via catalytic hydrogenation of glycerol in a trickle-bed reactor was designed. The plant comprised a reaction scheme where non-converted excess hydrogen was recycled, and the heat generated in the reactor was recovered. The reactor effluent was sent to a separation train where 98% m/m purity 1,2-propanediol was attained. Capital and operational costs were estimated from the process simulation. The net present value (NPV) and the modified internal return rate (MIRR) of the plant were used to assess the viability of the process. Their sensitivity to key input variables was evaluated to find the viability limits of the project. The economic potential of the 1,2-propanediol was calculated in USD 1.2/kg; for the base case, the NPV and the MIRR were USD 54.805 million and 22.56%, respectively, showing that, for moderate variations in products and raw material prices, the process is economically viable.
Collapse
|
32
|
Azri N, Irmawati R, Nda-Umar UI, Saiman MI, Taufiq-Yap YH. Promotional effect of transition metals (Cu, Ni, Co, Fe, Zn)–supported on dolomite for hydrogenolysis of glycerol into 1,2-propanediol. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Selection, Sizing, and Modeling of a Trickle Bed Reactor to Produce 1,2 Propanediol from Biodiesel Glycerol Residue. Processes (Basel) 2021. [DOI: 10.3390/pr9030479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Propylene glycol, also known as 1,2 propanediol, is one of the most important chemicals in the industry. It is a water-soluble liquid, considered by the U.S. Food and Drug Administration as safe to manufacture consumer products, including foodstuffs, medicines, and cosmetics. This chemical has essential properties, such as solvent, moisturizer, or antifreeze, in addition to a low level of toxicity. This paper aims to present the selection, simulation, and dimensioning of a trickle bed reactor at a laboratory scale. The sizing was validated with other authors. Two predictive models have been considered for reactor modeling, intrinsic kinetics and coupled intrinsic kinetics, along with mass transfer equations and the wetting of the catalyst particles. The model was implemented using Aspen Custom Modeler® (20 Crosby Dr. Bedford, MA 01730, EE. UU.) to study the reactor behavior in terms of conversion. The results show the profiles of different variables throughout the reactor and present higher glycerol conversion when mass transfer is added to the model.
Collapse
|
34
|
Sherbi M, Wesner A, Wisniewski VK, Bukowski A, Velichkova H, Fiedler B, Albert J. Superior CNT-supported bimetallic RuCu catalyst for the highly selective hydrogenolysis of glycerol to 1,2-propanediol. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01518d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface modification using Cu significantly improves the performance of Ru/MWCNT catalysts for the selective production of 1,2-PD up to (93.4%) from glycerol hydrogenolysis.
Collapse
Affiliation(s)
- Magdy Sherbi
- Universität Hamburg, Institut für Technische und Makromolekulare Chemie, Bundesstraße 45, 20146 Hamburg, Germany
| | - Anne Wesner
- Universität Hamburg, Institut für Technische und Makromolekulare Chemie, Bundesstraße 45, 20146 Hamburg, Germany
| | - Valea Kim Wisniewski
- Technische Universität Hamburg, Institut für Kunststoffe und Verbundwerkstoffe, Denickestraße 15, 21073 Hamburg, Germany
| | - Anna Bukowski
- Universität Hamburg, Institut für Technische und Makromolekulare Chemie, Bundesstraße 45, 20146 Hamburg, Germany
| | - Hristiana Velichkova
- Technische Universität Hamburg, Institut für Kunststoffe und Verbundwerkstoffe, Denickestraße 15, 21073 Hamburg, Germany
| | - Bodo Fiedler
- Technische Universität Hamburg, Institut für Kunststoffe und Verbundwerkstoffe, Denickestraße 15, 21073 Hamburg, Germany
| | - Jakob Albert
- Universität Hamburg, Institut für Technische und Makromolekulare Chemie, Bundesstraße 45, 20146 Hamburg, Germany
| |
Collapse
|
35
|
Hu T, Yu Z, Liu S, Liu B, Sun Z, Liu YY, Wang A, Wang Y. Citric acid modified Ni 3P as a catalyst for aqueous phase reforming and hydrogenolysis of glycerol to 1,2-PDO. NEW J CHEM 2021. [DOI: 10.1039/d1nj04179g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The addition of citric acid reduced the Ni3P particle size, leading to high performance in glycerol hydrogenolysis without external H2.
Collapse
Affiliation(s)
- Tianyu Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiquan Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shan Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bingyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
36
|
Zhang J, Li Z, He X, Cao Y, Wang C. Sulfate-functionalized metal–organic frameworks supporting Pd nanoparticles for the hydrogenolysis of glycerol to 1,2-propanediol. NEW J CHEM 2021. [DOI: 10.1039/d1nj03948b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Installing sulfate and Pd in MOF-808 achieved glycerol conversion to 1,2-PDO via selective hydrogenolysis.
Collapse
Affiliation(s)
- Jingzheng Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhe Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuefeng He
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yonghua Cao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
37
|
Seguel J, García R, Chimentão RJ, García-Fierro JL, Ghampson IT, Escalona N, Sepúlveda C. Thermal Modification Effect on Supported Cu-Based Activated Carbon Catalyst in Hydrogenolysis of Glycerol. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E603. [PMID: 32013085 PMCID: PMC7040595 DOI: 10.3390/ma13030603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Glycerol hydrogenolysis to 1,2-propanediol (1,2-PDO) was performed over activated carbon supported copper-based catalysts. The catalysts were prepared by impregnation using a pristine carbon support and thermally-treated carbon supports (450, 600, 750, and 1000 °C). The final hydrogen adsorption capacity, porous structure, and total acidity of the catalysts were found to be important descriptors to understand catalytic performance. Oxygen surface groups on the support controlled copper dispersion by modifying acidic and adsorption properties. The amount of oxygen species of thermally modified carbon supports was also found to be a function of its specific surface area. Carbon supports with high specific surface areas contained large amount of oxygen surface species, inducing homogeneous distribution of Cu species on the carbon support during impregnation. The oxygen surface groups likely acted as anchorage centers, whereby the more stable oxygen surface groups after the reduction treatment produced an increase in the interaction of the copper species with the carbon support, and determined catalytic performances.
Collapse
Affiliation(s)
- Juan Seguel
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160C, Chile; (J.S.); (R.G.); (R.J.C.)
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago 7810000, Chile;
| | - Rafael García
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160C, Chile; (J.S.); (R.G.); (R.J.C.)
| | - Ricardo José Chimentão
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160C, Chile; (J.S.); (R.G.); (R.J.C.)
| | | | - I. Tyrone Ghampson
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Néstor Escalona
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago 7810000, Chile;
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7810000, Chile
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4190000, Chile
| | - Catherine Sepúlveda
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160C, Chile; (J.S.); (R.G.); (R.J.C.)
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago 7810000, Chile;
| |
Collapse
|
38
|
AlMarzouq DS, Elnagdi NMH. Glycerol and Q-Tubes: Green Catalyst and Technique for Synthesis of Polyfunctionally Substituted Heteroaromatics and Anilines. Molecules 2019; 24:E1806. [PMID: 31083287 PMCID: PMC6540232 DOI: 10.3390/molecules24091806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
The role of glycerol as a green bio-based solvent, reactant, and/or a catalyst in the synthesis of novel heterocycles, under pressure, is studied. Synthesis of novel quinolines in good yields using a new modified Skraup synthesis, utilizing glycerol and pressure Q-tubes, is demonstrated. Novel aniline trimers are prepared using glycerol, and substituted anilines under pressure, in acidic medium and water. Glycerol was employed as a catalyst and a green solvent in the synthesis of novel pyridazines 13a-c. The mechanisms of the reactions and the catalytic effect of glycerol in protic and aprotic media are fully discussed. The structures of the synthesized compounds were determined via X-ray crystallography and spectroscopic methods.
Collapse
Affiliation(s)
- Douaa Salman AlMarzouq
- Department of Environmental Health, College of Health Sciences, the Public Authority of Applied Education and Training, P.O. Box 23167, Safat 13092, Kuwait.
| | - Noha M Hilmy Elnagdi
- Department of Organic Chemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, P.O. Box 12518, Cairo 11511, Egypt.
| |
Collapse
|
39
|
Pandey DK, Biswas P. Production of propylene glycol (1,2-propanediol) by the hydrogenolysis of glycerol in a fixed-bed downflow tubular reactor over a highly effective Cu–Zn bifunctional catalyst: effect of an acidic/basic support. NEW J CHEM 2019. [DOI: 10.1039/c9nj01180c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Very high glycerol conversion of 98.5% with ∼89% selectivity to propylene glycol was achieved at a very low pressure (0.72 MPa) over Cu–Zn/MgO catalyst for vapor phase hydrogenolysis of glycerol. Uniformly distributed partially reduced copper species (Cu2O, CuO, and Cu0) and higher basicity of the catalyst were the governing factors for higher selectivity to propylene glycol.
Collapse
Affiliation(s)
- Dinesh Kumar Pandey
- Department of Chemical Engineering
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Prakash Biswas
- Department of Chemical Engineering
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|