1
|
Wu W, Liu L, Zhu Y, Ni J, Lu J, Wang X, Ma L, Jiang Y. Zinc-Rutin Particles Ameliorate DSS-Induced Acute and Chronic Colitis via Anti-inflammatory and Antioxidant Protection of the Intestinal Epithelial Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12715-12729. [PMID: 37581468 DOI: 10.1021/acs.jafc.3c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In patients suffering from inflammatory bowel diseases (IBDs), the immune system is disrupted and the intestinal barrier function is compromised. Here, six zinc-flavonoid particles were produced by one-step reaction via changing flavonoids (myricetin, quercetin, and rutin) and solvent (water and ethanol), and then their cytocompatibility and ability to scavenge H2O2, free radicals, and LPS-induced ROS were compared. Zinc-rutin particles (W-ZnRT) composed of rutin (78.92 wt %), Na12[ZnPO4]12·12H2O (6.76 wt %), and crystal water were screened out because W-ZnRT exhibited 80.8 ± 15% cell viability against RAW264.7, could rapidly scavenge 78.1 ± 1% of H2O2 and 71.6 ± 2% of DPPH within 30 min, and reduced LPS-increased intracellular ROS to normal levels. In addition, the therapeutic effects of rutin and W-ZnRT were also compared in dextran sulfate sodium (DSS)-induced acute and chronic colitis in mice. W-ZnRT was superior to rutin alone in chronic colitis (n = 9), although they were equally effective in acute colitis (n = 7). Compared to rutin, 11 oral doses of W-ZnRT (40 mg kg-1) significantly improved intestinal permeability (p = 0.0299) and colon length (p = 0.0025), reduced intestinal proinflammatory factors (IL-6, IL-1β, and TNF-α), and upregulated tight junction proteins to maintain intestinal barrier function. Taken together, these results identified W-ZnRT as an efficient and safe therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Weisong Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Limei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yingwei Zhu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Jingbin Ni
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Jian Lu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Xiaoli Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
2
|
Nguyen DK, Dinh VP, Dang NT, Khan DT, Hung NT, Thi Tran NH. Effects of aging and hydrothermal treatment on the crystallization of ZSM-5 zeolite synthesis from bentonite. RSC Adv 2023; 13:20565-20574. [PMID: 37435373 PMCID: PMC10331798 DOI: 10.1039/d3ra02552g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
In the present study, Lam Dong bentonite clay was utilized as a novel resource to effectively synthesize microporous ZSM-5 zeolite (Si/Al ∼ 40). The effects of aging and hydrothermal treatment on the crystallization of ZSM-5 were carefully investigated. Herein, the aging temperatures of RT, 60, and 80 °C at time intervals of 12, 36, and 60 h, followed by high temperature hydrothermal treatment (170 °C) for 3-18 h were studied. Techniques such as XRD, SEM-EDX, FTIR, TGA-DSC, and BET-BJH were applied to characterize the synthesized ZSM-5. Bentonite clay showed great benefits as a natural resource for ZSM-5 synthesis and is cost efficient, environment friendly, and has a large reserves. The form, size, and crystallinity of ZSM-5 were greatly influenced by aging and hydrothermal treatment conditions. The optimal ZSM-5 product had high purity, crystallinity (∼90%), and porosity (BET ∼380 m2 g-1) as well as thermal stability, which are beneficial for adsorptive and catalytic applications.
Collapse
Affiliation(s)
- Duy-Khoi Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 700000 Vietnam
- Nuclear Training Center, Vietnam Atomic Energy Institute 140 Nguyen Tuan, Thanh Xuan Ha Noi Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang City 550000 Vietnam
| | - Van-Phuc Dinh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - N T Dang
- Institute of Research and Development, Duy Tan University Da Nang City 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang City 550000 Vietnam
| | - D Thanh Khan
- University of Science and Education, The University of Da Nang Da Nang City 550000 Vietnam
| | - Nguyen Trong Hung
- Institute for Technology of Radioactive and Rare Elements 48-Lang Ha, Dong Da Ha Noi 100000 Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
3
|
Liu X, Yan C, Wang Y, Zhang P, Yan S, Wang H, Zhuang J, Zhao Y, Wang Y, Yu Y, Zhao Q, Zhu X, Yang F. Enhanced catalytic performance of hierarchical Zn/ZSM-5 with balanced acidities synthesized utilizing ZIF-14 as porogen and Zn source in methanol to aromatics. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Elucidating the structure-performance relationship of typical commercial zeolites in catalytic cracking of low-density polyethylene. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Liu J, Xu H, Dong J, Zhou L, Li X, Ge H. Alkylbenzene synthesis from benzene and syngas over a ZnCrOx/beta bifunctional catalyst. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnCrOx/beta bifunctional catalyst.
Collapse
Affiliation(s)
- Jianchao Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hong Xu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinxiang Dong
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ligong Zhou
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xuekuan Li
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hui Ge
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
6
|
Dai C, Du K, Chen Z, Chen H, Guo X, Ma X. Synergistic Catalysis of Multi-Stage Pore-Rich H-BZSM-5 and Zn-ZSM-5 for the Production of Aromatic Hydrocarbons from Methanol via Lower Olefins. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengyi Dai
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
| | - Kang Du
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Zhongshun Chen
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Huiyong Chen
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
| | - Xinwen Guo
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoxun Ma
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
| |
Collapse
|
7
|
Chang CJ, Chen CH, Lee JF, Sooknoi T, Lin YC. Ga-Supported MFI Zeolites Synthesized Using Carbon Nanotubes Containing Gallium Oxide Nanoparticles on Exterior Walls and in Interior Channels as Hard Templates for Methanol Aromatization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ching-Jung Chang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chin-Han Chen
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Tawan Sooknoi
- Department of Chemistry/Catalytic Chemistry Research Unit, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Yu-Chuan Lin
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| |
Collapse
|