1
|
Liang E, Cheng K, Liu X, Xu M, Luo S, Ma C, Chen Z, Zhang Y, Liu S, Li W. Zinc cadmium sulphide-based photoreforming of biomass-based monosaccharides to lactic acid and efficient hydrogen production. J Colloid Interface Sci 2025; 683:432-445. [PMID: 39693881 DOI: 10.1016/j.jcis.2024.12.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Approaches that add value to biomass through the use of photoreforming reactions offer great opportunities for the efficient use of renewable resources. Here, we constructed a novel zinc cadmium sulphide/molybdenum dioxide-molybdenum carbide-carbon (ZnxCd1-xS-y/MoO2-Mo2C-C) heterojunction which was applied to photoreforming of biomass-based monosaccharides for hydrogen and lactic acid production. Bandgap engineering effectively modulated the redox capacity of ZnxCd1-xS-y and exposed more (101) crystalline surfaces, which improved the lactic acid selectivity. The MoO2-Mo2C-C (MC) co-catalysts had unique microstructures that increased the light absorption range and the number of active sites of ZnxCd1-xS-y. These features effectively promoted the separation and migration of photogenerated carriers, which in turn enhanced the photoreforming activity. The optimised Zn0.4Cd0.6S-0/MC composites exhibited superior photocatalytic activity with a hydrogen yield of 12.2 mmol/g/h. Conversion of biomass-based monosaccharides was approximately 100 %, where arabinose had the greatest lactic acid selectivity (64.1 %). Active species, including h+, ⋅O2-, ⋅OH, and 1O2, all favoured lactic acid production, where ⋅O2- played a major role in the conversion. This study demonstrates that rational design of photocatalysts can achieve the selective conversion of biomass into high value-added chemicals as well as the generation of clean energy.
Collapse
Affiliation(s)
- Ermiao Liang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ke Cheng
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xue Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Mingcong Xu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Sha Luo
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Zhijun Chen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yahui Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Shouxin Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Wei Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Lai R, Qu F, Ju M, Xie C, Qian H, Xia T, Wang C, Yu G, Tang Y, Bai X, Hou Q. Review on synthesis of lactic acid and lactates from biomass derived carbohydrates via chemocatalysis routes. BIORESOURCE TECHNOLOGY 2025; 419:132031. [PMID: 39746382 DOI: 10.1016/j.biortech.2024.132031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The utilization of renewable lignocellulosic biomass resources is a promising solution to deal with the deficit of fossil resources and the associated environmental concerns. Among diverse biomass-derived products, lactic acid (LA) stands out as one of the most successful commodities and also a platform to connect raw biomass feedstocks with value-added chemicals and degradable polymers. Herein, we critically review the recent advances in the design and development of base, acid, and multifunctional catalytic systems for the conversion of different carbohydrates to LA and alkyl lactates via chemical routes. In addition to critically evaluating the advantages and disadvantages of different catalytic systems, we provide deep insights into the reaction mechanisms, including the reaction pathways of different feedstocks, the catalytic roles of different kinds of active sites, and the structure-activity relationship. We conclude with our perspective on the key challenges and future opportunities.
Collapse
Affiliation(s)
- Ruite Lai
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fei Qu
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meiting Ju
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chao Xie
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hengli Qian
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianliang Xia
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chengxu Wang
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guanjie Yu
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Tang
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyu Bai
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qidong Hou
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Cao X, Wang X, He Y, Li J, Yang H, Zhang P, Yang S, Yu H, Xu S, Yuan H, Gu L. Boosting lactic acid photocatalytic synthesis from biomass sugars: The synergistic effect of N-doped carbon dots on ultrathin carbon nitride. Food Chem 2025; 464:141645. [PMID: 39426263 DOI: 10.1016/j.foodchem.2024.141645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The green and sustainable production of lactic acid via photocatalytic conversion of biomass-derived sugars is highly significant owing to its enhanced efficiency and reduced energy requirements. Consequently, the investigation has engineered a metal-free photocatalyst (NCDs/CCN), consisting of N-doped carbon dots (NCDs) and ultrathin carbon nitride (CCN). This catalyst has an enhanced light absorption range, facilitating a marked acceleration in the separation rate of photogenerated carriers. It has demonstrated the capability to achieve a lactic acid yield of up to 87.6 % in just 90 min with a mere 20 mg catalyst concentration in a xylose-alkali system. Electron Paramagnetic Resonance (EPR) and quenching experiments indicate that superoxide radicals (·O2-) are the primary oxidizing active species in the photocatalytic system, followed by h+, ·OH, and 1O2. DFT analysis suggests nitrogen doping enhances interaction with xylose, lowering adsorption energy and accelerating lactic acid generation, thus improving economic feasibility and sustainability.
Collapse
Affiliation(s)
- Xiao Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yiyang He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jixin Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haiyan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Pingping Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Songrui Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
4
|
Butburee T, Prasert A, Rungtaweevoranit B, Khemthong P, Mano P, Youngjan S, Phanthasri J, Namuangruk S, Faungnawakij K, Zhang L, Jin P, Liu H, Wang F. Engineering Lewis-Acid Defects on ZnO Quantum Dots by Trace Transition-Metal Single Atoms for High Glycerol-to-Glycerol Carbonate Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403661. [PMID: 38994824 DOI: 10.1002/smll.202403661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Efficient conversion of biomass wastes into valuable chemicals has been regarded as a sustainable approach for green and circular economy. Herein, a highly efficient catalytic conversion of glycerol (Gly) into glycerol carbonate (GlyC) by carbonylation with the commercially available urea is presented using low-cost transition metal single atoms supported on zinc oxide quantum dots (M1-ZnO QDs) as a catalyst without using any solvent. A facile one-step wet chemical synthesis allows various types of metal single atoms to simultaneously dope and introduce Lewis-acid defects in the ZnO QD structure. It is found that doping with a trace amount of isolated metal atoms greatly boosts the catalytic activity with Gly conversion of 90.7%, GlyC selectivity of 100.0%, and GlyC yield of 90.6%. Congruential results from both Density Functional Theory (DFT) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) studies reveal that the superior catalytic performance can be attributed to the enriched Lewis acid sites that endow optimal adsorption, formation of the intermediate for coupling between urea and Gly, and desorption of GlyC. Moreover, the tiny size of ZnO QDs efficiently promotes the accessibility of these active sites to the reactants.
Collapse
Affiliation(s)
- Teera Butburee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 239 Zhangheng Rd., New Pudong District, Shanghai, 201204, P. R. China
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Ampawan Prasert
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Poobodin Mano
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 239 Zhangheng Rd., New Pudong District, Shanghai, 201204, P. R. China
| | - Ping Jin
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
5
|
Saulnier-Bellemare T, Patience GS. Homogeneous and Heterogeneous Catalysis of Glucose to Lactic Acid and Lactates: A Review. ACS OMEGA 2024; 9:23121-23137. [PMID: 38854556 PMCID: PMC11154925 DOI: 10.1021/acsomega.3c10015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The current societal demand to replace polymers derived from petroleum with sustainable bioplastics such as polylactic acid (PLA) has motivated industry to commercialize ever-larger facilities for biobased monomers like lactic acid. Even though most of the lactic acid is produced by fermentation, long reaction times and high capital costs compromise the economics and thus limit the appeal of biotechnological processes. Catalytic conversion of hexose from biomass is a burgeoning alternative to fermentation. Here we identify catalysts to convert glucose to lactic acid, along with their proposed mechanisms. High Lewis acidity makes erbium salts among the most active homogeneous catalysts, while solvent coordination with the metal species polarize the substrate, increasing the catalytic activity. For heterogeneous catalysts, Sn-containing bimetallic systems combine the high Lewis acidity of Sn while moderating it with another metal, thus decreasing byproducts. Hierarchical bimetallic Sn-Beta zeolites combine a high number of open sites catalyzing glucose isomerization in the mesoporous regions and the confinement effect assisting fructose retro-aldol in microporous regions, yielding up to 67% lactic acid from glucose. Loss of activity is still an issue for heterogeneous catalysts, mostly due to solvent adsorption on the active sites, coke formation, and metal leaching, which impedes its large scale adoption.
Collapse
|
6
|
Kutrakul N, Liu A, Ratchahat S, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Highly selective catalytic conversion of raw sugar and sugarcane bagasse to lactic acid over YbCl3, ErCl3, and CeCl3 Lewis acid catalysts without alkaline in a hot-compressed water reaction system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Cui R, Ma J, Liu K, Ali Z, Zhang J, Liu Z, Li X, Yao S, Sun R. “Fish gill” -shaped ordered porous PVA@CNNS hybrid hydrogels with fast charge separation and low resistance for effectively photocatalytic synthesis of lactic acid from biomass-derived sugars. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water. Catal Letters 2022. [DOI: 10.1007/s10562-022-04151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Fu L, Liu S, Deng Y, He H, Yuan S, Ouyang L. Fabrication of the PdAu Surface Alloy on an Ordered Intermetallic Au 3Cu Core for Direct H 2O 2 Synthesis at Ambient Pressure. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lian Fu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shijie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanbo Deng
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Wang F, Dong W, Qu D, Huang Y, Chen Y. Synergistic Catalytic Conversion of Cellulose into Glycolic Acid over Mn-Doped Bismuth Oxyiodide Catalyst Combined with H-ZSM-5. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fenfen Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Wendi Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Dongxue Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuhui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
11
|
Ma J, Yang X, Yao S, Guo Y, Sun R. Photocatalytic Biorefinery to Lactic Acid: A Carbon Nitride Framework with O Atoms Replacing the Graphitic N Linkers Shows Fast Migration/Separation of Charge. ChemCatChem 2022. [DOI: 10.1002/cctc.202200097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jiliang Ma
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology Shandong Academy of Sciences Jinan 250353 P. R. China
| | - Xiaopan Yang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
| |
Collapse
|
12
|
Rungtaweevoranit B, Chaipojjana K, Junkaew A, Thongratkaew S, Impeng S, Faungnawakij K. Identification of Cooperative Reaction Sites in Metal-Organic Framework Catalysts for High Yielding Lactic Acid Production from d-Xylose. CHEMSUSCHEM 2022; 15:e202102653. [PMID: 34982851 DOI: 10.1002/cssc.202102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Determining the roles of surface functionality of heterogeneous acid catalysts is important for many industrial catalysts. In this study, the decisive structure of metal-organic frameworks (MOFs) is utilized to identify important features for the effective conversion of d-xylose into lactic acid. Several acidic MOFs are tested and the combination of Lewis acidity and adjacent hydroxy sites is found to be critical to attain high lactic acid yields. This hypothesis is corroborated experimentally by modification of the MOF to increase such sites, which affords an enhanced lactic acid yield of 79 %, and investigation of the acidity by using in situ FTIR spectroscopy. Density functional theory calculations disclose the cooperative behavior of Lewis acid sites and hydroxy groups in promoting the Cannizzaro reaction, a key step in the production of lactic acid.
Collapse
Affiliation(s)
- Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kawisa Chaipojjana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sarawoot Impeng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
13
|
Rahaman MS, Tulaphol S, Mills K, Molley A, Hossain MA, Lalvani S, Maihom T, Crocker M, Sathitsuksanoh N. Aluminum based metal‐organic framework as water‐tolerant Lewis acid catalyst for selective dihydroxyacetone isomerization to lactic acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sarttrawut Tulaphol
- King Mongkut's University of Technology Thonburi Chemistry 10140 Bangkok THAILAND
| | - Kyle Mills
- University of Louisville Chemical Engineering 40292 Louisville UNITED STATES
| | - Ashten Molley
- University of Louisville Chemical Engineering 40292 Louisville UNITED STATES
| | - Md Anwar Hossain
- University of Louisville Chemical Engineering 40292 Louisville UNITED STATES
| | - Shashi Lalvani
- Miami University Chemical, Paper and Biomedical Engineering 45056 Oxford UNITED STATES
| | - Thana Maihom
- Kasetsart University Kamphaeng Saen Campus Chemistry 73140 Nakhon Pathom THAILAND
| | - Mark Crocker
- University of Kentucky Center for Applied Energy Research Chemistry 40506 Lexington UNITED STATES
| | - Noppadon Sathitsuksanoh
- University of Louisville chemical engineering 216 eastern parkway 40292 Louisville UNITED STATES
| |
Collapse
|
14
|
de Assis GC, Silva IMA, dos Santos TG, dos Santos TV, Meneghetti MR, Meneghetti SMP. Photocatalytic processes for biomass conversion. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02358b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review focuses on the photocatalytic conversion of biomass, emphasizing several types of systems, including different photocatalysts and biomass derivatives.
Collapse
Affiliation(s)
- Geovânia C. de Assis
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Igor M. A. Silva
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Tiago G. dos Santos
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Thatiane V. dos Santos
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Mario R. Meneghetti
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Simoni M. P. Meneghetti
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| |
Collapse
|