1
|
Shi D, Liu J, Tong H, Fu K, Salam M, Huang J, Xu S, Wen X, Xie H, Wang P, Cai H, Luo D. Enhancement of catalytic detoxification of polycyclic aromatic hydrocarbons in fly ash from municipal solid waste incineration via magnetic hydroxyapatite-assisted hydrothermal treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170467. [PMID: 38290685 DOI: 10.1016/j.scitotenv.2024.170467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The emission of carcinogenic, teratogenic, and mutagenic polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste incineration (MSWI) of fly ash (FA) has attracted significant attention. Hydrothermal treatment (HT) has emerged as a practical approach for degrading PAHs during MSWI of FA by utilizing magnetite (Fe3O4) as a catalyst and hydrogen peroxide (H2O2) as an oxidizing agent. In this study, as an alternative to traditional hydroxyapatite (HAP), eggshell-derived magnetic hydroxyapatite (MHAP) was synthesized and applied in the hydrothermal catalytic degradation of PAHs in MSWI FA in an H2O2 system for the first time. The degradation efficiency of the PAHs is influenced not only by H2O2 but also by the choice of hydroxyapatite. Adding HAP or MHAP during hydrothermal treatment with H2O2 substantially reduced the overall PAH concentration and toxicity equivalent quantity (TEQ), superior to that without H2O2. MHAP demonstrated superior catalytic activity compared to HAP in the presence of H2O2 in the hydrothermal system. The hydrothermal detoxification of the PAHs increased with increasing MHAP dosage. By employing 0.5 mol/L H2O2 as the oxidant and 15 wt% MHAP as the catalyst, a total PAH degradation rate of 88.9 % was achieved, with a remarkable TEQ degradation rate of 98.3 %. Notably, the level of 4-6-ring PAHs, particularly benzo(a) pyrene (BaP) and dibenz(a,h)anthracene (DahA), with a TEQ of 1.0, was significantly reduced (by 69.4 % and 46.0 %, respectively). MHAP remained stable during the hydrothermal catalytic process, whereas H2O2 was effectively activated by MHAP and decomposed to produce strongly oxidizing hydroxyl (•OH) under hydrothermal conditions. •OH produced from the decomposition of H2O2 and metals on the surface of MHAP act as catalytically active centers, efficiently converting high-ring PAHs to low-ring PAHs. These findings provide valuable insights and a technological foundation for PAH detoxification in MSWI FA via hydrothermal catalytic oxidation.
Collapse
Affiliation(s)
- Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| | - Jiayu Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Haihang Tong
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong
| | - Kun Fu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Muhammad Salam
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Jie Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Shuo Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Xianyi Wen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Hui Xie
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Pan Wang
- Chongqing Water Resources and Electric Engineering College, Chongqing 402160, PR China.
| | - Huayi Cai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Dan Luo
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
2
|
Khan RJ, Lau CY, Guan J, Lam CH, Zhao J, Ji Y, Wang H, Xu J, Lee DJ, Leu SY. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. BIORESOURCE TECHNOLOGY 2022; 346:126419. [PMID: 34838966 DOI: 10.1016/j.biortech.2021.126419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Aromatic compounds are important fuels and key chemical precursors for organic synthesis, however the current aromatics market are mainly relying on fossil resources which will eventually contribute to carbon emissions. Lignin has been recognized as a drop-in substitution to conventional aromatics, with its values gradually realized after tremendous research efforts in the recent five years. To facilitate the development of a possible lignin economics, this study overviewed the recent advances of various biorefinery techniques and the remaining challenging for lignin valorization. Starting with recent discovery of unexplored lignin structures, the potential functions of lignin related chemical structures were emphasized. The important breakthrough of lignin-first pretreatment, catalytic lignin depolymerization, and the high value products with possible benchmark with modern aromatics were reviewed with possible future targets. Possible retrofit of conventional petroleum refinery for lignin products were also introduced and hopefully paving a way to progressively migrate the industry towards carbon neutrality.
Collapse
Affiliation(s)
- Rabia Jalil Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Yin Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying Ji
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Huaimin Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Chen C, Wu D, Ren J, Liu P, Xia H, Zhou M, Jiang J. Environmentally-friendly and sustainable synthesis of bimetallic NiCo-based carbon nanosheets for catalytic cleavage of lignin dimers. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|