1
|
Zhao C, Liu Y, Zhang P, Xia X, Yang Y. Alternative splicing plays a nonredundant role in greater amberjack (Seriola dumerili) in acclimation to ambient salinity fluctuations. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106549. [PMID: 38733739 DOI: 10.1016/j.marenvres.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism for adaptation of fish to environmental stress. Here, we performed a genome-wide investigation to AS dynamics in greater amberjack (Seriola dumerili), an economical marine teleost, in response to hypo- (10 ppt) and hyper-salinity (40 ppt) stresses. Totally, 2267-2611 differentially spliced events were identified in gills and kidney upon the exposure to undesired salinity regimes. In gills, genes involved in energy metabolism, stimulus response and epithelial cell differentiation were differentially spliced in response to salinity variation, while sodium ion transport and cellular amide metabolism were enhanced in kidney to combat the adverse impacts of salinity changes. Most of these differentially spliced genes were not differentially expressed, and AS was found to regulate different biological processes from differential gene expression, indicative of the functionally nonredundant role of AS in modulating salinity acclimation in greater amberjack. Together, our study highlights the important contribution of post-transcriptional mechanisms to the adaptation of fish to ambient salinity fluctuations and provides theoretical guidance for the conservation of marine fishery resources against increasingly environmental challenges.
Collapse
Affiliation(s)
- Chunyu Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Panpan Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Xinhui Xia
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zhong A, Gao T. Transcriptome analysis reveals similarities and differences in immune responses in the head and trunk kidneys of yellow catfish (Pelteobagrus fulvidraco) stimulated with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 130:155-163. [PMID: 36055554 DOI: 10.1016/j.fsi.2022.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Teleosts have a unique immune system because their head kidney (HK) and trunk kidney (TK) are sites for hematopoiesis. However, the immune functions of the HK and TKs require further elucidation in yellow catfish (Pelteobagrus fulvidraco). In the present study, imprints of the HK and TK were examined using the Wright's-Giemsa staining method. Morphological characteristics of the blood cell lineages revealed that the HK and TK were hematopoietic organs. To explore its immune function, transcriptome sequencing was performed after infection with Aeromonas hydrophila. A total of 1139 genes showed significant alterations in their expression in the kidney; these genes included 737 upregulated and 402 downregulated genes. Furthermore, 1117 differentially expressed genes were observed in the HK, which included 784 upregulated and 333 downregulated genes. Both organs showed 357 upregulated genes and 85 downregulated genes. Some immune-related genes were only expressed in the TK, such as ATP-dependent RNA helicase DDX58, the gene encoding the immunoglobulin heavy chain and light chain. The immune responses in the HK and TK were differential and the TK played a critical role in the mechanism underlying the immune response. The purpose of the present study was to facilitate the elucidation of the immune defense mechanism of yellow catfish and other teleosts.
Collapse
Affiliation(s)
- Aihua Zhong
- Aquaculture Department, College of Fishery, Zhejiang Ocean University, No.1, Haida South Road, Changzhi Island, Zhoushan, Zhejiang Province, 316022, China.
| | - Tianxiang Gao
- Aquaculture Department, College of Fishery, Zhejiang Ocean University, No.1, Haida South Road, Changzhi Island, Zhoushan, Zhejiang Province, 316022, China
| |
Collapse
|
3
|
Wang Y, Zhu P, Ni J, Mo Q, Luo W, Du Z, Jiang J, Yang S, Zhao L, Gong Q. Molecular and functional characterization of the retinol-binding protein 4 (RBP4) in hepatocytes of Schizothorax prenanti in response to palmitic acid. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:449-459. [PMID: 35230587 DOI: 10.1007/s10695-022-01060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Retinol-binding protein 4 (RBP4) protein is a kind of adipokines synthesized and secreted by the liver, which has been verified to play important roles in liver metabolism and energy homeostasis. However, the effects of RBP4 on hepatic lipid accumulation are still elusive in fish. In the present study, we cloned and characterized the RBP4 gene in Schizothorax prenanti (S. prenanti). RBP4 gene was specifically expressed in the liver and abdominal adipose tissue. Palmitic acid (PA; 400 μM) can significantly increase lipid deposition in primary hepatocytes after 12 h of treatment. Furthermore, RBP4 knockdown can relieve the excessive lipid deposition and endoplasmic reticulum stress in the hepatocytes caused by PA. The inhibition of RBP4 abolished the ability of PA to induce the expression of genes involved in lipogenesis and endoplasmic reticulum stress. These results demonstrate that RBP4 inhibition attenuated PA-induced lipid deposition and endoplasmic reticulum stress in hepatocytes of S. prenanti. This study could contribute to improve the understanding of RBP4 functions in the PA-induced lipid deposition in hepatocytes of fish.
Collapse
Affiliation(s)
- Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Peng Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiahui Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qilang Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611713, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
5
|
Population-specific renal proteomes of marine and freshwater three-spined sticklebacks. J Proteomics 2016; 135:112-131. [DOI: 10.1016/j.jprot.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/16/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022]
|
6
|
Peng XX. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:63-71. [PMID: 22484215 DOI: 10.1016/j.dci.2012.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals.
Collapse
Affiliation(s)
- Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Lu XJ, Chen J, Huang ZA, Zhuang L, Peng LZ, Shi YH. Influence of acute cadmium exposure on the liver proteome of a teleost fish, ayu (Plecoglossus altivelis). Mol Biol Rep 2011; 39:2851-9. [PMID: 21667247 DOI: 10.1007/s11033-011-1044-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 06/04/2011] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal that causes the disruption of a variety of physiological processes. In this study, the effect of Cd on liver proteome of ayu, Plecoglossus altivelis, was investigated by two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Twenty-three altered protein spots were successfully identified. They were involved in oxidative stress response, metal metabolism, methylation, and so on. The mRNA expression of 60S acidic ribosomal protein P0, heat shock protein 70, apolipoprotein A-I, betaine-homocysteine S-methyltransferase, parahox cluster neighbor, and transferrin was subsequently determined by real-time PCR. The mRNA expression of these genes was consistent with proteomic results. These findings enrich our knowledge on the influence of Cd toxicity to teleost fish, and may be worthy of further investigation to develop biomarkers.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Faculty of Life Science and Biotechnology, Ningbo University, Ningbo 315211, People's Republic of China
| | | | | | | | | | | |
Collapse
|