1
|
Sun J, Wang H, Zhan Y, Zhao T, Li C, Cheng C, Wang Z, Zou A, Chang Y. Identification of Key Genes Correlated with Economic Trait Superiorities and Their SNP Screening Through Transcriptome Comparisons, WGCNA and Pearson Correlation Coefficient in the Sea Cucumber Apostichopus Japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:12. [PMID: 39601948 DOI: 10.1007/s10126-024-10384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Variation in morphology-driven economic traits is a common issue hindering the development of the sea cucumber aquaculture industry. In this study, transcriptome comparisons, weighted gene correlation network analysis (WGCNA) and Pearson correlation coefficient (PCC) were first employed to identify key genes correlated with morphological variation in the sea cucumber Apostichopus japonicus, after which the relationship between identified key genes (relative expression and genotype) and economic trait phenotypes was investigated to screen potential biomarker targets for molecular-assisted breeding. The results showed that three genes (putative ficolin-2, fibrinogen c domain-containing protein 1, and angiopoietin-4) were closely associated with economic trait superiorities. Two single nucleotide polymorphisms (SNPs) were identified in the putative ficolin-2 gene as having a strong correlation with body weight and papilla number. The findings from this study will enrich breeding biomarker resources and benefit the development of molecular-assisted breeding techniques in sea cucumber aquaculture.
Collapse
Affiliation(s)
- Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China
| | - Haolin Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China
| | - Chengda Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China
| | - Cao Cheng
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Zengdong Wang
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Ange Zou
- Shandong Anyuan Seed Industry Technology Co., Ltd, Yantai, 265617, Shandong, P. R. China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, Liaoning, P. R. China.
- College of Life Science, Liaoning Normal University, Dalian, 116029, Liaoning, P. R. China.
| |
Collapse
|
2
|
Xiao W, Chen B, Wang J, Zou Z, Wang C, Li D, Zhu J, Yu J, Yang H. Integration of mRNA and miRNA Profiling Reveals Heterosis in Oreochromis niloticus × O. aureus Hybrid Tilapia. Animals (Basel) 2022; 12:640. [PMID: 35268207 PMCID: PMC8909811 DOI: 10.3390/ani12050640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023] Open
Abstract
Heterosis is a widespread biological phenomenon in fishes, in which hybrids have superior traits to parents. However, the underlying molecular basis for heterosis remains uncertain. Heterosis in growth and survival rates is apparent in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂). Comparisons of growth and hematological biochemical characteristics and mRNA and miRNA transcriptional analyses were performed in hybrid and parents tilapia stocks to investigate the underlying molecular basis for heterosis. Growth characteristics and hematological glucose and cholesterol parameters were significantly improved in hybrids. Of 3097 differentially expressed genes (DEGs) and 120 differentially expressed miRNAs (DEMs) identified among three stocks (O. niloticus, O. aureus, and hybrids), 1598 DEGs and 62 DEMs were non-additively expressed in hybrids. Both expression level dominance and overdominance patterns occurred for DEGs and DEMs, indicating that dominance and overdominance models are widespread in the transcriptional and post-transcriptional regulation of genes involved in growth, metabolism, immunity, and antioxidant capacity in hybrid tilapia. Moreover, potential negative regulation networks between DEMs and predicted target DEGs revealed that most DEGs from miRNA-mRNA pairs are up-regulated. Dominance and overdominance models in levels of transcriptome and miRNAome facilitate the integration of advantageous parental alleles into hybrids, contributing to heterosis of growth and improved survival. The present study provides new insights into molecular heterosis in hybrid tilapia, advancing our understanding of the complex mechanisms involved in this phenomenon in aquatic animals.
Collapse
Affiliation(s)
- Wei Xiao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Binglin Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
| | - Zhiying Zou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
| | - Dayu Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jinglin Zhu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jie Yu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Hong Yang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| |
Collapse
|
3
|
Transcriptome Profiling Revealed Basis for Growth Heterosis in Hybrid Tilapia (Oreochromis niloticus ♀ × O. aureus ♂). FISHES 2022. [DOI: 10.3390/fishes7010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hybrid tilapia were produced from hybridization of Nile tilapia (Oreochromis niloticus) and blue tilapia (O. aureus). Comparative transcriptome analysis was carried out on the liver of hybrid tilapia and their parents by RNA sequencing. A total of 2319 differentially expressed genes (DEGs) were identified. Trend co-expression analysis showed that non-additive gene expression accounted for 67.1% of all DEGs. Gene Ontology and KEGG enrichment analyses classified the respective DEGs. Gene functional enrichment analysis indicated that most up-regulated genes, such as FASN, ACSL1, ACSL3, ACSL6, ACACA, ELOVL6, G6PD, ENO1, GATM, and ME3, were involved in metabolism, including fatty acid biosynthesis, unsaturated fatty acid biosynthesis, glycolysis, pentose phosphate pathway, amino acid metabolism, pyruvate metabolism, and the tricarboxylic acid cycle. The expression levels of a gene related to ribosomal biosynthesis in eukaryotes, GSH-Px, and those associated with heat shock proteins (HSPs), such as HSPA5 and HSP70, were significantly down-regulated compared with the parent tilapia lineages. The results revealed that the metabolic pathway in hybrid tilapia was up-regulated, with significantly improved fatty acid metabolism and carbon metabolism, whereas ribosome biosynthesis in eukaryotes and basal defense response were significantly down-regulated. These findings provide new insights into our understanding of growth heterosis in hybrid tilapia.
Collapse
|
4
|
Ordoñez JFF, Galindez GGST, Gulay KT, Ravago-Gotanco R. Transcriptome analysis of growth variation in early juvenile stage sandfish Holothuria scabra. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100904. [PMID: 34488170 DOI: 10.1016/j.cbd.2021.100904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The sandfish Holothuria scabra is a high-value tropical sea cucumber species representing a major mariculture prospect across the Indo-Pacific. Advancements in culture technology, rearing, and processing present options for augmenting capture production, stock restoration, and sustainable livelihood activities from hatchery-produced sandfish. Further improvements in mariculture production may be gained from the application of genomic technologies to improve performance traits such as growth. In this study, we performed de novo transcriptome assembly and characterization of fast- and slow-growing juvenile H. scabra from three Philippine populations. Analyses revealed 66 unigenes that were consistently differentially regulated in fast-growing sandfish and found to be associated with immune response and metabolism. Further, we identified microsatellite and single nucleotide polymorphism markers potentially associated with fast growth. These findings provide insight on potential genomic determinants underlying growth regulation in early juvenile sandfish which will be useful for further functional studies.
Collapse
Affiliation(s)
- June Feliciano F Ordoñez
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| | - Gihanna Gaye S T Galindez
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines; Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Germany.
| | - Karina Therese Gulay
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| | - Rachel Ravago-Gotanco
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| |
Collapse
|
5
|
Martín-Hernández R, Rodríguez-Canul R, Kantún-Moreno N, Olvera-Novoa MA, Medina-Contreras O, Garikoitz-Legarda C, Triviño JC, Zamora-Briseño JA, May-Solis V, Poot-Salazar A, Pérez-Vega JA, Gil-Zamorano J, Grant G, Dávalos A, Olivera-Castillo L. Comparative Transcriptomes of the Body Wall of Wild and Farmed Sea Cucumber Isostichopus badionotus. Int J Mol Sci 2021; 22:ijms22083882. [PMID: 33918680 PMCID: PMC8070510 DOI: 10.3390/ijms22083882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overfishing of sea cucumber Isostichopus badionotus from Yucatan has led to a major population decline. They are being captured as an alternative to traditional species despite a paucity of information about their health-promoting properties. The transcriptome of the body wall of wild and farmed I. badionotus has now been studied for the first time by an RNA-Seq approach. The functional profile of wild I. badionotus was comparable with data in the literature for other regularly captured species. In contrast, the metabolism of first generation farmed I. badionotus was impaired. This had multiple possible causes including a sub-optimal growth environment and impaired nutrient utilization. Several key metabolic pathways that are important in effective handling and accretion of nutrients and energy, or clearance of harmful cellular metabolites, were disrupted or dysregulated. For instance, collagen mRNAs were greatly reduced and deposition of collagen proteins impaired. Wild I. badionotus is, therefore, a suitable alternative to other widely used species but, at present, the potential of farmed I. badionotus is unclear. The environmental or nutritional factors responsible for their impaired function in culture remain unknown, but the present data gives useful pointers to the underlying problems associated with their aquaculture.
Collapse
Affiliation(s)
- Roberto Martín-Hernández
- Bioinformatics and Biostatistics Unit, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
| | - Rossanna Rodríguez-Canul
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Nuvia Kantún-Moreno
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Miguel A. Olvera-Novoa
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico;
| | - Cristobal Garikoitz-Legarda
- Bioinformatics Department, Sistemas Genómicos S.L., Ronda de Guglielmo Marconi 6, 46980 Paterna, Spain; (C.G.-L.); (J.C.T.)
| | - Juan Carlos Triviño
- Bioinformatics Department, Sistemas Genómicos S.L., Ronda de Guglielmo Marconi 6, 46980 Paterna, Spain; (C.G.-L.); (J.C.T.)
| | - Jesús Alejandro Zamora-Briseño
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Víctor May-Solis
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
| | - Alicia Poot-Salazar
- Centro Regional de Investigaciones Acuícola y Pesqueras en Yucalpetén, Instituto Nacional de Pesca y Acuacultura, Boulevard del Pescador S/N, Puerto de Abrigo, Progreso 97320, Yucatán, Mexico;
| | - Juan Antonio Pérez-Vega
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
| | - George Grant
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| | - Leticia Olivera-Castillo
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| |
Collapse
|