1
|
van Gelderen TA, Montfort J, Álvarez-Dios JA, Piferrer F, Bobe J, Ribas L. Identification of sex-biased MiRNA markers informative of heat-past events. BMC Genomics 2025; 26:455. [PMID: 40340762 PMCID: PMC12060346 DOI: 10.1186/s12864-025-11551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/01/2025] [Indexed: 05/10/2025] Open
Abstract
Elevated temperatures during early developmental stages play a pivotal role in the fate of the adult sexual phenotype of fish populations, usually leading to male-skewed sex ratios. This is the case with European sea bass (Dicentrarchus labrax), one of the most important species in the European aquaculture industry. To unveil informative markers of the past thermal events, we investigated changes in the miRNome within the gonads of this species. Consequently, we exposed European sea bass to elevated temperatures (21ºC) during early development (from 7 to 68 days post fertilization). After one-year post-heat treatment growing at natural temperature, a miRNA-sequencing analysis was conducted in the ovaries and testes of juvenile fish. The examination of miRNA expression levels identified three and twelve miRNAs in ovaries and testes, respectively, reflecting past thermal events. To assess the evolutionary conservation of these identified miRNAs in gonads, we cross-referenced our data with miRNome public information from ovaries and testes in nine additional fish species from the FishmiRNA database. This analysis uncovered 33 potential sex-biased markers present in at least five studied species along the evolutionary timeline. For instance, miR-155, miR-429, and miR-140 were consistently female-skewed, while miR-143, miR-499, and miR-135b-3p were consistently male-skewed. In addition, among these markers, three conserved sex-skewed miRNAs proved to be informative regarding past thermal events in the ovaries (e.g., miR-192-5p, miR-146a-5p and miR-143-3p) and four in the testes (miR-129-5p, miR-724-5p, miR-143-3p, and miR-223-3p). Notably, miR-223-3p was conserved female-skewed, but showed upregulation in males exposed to high temperature, and miR-143-3p was inhibited in both heated females and males. These miRNAs could serve as markers of heat-induced masculinization. This research broadens the inventory of sex-specific miRNAs across evolution in fish, and elucidates thermosensitive miRNAs in the gonads.
Collapse
Affiliation(s)
- Tosca A van Gelderen
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
- PhD Program in Genetics, Autonomous University of Barcelona, Bellaterra, 08193, Spain
| | - Jerome Montfort
- INRAE, Laboratoire de Physiologie et Génomique des Poissons, Rennes, France
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela, 15781, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
| | - Julien Bobe
- INRAE, Laboratoire de Physiologie et Génomique des Poissons, Rennes, France
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.
| |
Collapse
|
2
|
Wang Y, Chen Y, Liu Y, Chen S. Molecular Mechanism of the Grid Gene Family Regulating Growth Size Heteromorphism in Cynoglossus semilaevis. Animals (Basel) 2025; 15:1130. [PMID: 40281964 PMCID: PMC12024286 DOI: 10.3390/ani15081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
There are obvious individual differences in the growth and development of Cynoglossus semilaevis, mainly due to female bias. We selected 500 female Cynoglossus semilaevis of different sizes for GWAS and transcriptome analysis to screen for differential genes. qPCR was performed to detect the expression of the genes in various tissues, and RNAi experiments were performed in testicular cells to knock down the grid1 and grid2 genes and transcriptome sequencing was performed to check the changes of the downstream genes. Grid gene was screened for the common genes by GWAS sequencing and transcriptome sequencing. In the QPCR results, the expression of the grid gene family was negatively correlated with fish size, and was slightly higher in males than in females; in the transcriptome results, the expression of shcbp1, sass6, cdca7, and gh was up-regulated, and the expression of igf1 was down-regulated. It is speculated that igf1 has an antagonistic effect on gh, which is deregulated when the grid gene family is knocked down. The grid gene family may affect the growth of individual Cynoglossus semilaevis through the gh-igf1 axis, which provides a basis for the study of the differences in the growth size of Cynoglossus semilaevis.
Collapse
Affiliation(s)
- Yaning Wang
- College of Life Science, Qingdao University, Qingdao 266071, China;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.C.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yadong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.C.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.C.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.C.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Houdelet C, Blondeau-Bidet E, Estevez-Villar M, Mialhe X, Hermet S, Ruelle F, Dutto G, Bajek A, Bobe J, Geffroy B. Circulating MicroRNAs Indicative of Sex and Stress in the European Seabass (Dicentrarchus labrax): Toward the Identification of New Biomarkers. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:749-762. [PMID: 37581865 DOI: 10.1007/s10126-023-10237-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
MicroRNAs (miRNAs) constitute a new category of biomarkers. Studies on miRNAs in non-mammalian species have drastically increased in the last few years. Here, we explored the use of miRNAs as potential, poorly invasive markers, to identify sex and characterize acute stress in fish. The European seabass (Dicentrarchus labrax) was chosen as a model because of its rapid response to stress and its specific sex determination system, devoid of sexual chromosomes. We performed a small RNA-sequencing analysis in the blood plasma of male and female European seabass (mature and immature) as well as in the blood plasma of juveniles submitted to an acute stress and sampled throughout the recovery period (at 0 h, 0.5 h, 1.5 h and 6 h). In immature individuals, both miR-1388-3p and miR-7132a-5p were up-regulated in females, while miR-499a-5p was more abundant in males. However, no miRNAs were found to be differentially expressed between sexes in the blood plasma of mature individuals. For the acute stress analysis, five miRNAs (miR-155-5p, miR-200a-3p, miR-205-1-5p, miR-143-3p, and miR-223-3p) followed cortisol production over time. All miRNAs identified were tested and validated by RT-qPCR on sequenced samples. A complementary analysis on the 3'UTR sequences of the European seabass allowed to predict potential mRNA targets, some of them being particularly relevant regarding stress regulation, e.g., the glucocorticoid receptor 1 and the mineralocorticoid receptor. The present study provides new avenues and recommendations on the use of miRNAs as biomarkers of sex or stress of the European seabass, with potential application on other fish species.
Collapse
Affiliation(s)
- Camille Houdelet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | | | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Sophie Hermet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - François Ruelle
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Gilbert Dutto
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Aline Bajek
- Ecloserie Marine de Gravelines-Ichtus, Voie des Enrochements, F-59820, Gravelines, France
| | - Julien Bobe
- INRAE, UR1037, Fish Physiology and Genomic laboratory, F-35000, Rennes, France
| | - Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| |
Collapse
|
4
|
Zhao N, Jia L, Deng Q, Zhu C, Zhang B. Comparative piRNAs Profiles Give a Clue to Transgenerational Inheritance of Sex-Biased piRNAs in Cynoglossus semilaevis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:335-344. [PMID: 35290559 DOI: 10.1007/s10126-022-10109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Piwi interacting RNAs (piRNAs) are involved in the epigenetic and post-transcriptional gene silencing of retrotransposons in germ line cells, especially in spermatogenesis. There are many related reports on model organisms, such as flies and mice. In fish, however, there are few studies on piRNAs. Cynoglossus semilaevis, a benthic warm water flatfish, with remarkable sexual dimorphism, especially the "pseudo males" with sex reversal, mating with normal females to produce viable offspring, is an ideal material for the study of sex development. Here, sperm piwi-interacting RNAs profiles of Cynoglossus semilaevis were characterized, comparing between male and pseudomale groups. Differential piRNAs were identified with their predicted and annotated targets. Attention was then focused on candidate piRNAs associated with sex development and methylation. We continued to compare the expression levels of 10 candidates differentially expressed piRNAs in F1 spermatozoa. Quantitative RT-PCR demonstrated that five of the ten piRNAs showed sex bias consistent with parental sequencing results, with four significantly higher expression level in sperm of five males offspring than that of pseudomales, while one piRNAs showed the opposite expression profile. The five signature piRNAs (piR-mmu-49600337, piR-mmu-95849, piR-xtr-7474223, piR-xtr-1790334, and piR-mmu-4491546) could be employed as male-specific molecular biomarkers for C. semilaevis. Besides, this study also implied the possibility of transgenerational inheritance of sex-biased piRNAs exiting in sperm of Cynoglossus semilaevis.
Collapse
Affiliation(s)
- Na Zhao
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, 300201, China
| | - Qiuxia Deng
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.
| | - Bo Zhang
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.
| |
Collapse
|