1
|
Tippetts TS, Sieber MH, Solmonson A. Beyond energy and growth: the role of metabolism in developmental signaling, cell behavior and diapause. Development 2023; 150:dev201610. [PMID: 37883062 PMCID: PMC10652041 DOI: 10.1242/dev.201610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.
Collapse
Affiliation(s)
- Trevor S. Tippetts
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew H. Sieber
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Laboratory of Developmental Metabolism and Placental Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Bulavkina EV, Kudryavtsev AA, Goncharova MA, Lantsova MS, Shuvalova AI, Kovalev MA, Kudryavtseva AV. Multifaceted Nothobranchius. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1563-1578. [PMID: 36717447 DOI: 10.1134/s0006297922120136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Annual killifish of the genus Nothobranchius are seeing a rapid increase in scientific interest over the years. A variety of aspects surrounding the egg-laying Cyprinodontiformes is being extensively studied, including their aging. Inhabiting drying water bodies of Africa rarely allows survival through more than one rainy season for the Nothobranchius populations. Therefore, there is no lifespan-related bias in natural selection, which has ultimately led to the decreased efficiency of DNA repair system. Aging of the Nothobranchius species is studied both under normal conditions and under the influence of potential geroprotectors, as well as genetic modifications. Most biogerontological studies are conducted using the species Nothobranchius furzeri (GRZ isolate), which has a lifespan of 3 to 7 months. However, the list of model species of Nothobranchius is considerably wider, and the range of advanced research areas with their participation extends far beyond gerontology. This review summarizes the most interesting and promising topics developing in the studies of the fish of Nothobranchius genus. Both classical studies related to lifespan control and rather new ones are discussed, including mechanisms of diapause, challenges of systematics and phylogeny, evolution of sex determination mechanisms, changes in chromosome count, occurrence of multiple repeated DNA sequences in the genome, cognitive and behavioral features and social stratification, as well as methodological difficulties in working with Nothobranchius.
Collapse
Affiliation(s)
- Elizaveta V Bulavkina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Kudryavtsev
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Margarita A Goncharova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Margarita S Lantsova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasija I Shuvalova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Kovalev
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna V Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|