1
|
Hu G, Li L, Li Y, Shao S, Zhang R, Gao Y, Guo Y, Wang Y, Gu Z, Wang Y. Full-length transcriptome-referenced analysis reveals developmental and olfactory regulatory genes in Dermestes frischii. INSECT MOLECULAR BIOLOGY 2025; 34:409-425. [PMID: 39663879 DOI: 10.1111/imb.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Dermestes frischii Kugelann, 1792 is a storage pest worldwide, and is important for estimating the postmortem interval in forensic entomology. However, because of the lack of transcriptome and genome resources, population genetics and biological control studies on D. frischii have been hindered. Here, single-molecule real-time sequencing and next-generation sequencing were combined to generate the full-length transcriptome of the five developmental stages of D. frischii, namely egg, young larva, mature larva, pupa and adult. A total of 41,665 full-length non-chimeric sequences and 59,385 non-redundant transcripts were generated, of which 42,756 were annotated in public databases. Using the weighted gene co-expression network analysis, gene co-expression modules related to the five developmental stages were constructed and screened, and the genes in these modules were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The expression patterns of the differentially expressed genes (DEGs) related to olfaction and insect hormone biosynthesis were also explored. Transcription of most odorant binding proteins was up-regulated in the adult stage, suggesting they are important for foraging in adults. Many genes encoding for the ecdysone-inducible protein were up-regulated in the pupal stage, may be mainly responsible for the tissue remodelling of metamorphosis. The results of the quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with the RNA-seq results. This is the first full-length transcriptome sequencing of dermestids, and the data obtained here are vital for understanding the stage-specific development and olfactory system of D. frischii, providing valuable resources for storage pest and forensic research.
Collapse
Affiliation(s)
- Gengwang Hu
- Department of Forensic Medicine, Soochow University, Suzhou, China
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Liangliang Li
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yifei Li
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Shipeng Shao
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Ruonan Zhang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yundi Gao
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yi Guo
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yinghui Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Zhiya Gu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Xue Q, Hasan KS, Dweck O, Ebrahim SAM, Dweck HKM. Functional characterization and evolution of olfactory responses in coeloconic sensilla of the global fruit pest Drosophila suzukii. BMC Biol 2025; 23:50. [PMID: 39985002 PMCID: PMC11846463 DOI: 10.1186/s12915-025-02151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND When a species changes its host preference, it often requires modifications in its sensory systems. Many of these changes remain largely uninvestigated in the global fruit pest Drosophila suzukii (also known as spotted wing Drosophila, SWD). This species, which shares a last common ancestor with the model organism D. melanogaster-a species that prefers overripe fruits- ~ 15 million years ago, has shifted its preference from overripe to ripe, soft-skinned fruits, causing significant damage to fruit industries worldwide. RESULTS Here, we functionally characterized the coeloconic sensilla in D. suzukii and compared their responses to those of its close relatives, D. biarmipes and D. melanogaster. We find that D. suzukii's responses are grouped into four functional types. These responses are consistent across sexes and reproductive status. The odorant receptor co-receptor Orco is required for certain responses. Comparative analysis across these species revealed evolutionary changes in physiological and behavioral responses to specific odorants, such as acetic acid, a key indicator of microbial fermentation, and phenylacetaldehyde, an aromatic compound found in a diverse range of fruits. Phenylacetaldehyde produced lower electrophysiological responses in D. suzukii compared to D. melanogaster and elicited strong attraction in D. suzukii but not in any of the other tested species. CONCLUSIONS The olfactory changes identified in this study likely play a significant role in the novel behavior of D. suzukii. This work also identifies phenylacetaldehyde as a potent attractant for D. suzukii, which can be used to develop targeted management strategies to mitigate the serious impact of this pest.
Collapse
Affiliation(s)
- Qi Xue
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Kazi Sifat Hasan
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Omar Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
- Wilbur Cross High School, 181 Mitchell Dr, New Haven, CT, 06511, USA
| | - Shimaa A M Ebrahim
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Hany K M Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA.
| |
Collapse
|
3
|
Kwadha CA, Rehermann G, Tasso D, Fellous S, Bengtsson M, Wallin EA, Flöhr A, Witzgall P, Becher PG. Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii. Evol Appl 2024; 17:e70042. [PMID: 39534538 PMCID: PMC11555161 DOI: 10.1111/eva.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The spotted-wing drosophila, Drosophila suzukii and the cosmopolitan vinegar fly D. melanogaster feed on soft fruit and berries and widely overlap in geographic range. The presence of D. melanogaster reduces egg-laying in D. suzukii, possibly because D. melanogaster outcompetes D. suzukii larvae feeding in the same fruit substrate. Flies use pheromones to communicate for mating, but pheromones also serve a role in reproductive isolation between related species. We asked whether a D. melanogaster pheromone also modulates oviposition behaviour in D. suzukii. A dual-choice oviposition assay confirms that D. suzukii lays fewer eggs on blueberries exposed to D. melanogaster flies and further shows that female flies have a stronger effect than male flies. This was corroborated by treating berries with synthetic pheromones. Avoidance of D. suzukii oviposition is mediated by the female D. melanogaster pheromone (Z)-4-undecenal (Z4-11Al). Significantly fewer eggs were laid on berries treated with synthetic Z4-11Al. In comparison, the male pheromone (Z)-11-octadecenyl acetate (cVA) had no effect on D. suzukii oviposition. Z4-11Al is a highly volatile compound that is perceived via olfaction and it is accordingly behaviourally active at a distance from the source. D. suzukii is known to engage in mutual niche construction with the yeast Hanseniaspora uvarum, which strongly attracts flies. Adding Z4-11Al to fermenting H. uvarum significantly decreased D. suzukii flight attraction in a laboratory wind tunnel and a field trapping assay. That a D. melanogaster pheromone regulates oviposition in D. suzukii demonstrates that heterospecific pheromone communication contributes to reproductive isolation and resource partitioning in cognate species. Stimulo-deterrent diversion or push-pull methods, building on combined use of attractant and deterrent compounds, have shown promise for control of D. suzukii. A pheromone that specifically reduces D. suzukii attraction and oviposition adds to the toolbox for D. suzukii integrated management.
Collapse
Affiliation(s)
- Charles A. Kwadha
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Guillermo Rehermann
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Deni Tasso
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Simon Fellous
- CBGP, INRAE, CIRADInstitute Agro, IRD, University MontpellierMontpellierFrance
| | - Marie Bengtsson
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Erika A. Wallin
- Department Natural Science, Design and Sustainable DevelopmentMid Sweden UniversitySundsvallSweden
| | - Adam Flöhr
- Department Biosystems and TechnologySwedish University of Agricultural SciencesLommaSweden
| | - Peter Witzgall
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Paul G. Becher
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
4
|
Du HT, Lu JQ, Ji K, Wang CC, Yao ZC, Liu F, Li Y. Comparative Transcriptomic Assessment of Chemosensory Genes in Adult and Larval Olfactory Organs of Cnaphalocrocis medinalis. Genes (Basel) 2023; 14:2165. [PMID: 38136987 PMCID: PMC10742765 DOI: 10.3390/genes14122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a notorious pest of rice in Asia. The larvae and adults of C. medinalis utilize specialized chemosensory systems to adapt to different environmental odors and physiological behaviors. However, the differences in chemosensory genes between the olfactory organs of these two different developmental stages remain unclear. Here, we conducted a transcriptome analysis of larvae heads, male antennae, and female antennae in C. medinalis and identified 131 putative chemosensory genes, including 32 OBPs (8 novel OBPs), 23 CSPs (2 novel CSPs), 55 ORs (17 novel ORs), 19 IRs (5 novel IRs) and 2 SNMPs. Comparisons between larvae and adults of C. medinalis by transcriptome and RT-qPCR analysis revealed that the number and expression of chemosensory genes in larval heads were less than that of adult antennae. Only 17 chemosensory genes (7 OBPs and 10 CSPs) were specifically or preferentially expressed in the larval heads, while a total of 101 chemosensory genes (21 OBPs, 9 CSPs, 51 ORs, 18 IRs, and 2 SNMPs) were specifically or preferentially expressed in adult antennae. Our study found differences in chemosensory gene expression between larvae and adults, suggesting their specialized functions at different developmental stages of C. medinalis. These results provide a theoretical basis for screening chemosensory genes as potential molecular targets and developing novel management strategies to control C. medinalis.
Collapse
Affiliation(s)
- Hai-Tao Du
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Jia-Qi Lu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Kun Ji
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Chu-Chu Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Zhi-Chao Yao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| |
Collapse
|