1
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
2
|
Di Pietro P, Izzo C, Abate AC, Iesu P, Rusciano MR, Venturini E, Visco V, Sommella E, Ciccarelli M, Carrizzo A, Vecchione C. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules 2023; 13:168. [PMID: 36671552 PMCID: PMC9855992 DOI: 10.3390/biom13010168] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Paola Iesu
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | | | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
3
|
Plasma membrane effects of sphingolipid-synthesis inhibition by myriocin in CHO cells: a biophysical and lipidomic study. Sci Rep 2022; 12:955. [PMID: 35046440 PMCID: PMC8770663 DOI: 10.1038/s41598-021-04648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Suppression of a specific gene effect can be achieved by genetic as well as chemical methods. Each approach may hide unexpected drawbacks, usually in the form of side effects. In the present study, the specific inhibitor myriocin was used to block serine palmitoyltransferase (SPT), the first enzyme in the sphingolipid synthetic pathway, in CHO cells. The subsequent biophysical changes in plasma membranes were measured and compared with results obtained with a genetically modified CHO cell line containing a defective SPT (the LY-B cell line). Similar effects were observed with both approaches: sphingomyelin values were markedly decreased in myriocin-treated CHO cells and, in consequence, their membrane molecular order (measured as laurdan general polarization) and mechanical resistance (AFM-measured breakthrough force values) became lower than in the native, non-treated cells. Cells treated with myriocin reacted homeostatically to maintain membrane order, synthesizing more fully saturated and less polyunsaturated GPL than the non-treated ones, although they achieved it only partially, their plasma membranes remaining slightly more fluid and more penetrable than those from the control cells. The good agreement between results obtained with very different tools, such as genetically modified and chemically treated cells, reinforces the use of both methods and demonstrates that both are adequate for their intended use, i.e. the complete and specific inhibition of sphingolipid synthesis in CHO cells, without apparent unexpected effects.
Collapse
|
4
|
Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021; 26:molecules26175238. [PMID: 34500671 PMCID: PMC8434385 DOI: 10.3390/molecules26175238] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fumonisin B1 (FB1), belonging to the member of fumonisins, is one of the most toxic mycotoxins produced mainly by Fusarium proliferatum and Fusarium verticillioide. FB1 has caused extensive contamination worldwide, mainly in corn, rice, wheat, and their products, while it also poses a health risk and is toxic to animals and human. It has been shown to cause oxidative stress, endoplasmic reticulum stress, cellular autophagy, and apoptosis. This review focuses on the current stage of FB1 contamination, its toxic effects of acute toxicity, immunotoxicity, organ toxicity, and reproductive toxicity on animals and humans. The potential toxic mechanisms of FB1 are discussed. One of the main aims of the work is to provide a reliable reference strategy for understanding the occurrence and toxicity of FB1.
Collapse
|
5
|
Khan RB, Phulukdaree A, Chuturgoon AA. Concentration-dependent effect of fumonisin B1 on apoptosis in oesophageal cancer cells. Hum Exp Toxicol 2017; 37:762-771. [DOI: 10.1177/0960327117735570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The geographical distribution of oesophageal cancer is linked to the exposure of fumonisin B1 (FB1), a mycotoxin produced by fungi that contaminates staple food worldwide. Non-genotoxic carcinogens like FB1 disturb homeostasis through increased cell proliferation or suppression of apoptosis. This study investigated the involvement of FB1 (0–20 μM) in spindle-shaped N-cadherin (+) CD45 (−) osteoblastic (SNO) cell death. Cell viability and death were assessed using the MTS and Annexin V-Fluos assays, respectively. Caspase activities were determined luminometrically and the comet assay assessed DNA damage. Induction of oxoguanine glycosylase 1 (OGG1) was measured using quantitative Polymerase Chain Reaction (qPCR), while cleaved poly (ADP-ribose) polymerase 1 (PARP-1) and Bax were determined by western blotting. Cell viability and PARP-1 cleavage were not affected by 1.25 μM FB1, but phosphatidylserine externalization, Bax protein expression, caspase activity, comet tail length and OGG1 transcripts were increased. The reduced cell viability in 10 μM FB1-treated cells was accompanied by corresponding increases in externalized phosphatidylserine, Bax, caspase-3/7 activity and cleaved PARP-1. The OGG1 transcripts were not significantly increased, but comet tails were increased. Bax, caspase-3/7 activities and cleaved PARP-1 were inhibited at 20 μM FB1. In addition, the OGG1 transcript levels were decreased ( p < 0.0001) along with comet lengths ( p < 0.0001). This study showed that FB1-induced apoptosis in SNO cells may be caspase-dependent or caspase-independent; the pathway used depends on the exposure concentration.
Collapse
Affiliation(s)
- RB Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - A Phulukdaree
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - AA Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Role of Sphingolipids in the Pathobiology of Lung Inflammation. Mediators Inflamm 2015; 2015:487508. [PMID: 26770018 PMCID: PMC4681829 DOI: 10.1155/2015/487508] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease.
Collapse
|
7
|
Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 2015; 16:5076-124. [PMID: 25751724 PMCID: PMC4394466 DOI: 10.3390/ijms16035076] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan.
| |
Collapse
|
8
|
WANG SHAOKANG, LIU SHA, YANG LIGANG, SHI RUOFU, SUN GUIJU. Effect of fumonisin B1 on the cell cycle of normal human liver cells. Mol Med Rep 2013; 7:1970-6. [DOI: 10.3892/mmr.2013.1447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/19/2013] [Indexed: 11/06/2022] Open
|
9
|
Harrer H, Laviad EL, Humpf HU, Futerman AH. Identification of N
-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins. Mol Nutr Food Res 2012; 57:516-22. [DOI: 10.1002/mnfr.201200465] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/20/2012] [Accepted: 11/05/2012] [Indexed: 01/10/2023]
Affiliation(s)
- Henning Harrer
- Institute of Food Chemistry; Westfälische Wilhelms-Universität; Münster Germany
| | - Elad L. Laviad
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Hans Ulrich Humpf
- Institute of Food Chemistry; Westfälische Wilhelms-Universität; Münster Germany
| | - Anthony H. Futerman
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
10
|
Müller S, Dekant W, Mally A. Fumonisin B1 and the kidney: Modes of action for renal tumor formation by fumonisin B1 in rodents. Food Chem Toxicol 2012; 50:3833-46. [DOI: 10.1016/j.fct.2012.06.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/26/2022]
|
11
|
Sharma N, Saifo M, Tamaskar IR, Bhuvaneswari R, Mashtare T, Fakih M. KRAS status and clinical outcome in metastatic colorectal cancer patients treated with first-line FOLFOX chemotherapy. J Gastrointest Oncol 2012; 1:90-6. [PMID: 22811812 DOI: 10.3978/j.issn.2078-6891.2010.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Two previous first-line studies showed an improved trend in response rate (RR) and progression free survival (PFS) in metastatic colorectal cancer (CRC) patients with KRAS mutation. Others have reported a worsened outlook for metastatic CRC patients with KRAS mutation and a higher likelihood of metastatic disease to the lungs. In this study, we aimed to address the impact of KRAS on the pattern of metastatic disease at presentation and on RR and PFS with first-line 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX) chemotherapy. METHODS Patients with CRC who underwent KRAS testing using DxS assay at Roswell Park Cancer Institute (RPCI) were identified. Patients with metastatic CRC treated with first-line FOLFOX +/- bevacizumab were assessed for response and survival using RECIST 1.1 guidelines. A two-sided Fisher's exact test was used to determine the statistical significance. RESULTS 181 patients with metastatic CRC and KRAS testing were identified. 83/181 patients were treated with FOLFOX (+/- bevacizumab) in the first-line setting at RPCI and were evaluable as per study guidelines. KRAS mutation (MT) occurred in 40.31% cases. There was no difference in organ-metastases distribution, RR (56.60% in KRAS wild-type (WT) and 50% in KRAS mutant) or PFS (9.3 months KRAS WT and 8.7 months in KRAS MT) based on KRAS status. CONCLUSION In this single institute study, our findings do not support any predictive role for KRAS-MT in terms of response to FOLFOX first-line chemotherapy, or in terms of sites of metastatic disease at mCRC presentation.
Collapse
Affiliation(s)
- Neelesh Sharma
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | | | | | | | | | | |
Collapse
|
12
|
Effects of fumonisin B1 on HLA class I antigen presentation and processing pathway in GES-1 cells in vitro. Hum Exp Toxicol 2010; 30:379-90. [DOI: 10.1177/0960327110371812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fumonisin B1 (FB1) is a food-borne mycotoxin produced by genus Fusarium and was classified as possible carcinogen to humans by the International Agency for Research on Cancer (IARC). Human leukocyte antigen (HLA) class I antigen presentation pathway plays an important role in immunosurveillance. Defects in HLA class I antigen presentation pathway can down-regulate the expression of HLA class I antigen on the surface of nucleated cells that will confer a survival advantage to randomly mutant cells and may lead to malignant transformation. In the present study, we analyzed the effects of FB1 on the expression of HLA class I heavy chain (classical HLA-A, -B and -C genes included), beta2-microglobulin (β2m), LMP2 and TAP1 genes in human gastric epithelial immortalized GES-1 cells in vitro using semi-quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blot and immunocytochemical methods in dose- and time-effect studies. Our results revealed that FB1 have an effect on HLA class I antigen presentation pathway via the decreased expression of HLA class I heavy chain and/or defects of LMP2 and TAP1 expression. However, the importance of this effect in carcinogenesis needs further investigation.
Collapse
|
13
|
Uhlig S, Ivanova L, Bernhoft A, Eriksen G. 2-Amino-14,16-dimethyloctadecan-3-ol: in vitro bioactivity and bio-production by the fungus Fusarium avenaceum. WORLD MYCOTOXIN J 2008. [DOI: 10.3920/wmj2008.x006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
2-Amino-14,16-dimethyloctadecan-3-ol (2-AOD-3-ol) belongs to the class of sphingosine analogue toxins, which is a class of toxins that is known among several fungal genera and some lower marine animals. Many sphingosine analogues have been shown to inhibit ceramide synthase through structural similarities with the substrates of the enzyme. The adverse effects of some analogues, e.g. the fumonisins, are a result of ceramide synthase inhibition. The primary aim of this work was to generate basic knowledge on the toxicity of 2-AOD-3-ol in vitro. The human hepatocarcinoma cell line Hep G2 and horse erythrocytes were used in order to achieve this aim. The second aim of this work was to gain insight into the capabilities of the fungus Fusarium avenaceum, a common contaminant of grain in Scandinavia, to produce the toxin under laboratory conditions on different grain species, and in the field. The metabolite was found to be cytotoxic in several assays (lower µM-range) that measure general cytotoxicity (Alamar Blue" assay, Neutral Red uptake, LDH leakage), but did not inhibit ceramide synthase as measured by the increase of the sphinganine/sphingosine ratio. The cellular membrane was likewise not found to be a primary target of the molecule. Strains of F. avenaceum produced up to 6.3 mg/g of 2-AOD-3-ol on wheat grain under controlled conditions in the laboratory, while only low amounts (<56 µg/kg) could be found in field samples.
Collapse
Affiliation(s)
- S. Uhlig
- National Veterinary Institute, P.O.Box 8156 Dep., 0033 Oslo, Norway
| | - L. Ivanova
- National Veterinary Institute, P.O.Box 8156 Dep., 0033 Oslo, Norway
| | - A. Bernhoft
- National Veterinary Institute, P.O.Box 8156 Dep., 0033 Oslo, Norway
| | - G. Eriksen
- National Veterinary Institute, P.O.Box 8156 Dep., 0033 Oslo, Norway
| |
Collapse
|
14
|
Suzuki H, Riley RT, Sharma RP. Inducible nitric oxide has protective effect on fumonisin B1 hepatotoxicity in mice via modulation of sphingosine kinase. Toxicology 2007; 229:42-53. [PMID: 17095132 PMCID: PMC1850950 DOI: 10.1016/j.tox.2006.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/14/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
Fumonisin B(1), a mycotoxin, is an inhibitor of ceramide synthase causing marked dysregulation of sphingolipid metabolism in cells. This mycotoxin causes accumulation of free sphingoid bases (sphingosine and dihydrosphingosine or sphinganine) and their metabolites, important messengers involved in signal transduction leading to either cell survival or death. Free sphingoid bases are known apoptotic molecules whereas sphingosine 1-phosphate is protective. We previously reported that fumonisin B(1) caused sphingosine kinase (SPHK) induction along with the increase of serine palmitoyltransferase (SPT). Fumonisin B(1) also increased inducible nitric oxide synthase (iNOS) expression. In the current study we employed a mouse strain with the targeted deletion of iNOS gene (Nos-KO) to evaluate the role of nitric oxide (NO) on fumonisin B(1)-induced hepatotoxicity. The Nos-KO mice exhibited increased hepatotoxicity after subacute fumonisin B(1) exposure compared to their wild type counterparts, the liver regeneration was lower in Nos-KO compared to that in the WT mice. Increased hepatotoxicity in Nos-KO was not related to the extent of free sphingoid base accumulation after fumonisin B(1) treatment; however, it was accompanied by a lack of fumonisin B(1)-induced SPHK induction. The fumonisin B(1)-induced SPT was unaffected by lack of iNOS gene. Deletion of iNOS gene did not prevent fumonisin B(1)-dependent induction of inflammatory cytokines, namely tumor necrosis factor alpha, interferon gamma and interleukin-12. The lack of fumonisin B(1)-induced SPHK induction in Nos-KO was supported by a similar effect on phosphorylated metabolites of sphingoid bases; the equilibrium between sphingoid bases and their phosphates is maintained by SPHK. We therefore conclude that iNOS induction produced by fumonisin B(1) modulates SPHK activity; the lack of iNOS prevents generation of sphingosine 1-phosphate and deprives cells from its protective effects.
Collapse
Affiliation(s)
- Hirofumi Suzuki
- Department of Physiology and Pharmacology, College of Veterinary Medicine The University of Georgia, Athens, GA 30602, USA
| | - Ronald T. Riley
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, Georgia 30604, USA
| | - Raghubir P. Sharma
- Department of Physiology and Pharmacology, College of Veterinary Medicine The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Sharma N, Suzuki H, He Q, Sharma RP. Tumor necrosis factor alpha-mediated activation of c-Jun NH(2)-terminal kinase as a mechanism for fumonisin B(1) induced apoptosis in murine primary hepatocytes. J Biochem Mol Toxicol 2006; 19:359-67. [PMID: 16421893 DOI: 10.1002/jbt.20102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fumonisin B(1) is a mycotoxin produced by Fusarium verticillioides, frequently associated with corn. It produces species-specific and organ-specific toxicity, including equine leukoencephalomalacia, porcine pulmonary edema, and hepatic or renal damage in most animal species. Fumonisin B(1) perturbs sphingolipid metabolism by inhibiting ceramide synthase. Our previous studies indicated that fumonisin B(1) caused localized activation of cytokines in liver produced by macrophages and other cell types that modulate fumonisin B(1) induced hepatic apoptosis in mice. The role of tumor necrosis factor alpha (TNFalpha) in fumonisin B(1) mediated hepatocyte apoptosis has been established; not much is known about the downstream events leading to apoptosis. In the current study, fumonisin B(1) induced apoptosis in primary culture of liver cells. In consistence with previous reports, fumonisin B(1) caused accumulation of sphingoid bases and led to increase in TNFalpha expression. Phosphorylated and total c-Jun NH(2)-terminal kinase (JNK) activities were increased after 24 h fumonisin B(1) treatment. JNK inhibitor (SP600125) and anti-TNFalpha reduced the apoptosis induced by fumonisin B(1). The role of JNK signaling in fumonisin B(1) induced apoptosis is downstream of TNFalpha production, as fumonisin B(1)-mediated activation of JNK was reduced by the presence of anti-TNFalpha in the medium, whereas the presence of JNK inhibitor did not change the fumonisin B(1) induced TNFalpha expression. Results of this study imply that generation of fumonisin B(1) induced TNFalpha results in modulation of mitogen activated protein kinases, particularly of JNK, and provides a possible mechanism for apoptosis in murine hepatocytes.
Collapse
Affiliation(s)
- Neelesh Sharma
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389, USA
| | | | | | | |
Collapse
|