1
|
Lassallette E, Pierron A, Tardieu D, Reymondaud S, Gallissot M, Rodriguez MA, Collén PN, Roy O, Guerre P. Biomarkers of Fumonisin Exposure in Pigs Fed the Maximum Recommended Level in Europe. Toxins (Basel) 2025; 17:69. [PMID: 39998086 PMCID: PMC11861712 DOI: 10.3390/toxins17020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
This study investigated biomarkers of fumonisin exposure in pigs fed diets contaminated with fumonisins at the European Union's maximum recommended level. Pigs were assigned to either a fumonisin (FB) diet or a fumonisin plus AlgoClay (FB + AC) diet for durations of 4, 9, and 14 days. At 14 days, the plasma Sa1P:So1P ratio increased in pigs fed the FB diet, while the Sa:So ratio remained unchanged. In the liver, FB1 was detected at four days of exposure, with the concentration tending to increase through day 14. The Sa:So and C22-24:C16 ratios of 18:1-, 18:2-, and m18:1-ceramides were elevated at 9 and 14 days, respectively. In the kidneys, FB1 was only detectable at 14 days, and the Sa:So and C22-24:C16 ratios of 18:1-ceramides were increased. In both the liver and kidneys, the increase in the C22-24:C16 ratio was attributed to a reduction of C16 ceramides. In the lungs, no FB1 was detected; however, the Sa:So and Sa1P:So1P ratios increased, and C16 ceramide concentrations decreased at 14 days. Feeding the pigs the FB + AC diet resulted in a reduction of the FB1 tissue-to-feed ratio in the liver and kidneys but did not affect the Sa:So or Sa1P:So1P ratios. Interestingly, the decreases in C16 ceramides observed in the FB diet group were no longer detectable in the FB + AC group. Overall, these findings highlight the complexity of the relationship between FB1 tissue concentrations and sphingolipid changes, suggesting that a comprehensive analysis of multiple biomarkers is required to fully understand fumonisin's effects.
Collapse
Affiliation(s)
- Elodie Lassallette
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | - Alix Pierron
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Solène Reymondaud
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Marie Gallissot
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | | | - Pi Nyvall Collén
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | - Olivier Roy
- Cebiphar, 1 Rue de la Bodinière, 37230 Fondettes, France;
| | - Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| |
Collapse
|
2
|
Yang D, Ye Y, Huang Y, Huang H, Sun J, Wang JS, Tang L, Gao Y, Sun X. Effects of FB1 and HFB1 on Autonomous Exploratory and Spatial Memory and Learning Abilities in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16752-16762. [PMID: 37822021 DOI: 10.1021/acs.jafc.3c05501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Fumonisin B1 (FB1) is a representative form of fumonisin and is widely present in food and feed. Hydrolyzed fumonisin B1 (HFB1) emerges as a breakdown product of FB1, which is accompanied by FB1 alterations. While previous studies have primarily focused on the liver or kidney toxicity of FB1, with limited studies existing on its neurotoxicity and even fewer on the toxicity of HFB1, this study focuses on the neurotoxicity of FB1 and HFB1 exposure in mice investigated by the open field test, Morris water maze test, histopathological analysis, and nontargeted metabolomics. Further, the levels of oxidative stress-related indices, neurotransmitters, and sphingolipids in the brain were measured to analyze their correlation with behavioral outcomes. The results showed that both FB1 (5 mg/kg) and HFB1 (2.8 mg/kg) reduced autonomous exploratory behavior in mice, impaired spatial learning and memory, and caused mild abnormalities in the brain structure. Quantitative analysis further indicated that exposure to FB1 and HFB1 disrupted neurotransmitter homeostasis, exacerbated oxidative stress, and significantly increased the sphinganine/sphingosine (Sa/So) ratio. Moreover, HFB1 exhibited neurotoxic effects similar to those of FB1, emphasizing the need to pay attention to the neurotoxicity effect of HFB1. These findings underscore the importance of understanding the risks and potential neurological damage associated with FB1 and HFB1 exposure, highlighting the necessity for further research in this crucial field.
Collapse
Affiliation(s)
- Diaodiao Yang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yongli Ye
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yaoguang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Heyang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jiadi Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Yahui Gao
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
3
|
Guerre P, Matard-Mann M, Nyvall Collén P. Targeted sphingolipid analysis in chickens suggests different mechanisms of fumonisin toxicity in kidney, lung, and brain. Food Chem Toxicol 2022; 170:113467. [DOI: 10.1016/j.fct.2022.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
4
|
Investigation of the Genotoxic Potential of the Marine Toxin C17-SAMT Using the In Vivo Comet and Micronucleus Assays. Mar Drugs 2022; 20:md20100619. [PMID: 36286443 PMCID: PMC9604968 DOI: 10.3390/md20100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
The contaminant responsible for the atypical toxicity reported in mussels from Bizerte Lagoon (Northern Tunisia) during the last decade has been characterized as C17-sphinganine analog mycotoxin (C17-SAMT). This neurotoxin showed common mouse toxic symptoms, including flaccid paralysis and severe dyspnea, followed by rapid death. For hazard assessment on human health, in this work we aimed to evaluate the in vivo genotoxic effects of this marine biotoxin using the classical alkaline and modified Fpg comet assays performed to detect DNA breaks and alkali-labile sites as well as oxidized bases. The micronucleus assay was used on bone marrow to detect chromosome and genome damage. C17-SAMT induces a statistically insignificant increase in DNA tail intensity at all doses in the duodenum, and in the spleen contrary to the liver, the percentage of tail DNA increased significantly at the mid dose of 300 µg/kg b.w/d. C17-SAMT did not affect the number of micronuclei in the bone marrow. Microscopic observations of the liver showed an increase in the number of mitosis and hepatocytes' cytoplasm clarification. At this level of study, we confirm that C17-SAMT induced DNA damage in the liver but there was no evidence of effects causing DNA oxidation or chromosome and genome damage.
Collapse
|
5
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Daenicke S, Nebbia CS, Oswald IP, Rovesti E, Steinkellner H, Hoogenboom L(R. Assessment of information as regards the toxicity of fumonisins for pigs, poultry and horses. EFSA J 2022; 20:e07534. [PMID: 36034321 PMCID: PMC9399829 DOI: 10.2903/j.efsa.2022.7534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In 2018, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. A no observed adverse effect level (NOAEL) of 1 mg/kg feed was established for pigs. In poultry a NOAEL of 20 mg/kg feed and in horses a reference point for adverse animal health effect of 8.8 mg/kg feed was established, referred to as NOAEL. The European Commission (EC) requested EFSA to review the information regarding the toxicity of fumonisins for pigs, poultry and horses and to revise, if necessary, the established NOAELs. The EFSA CONTAM Panel considered that the term reference point (RP) for adverse animal health effects better reflects the uncertainties in the available studies. New evidence which had become available since the previous opinion allowed to revise an RP for adverse animal health effects for poultry from 20 mg/kg to 1 mg/kg feed (based on a LOAEL of 2.5 mg/kg feed for reduced intestinal crypt depth) and for horses from 8.8 to 1.0 mg/kg feed (based on case studies on equine leukoencephalomalacia (ELEM)). For pigs, the previously established NOAEL was confirmed as no further studies suitable for deriving an RP for adverse animal health effects could be identified. Based on exposure estimates performed in the previous opinion, the risk of adverse health effects of feeds containing FB1-3 was considered a concern for poultry, when taking into account the RP of 1 mg/kg feed for intestinal effects. For horses and other solipeds, the risk is considered low, although a large uncertainty associated with exposure was identified. The same conclusions apply to the sum of FB1-3 and their hidden forms.
Collapse
|
6
|
Guerre P, Travel A, Tardieu D. Targeted Analysis of Sphingolipids in Turkeys Fed Fusariotoxins: First Evidence of Key Changes That Could Help Explain Their Relative Resistance to Fumonisin Toxicity. Int J Mol Sci 2022; 23:2512. [PMID: 35269655 PMCID: PMC8910753 DOI: 10.3390/ijms23052512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of fumonisins on sphingolipids in turkeys are unknown, except for the increased sphinganine to sphingosine ratio (Sa:So) used as a biomarker. Fumonisins fed at 20.2 mg/kg for 14 days were responsible for a 4.4 fold increase in the Sa:So ratio and a decrease of 33% and 36% in C14-C16 ceramides and C14-C16 sphingomyelins, respectively, whereas C18-C26 ceramides and C18-C26 sphingomyelins remained unaffected or were increased. Glucosyl- and lactosyl-ceramides paralleled the concentrations of ceramides. Fumonisins also increased dihydroceramides but had no effect on deoxysphinganine. A partial least squfares discriminant analysis revealed that all changes in sphingolipids were important in explaining the effect of fumonisins. Because deoxynivalenol and zearalenone are often found in feed, their effects on sphingolipids alone and in combination with fumonisins were investigated. Feeding 5.12 mg deoxynivalenol/kg reduced dihydroceramides in the liver. Zearalenone fed at 0.47 mg/kg had no effect on sphingolipids. When fusariotoxins were fed simultaneously, the effects on sphingolipids were similar to those observed in turkeys fed fumonisins alone. The concentration of fumonisin B1 in the liver of turkeys fed fumonisins was 0.06 µmol/kg. Changes in sphingolipid concentrations differed but were consistent with the IC50 of fumonisin B1 measured in mammals; these changes could explain the relative resistance of turkeys to fumonisins.
Collapse
Affiliation(s)
- Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| | | | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| |
Collapse
|
7
|
Strong Alterations in the Sphingolipid Profile of Chickens Fed a Dose of Fumonisins Considered Safe. Toxins (Basel) 2021; 13:toxins13110770. [PMID: 34822554 PMCID: PMC8619408 DOI: 10.3390/toxins13110770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023] Open
Abstract
Fumonisins (FB) are mycotoxins known to exert most of their toxicity by blocking ceramide synthase, resulting in disruption of sphingolipid metabolism. Although the effects of FB on sphinganine (Sa) and sphingosine (So) are well documented in poultry, little information is available on their other effects on sphingolipids. The objective of this study was to analyze the effects of FB on the hepatic and plasma sphingolipidome in chickens. The first concern of this analysis was to clarify the effects of FB on hepatic sphingolipid levels, whose variations can lead to numerous toxic manifestations. The second was to specify the possible use of an alteration of the sphingolipidome as a biomarker of exposure to FB, in addition to the measurement of the Sa:So ratio already widely used. For this purpose, we developed an UHPLC MS/MS method that enabled the determination of 82 SL, including 10 internal standards, in chicken liver and plasma. The validated method was used to measure the effects of FB administered to chickens at a dose close to 20 mg FB1 + FB2/kg feed for 9 days. Significant alterations of sphingoid bases, ceramides, dihydroceramides, glycosylceramides, sphingomyelins and dihydrosphingomyelins were observed in the liver. In addition, significant increases in plasma sphinganine 1-phosphate, sphingosine 1-phosphate and sphingomyelins were observed in plasma. Interestingly, partial least-squares discriminant analysis of 11 SL in plasma made it possible to discriminate exposed chickens from control chickens, whereas analysis of Sa and So alone revealed no difference. In conclusion, our results show that the effects of FB in chickens are complex, and that SL profiling enables the detection of exposure to FB when Sa and So fail.
Collapse
|
8
|
Laurain J, Tardieu D, Matard-Mann M, Rodriguez MA, Guerre P. Fumonisin B1 Accumulates in Chicken Tissues over Time and This Accumulation Was Reduced by Feeding Algo-Clay. Toxins (Basel) 2021; 13:toxins13100701. [PMID: 34678994 PMCID: PMC8537492 DOI: 10.3390/toxins13100701] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
The toxicokinetics of the food and feed contaminant Fumonisin B (FB) are characterized by low oral absorption and rapid plasma elimination. For these reasons, FB is not considered to accumulate in animals. However, recent studies in chicken and turkey showed that, in these species, the hepatic half-elimination time of fumonisin B1 (FB1) was several days, suggesting that FB1 may accumulate in the body. For the present study, 21-day-old chickens received a non-toxic dose of around 20 mg FB1 + FB2/kg of feed to investigate whether FB can accumulate in the body over time. Measurements taken after four and nine days of exposure revealed increased concentrations of sphinganine (Sa) and sphingosine (So) over time in the liver, but no sign of toxicity and no effect on performances were observed at this level of FB in feed. Measurements of FB in tissues showed that FB1 accumulated in chicken livers from four to nine days, with concentrations of 20.3 and 32.1 ng FB1/g observed, respectively, at these two exposure periods. Fumonisin B2 (FB2) also accumulated in the liver, from 0.79 ng/g at four days to 1.38 ng/g at nine days. Although the concentrations of FB found in the muscles was very low, an accumulation of FB1 over time was observed in this tissue, with concentrations of 0.036 and 0.072 ng FB1/g being measured after four and nine days of exposure, respectively. Feeding algo-clay to the chickens reduced the accumulation of FB1 in the liver and muscle by , approximately 40 and 50% on day nine, respectively. By contrast, only a weak non-significant effect was observed on day four. The decrease in the concentration of FB observed in tissues of chickens fed FB plus algo-clay on day nine was accompanied by a decrease in Sa and So contents in the liver compared to the levels of Sa and So measured in chickens fed FB alone. FB1 in the liver and Sa or So contents were correlated in liver tissue, confirming that both FB1 and Sa are suitable biomarkers of FB exposure in chickens. Further studies are necessary to determine whether FB can accumulate at higher levels in chicken tissues with an increase in the time of exposure and in the age of the animals.
Collapse
Affiliation(s)
- Julia Laurain
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (J.L.); (M.M.-M.); (M.A.R.)
| | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France;
| | - Maria Matard-Mann
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (J.L.); (M.M.-M.); (M.A.R.)
| | | | - Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France;
- Correspondence:
| |
Collapse
|
9
|
Peillod C, Laborde M, Travel A, Mika A, Bailly JD, Cleva D, Boissieu C, Le Guennec J, Albaric O, Labrut S, Froment P, Tardieu D, Guerre P. Toxic Effects of Fumonisins, Deoxynivalenol and Zearalenone Alone and in Combination in Ducks Fed the Maximum EUTolerated Level. Toxins (Basel) 2021; 13:toxins13020152. [PMID: 33669302 PMCID: PMC7920068 DOI: 10.3390/toxins13020152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/01/2022] Open
Abstract
Toxic effects among fumonisins B (FB), deoxynivalenol (DON) and zearalenone (ZEN) administered alone and combined were investigated in 84-day-old ducks during force-feeding. 75 male ducks, divided into five groups of 15 animals, received daily during the meal a capsule containing the desired among of toxin. Treated animals received dietary levels of toxins equivalent to 20 mg FB1+FB2/kg (FB), 5 mg DON/kg (DON), 0.5 mg ZEN/kg (ZEN) and 20, 5 and 0.5 mg/kg of FB, DON and ZEN (FBDONZEN), respectively. Control birds received capsules with no toxin. After 12 days, a decrease in body weight gain accompanied by an increase in the feed conversion ratio was observed in ducks exposed to FBDONZEN, whereas there was no effect on performances in ducks exposed to FB, DON and ZEN separately. No difference among groups was observed in relative organ weight, biochemistry, histopathology and several variables used to measure oxidative damage and testicular function. A sphinganine to sphingosine ratio of 0.32, 1.19 and 1.04, was measured in liver in controls and in ducks exposed to FB and FBDONZEN, respectively. Concentrations of FB1 in liver were 13.34 and 15.4 ng/g in ducks exposed to FB and FBDONZEN, respectively. Together ZEN and its metabolites were measured after enzymatic hydrolysis of the conjugated forms. Mean concentrations of α-zearalenol in liver were 0.82 and 0.54 ng/g in ducks exposed to ZEN and FBDONZEN, respectively. β-zearalenol was 2.3-fold less abundant than α-zearalenol, whereas ZEN was only found in trace amounts. In conclusion, this study suggests that decreased performance may occur in ducks exposed to a combination of FB, DON and ZEN, but does not reveal any other interaction between mycotoxins in any of the other variables measured.
Collapse
Affiliation(s)
- Céline Peillod
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Marie Laborde
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Angélique Travel
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Amandine Mika
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Jean Denis Bailly
- Equipe Biosynthèse et toxicité des mycotoxines, ENVT, UMR Toxalim, Université de Toulouse, F-31076 Toulouse, France;
| | - Didier Cleva
- Chêne Vert Conseil, Z Bellevue II, 35220 Chateaubourg, France; (D.C.); (C.B.)
| | - Cyril Boissieu
- Chêne Vert Conseil, Z Bellevue II, 35220 Chateaubourg, France; (D.C.); (C.B.)
| | - Jean Le Guennec
- Finalab, 4 bis rue Th. Botrel, BP 351, 22603 Loudéac CEDEX, France;
| | - Olivier Albaric
- ONIRIS, Site de la Chantrerie, BP 40706, 44307 Nantes CEDEX 3, France; (O.A.); (S.L.)
| | - Sophie Labrut
- ONIRIS, Site de la Chantrerie, BP 40706, 44307 Nantes CEDEX 3, France; (O.A.); (S.L.)
| | - Pascal Froment
- Equipe GCR INRA–Physiologie de la Reproduction et des Comportements-UMR INRA-CNRS (UMR 6175)-Université François Rabelais de Tours, 37380 Nouzilly, France;
| | | | - Philippe Guerre
- ENVT, Université de Toulouse, F-31076 Toulouse, France;
- Correspondence: ; Tel.: +33-056-119-3840
| |
Collapse
|
10
|
Travel A, Metayer JP, Mika A, Bailly JD, Cleva D, Boissieu C, Le Guennec J, Albaric O, Labrut S, Lepivert G, Marengue E, Froment P, Tardieu D, Guerre P. Toxicity of Fumonisins, Deoxynivalenol, and Zearalenone Alone and in Combination in Turkeys Fed with the Maximum European Union-Tolerated Level. Avian Dis 2020; 63:703-712. [PMID: 31865686 DOI: 10.1637/aviandiseases-d-19-00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022]
Abstract
Surveys of mycotoxins worldwide have shown that deoxynivalenol (DON), fumonisins (FB), and zearalenone (ZON) are the most abundant Fusarium mycotoxins (FUS) in European poultry feed, in both the level and the frequency of contamination. Previous studies reported that a combination of FUS at concentrations that individually are not toxic may negatively affect animals. However, although toxic thresholds and regulatory guidelines exist for FUS, none account for the risk of multiple contamination, which is the most frequent. The aim of this study was to compare DON, FB, and ZON toxicity, alone and in combination, in male turkey poults. Ground cultured toxigenic Fusarium strains were incorporated in corn-soybean-based feed in five experimental diets: control diet, containing no mycotoxins, DON diet (5 mg DON/kg), FB diet (20 mg FB1 + FB2/ kg), ZON diet (0.5 mg ZON/kg), and DONFBZON diet (5, 20, and 0.5 mg/kg of DON, FB1 + FB2, and ZON, respectively). Seventy male Grade Maker turkeys were reared in individual cages on mycotoxin-free diets from 0 to 55 days of age. On the 55th day, the turkeys were weighed and divided into five groups each comprising 14 birds. Each group was fed one of the five experimental diets for a period of 14 days. On the 70th day of age, feed was withheld for 8 hr, at which time a blood sample was collected, and then all the turkeys were killed, autopsied, and different tissues sampled. The weight of the different organs, analyses of performance, biochemistry, histopathology, oxidative damage, and testis toxicity revealed no significant effects attributable to FUS. Measurement of sphingolipids in the liver revealed an increase in the sphinganine to sphingosine ratio in turkeys fed diets containing FB, but had no apparent consequences in terms of toxicity. Finally, only slight differences were found in some variables and the results of this study showed no interactions between DON, FB, and ZON. Taken together, results thus suggest that the maximum tolerated levels established for individual contamination by DON, FB, and ZON can also be considered safe in turkeys fed with combinations of these FUS for a period of 14 days.
Collapse
Affiliation(s)
- Angélique Travel
- Intistitut Technique de l'Aviculture, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Jean-Paul Metayer
- Arvalis-Institut du Végétal, Station expérimentale, 91720 Boigneville, France
| | - Amandine Mika
- Intistitut Technique de l'Aviculture, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Jean-Denis Bailly
- Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Equipe Biosynthèse et toxicité des mycotoxines, Unité Mixte de Recherche Toxalim, F-31076 Toulouse, France
| | - Didier Cleva
- Chêne Vert Conseil, ZI Bellevue II-35220 Chateaubourg, France
| | - Cyril Boissieu
- Chêne Vert Conseil, ZI Bellevue II-35220 Chateaubourg, France
| | - Jean Le Guennec
- Finalab, 4 bis rue Th. Botrel, BP 351, 22603 Loudéac Cedex, France
| | - Olivier Albaric
- Oniris, Site de la Chantrerie, BP 40706, 44307 Nantes Cédex 3, France
| | - Sophie Labrut
- Oniris, Site de la Chantrerie, BP 40706, 44307 Nantes Cédex 3, France
| | - Gurvan Lepivert
- Labocea, 7 rue du Sabot, CS 30054, Zoopole, 22440 Ploufragan, France
| | - Eric Marengue
- Labocea, 7 rue du Sabot, CS 30054, Zoopole, 22440 Ploufragan, France
| | - Pascal Froment
- Team Sensor, Unité Mixte de Recherche 7247, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/ Université de Tours/IFCE 37380 Nouzilly, France
| | - Didier Tardieu
- Université de Toulouse, ENVT, 23 Chemin des capelles, BP 87614, 31076 Toulouse Cedex 3, France
| | - Philippe Guerre
- Université de Toulouse, ENVT, 23 Chemin des capelles, BP 87614, 31076 Toulouse Cedex 3, France,
| |
Collapse
|
11
|
Lack of Toxic Interaction Between Fusariotoxins in Broiler Chickens Fed throughout Their Life at the Highest Level Tolerated in the European Union. Toxins (Basel) 2019; 11:toxins11080455. [PMID: 31382532 PMCID: PMC6722906 DOI: 10.3390/toxins11080455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/24/2022] Open
Abstract
Fusarium mycotoxins (FUS) occur frequently in poultry diets, and regulatory limits are laid down in several countries. However, the limits were established for exposure to a single mycotoxin, whereas multiple contamination is more realistic, and different studies have demonstrated that it is not possible to predict interactions between mycotoxins. The purpose of this study was thus to compare the toxic effect of deoxynivalenol (DON), fumonisins (FB) and zearalenone (ZON), alone and in combination on broiler chickens, at the maximum tolerated level established by the EU for poultry feed. Experimental corn-soybean diets incorporated ground cultured toxigenic Fusarium strains. One feed was formulated for chickens 0 to 10 days old and another for chickens 11 to 35 days old. The control diets were mycotoxin free, the DON diets contained 5 mg DON/kg, the FB diet contained 20 mg FB1 + FB2/kg, and the ZON diet contained 0.5 mg ZON/kg. The DONFBZON diet contained 5, 20, and 0.5 mg/kg of DON, FB1 + FB2, and ZON, respectively. Diets were distributed ad libitum to 70 broilers (male Ross PM3) separated into five groups of 14 chickens each reared in individual cages from one to 35 days of age. On day 35, after a starvation period of 8 h, a blood sample was collected, and all the animals were killed and autopsied. No difference between groups that could be attributed to FUS was observed in performances, the relative weight of organs, biochemistry, histopathology, intestinal morphometry, variables of oxidative damage, and markers of testicle toxicity. A significant increase in sphinganine and in the sphinganine to sphingosine ratio was observed in broilers fed FB. Taken together, these results suggest that the regulatory guidelines established for single contamination of broiler chickens fed with DON, FB, and ZON can also be used in the case of multiple contamination with these toxins.
Collapse
|
12
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Grenier B, Schwartz-Zimmermann HE, Gruber-Dorninger C, Dohnal I, Aleschko M, Schatzmayr G, Moll WD, Applegate TJ. Enzymatic hydrolysis of fumonisins in the gastrointestinal tract of broiler chickens. Poult Sci 2018; 96:4342-4351. [PMID: 29053869 PMCID: PMC5850661 DOI: 10.3382/ps/pex280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
Fumonisins (FB) are among the most frequently detected mycotoxins in feedstuffs and finished feed, and recent data suggest that the functions of the gastrointestinal tract (GIT) in poultry species might be compromised at doses ranging from 10 to 20 mg/kg, close to field incidences and below the US and EU guidelines. Strategies are therefore necessary to reduce the exposure of poultry to FB. In the present study, we assessed the efficacy of fumonisin esterase FumD (EC 3.1.1.87, commercial name FUMzyme®) to cleave the tricarballylic acid side chains of FB, leading to the formation of non-toxic hydrolyzed fumonisins in the GIT of broiler chickens. Broiler chickens were fed for 14 d (7 to 21 d of age) 3 different diets (6 birds/cage, 6 cages/diet), i) control feed (negative control group), ii) feed contaminated with 10 mg FB/kg (FB group), and iii) feed contaminated with 10 mg FB/kg and supplemented with 100 units of FUMzyme®/kg (FB+FUMzyme® group). To determine the degree of reduction of FB in the GIT, 2 characteristics were analyzed. First, the sphinganine-to-sphingosine ratio in the serum and liver was determined as a biomarker of effect for exposure to FB. Second, the concentration of fumonisin B1 and its hydrolyzed forms was evaluated in the gizzard, the proximal and distal parts of the small intestine, and the excreta. Significantly reduced sphinganine-to-sphingosine ratios in the serum and liver of the FB+FUMzyme® group (serum: 0.15 ± 0.01; liver: 0.17 ± 0.01) compared to the FB group (serum: 0.20 ± 0.01; liver: 0.29 ± 0.03) proved that supplementation of broiler feed with FUMzyme® was effective in partially counteracting the toxic effect of dietary FB. Likewise, FB concentrations in digesta and excreta were significantly reduced in the FB+FUMzyme® group compared to the FB group (P < 0.05; up to 75%). FUMzyme® furthermore partially counteracted FB-induced up-regulation of cytokine gene expression (IL-8 and IL-10) in the jejunum. The FB group showed significantly higher gene expression of IL-8 and IL-10 compared to the negative control group (IL-8: fold change = 2.9 ± 1.1, P < 0.05; IL-10: fold change = 3.6 ± 1.4, P < 0.05), whereas IL-8 and IL-10 mRNA levels were not significantly different in the FB+FUMzyme®® group compared to the other 2 groups. In conclusion, FUMzyme® is suitable to detoxify FB in chickens and maintain gut functions.
Collapse
Affiliation(s)
- B Grenier
- Department of Animal Sciences, Purdue University, W. Lafayette, IN.,BIOMIN Research Center, Tulln, Austria
| | - H E Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | | | - I Dohnal
- BIOMIN Research Center, Tulln, Austria
| | | | | | - W D Moll
- BIOMIN Research Center, Tulln, Austria
| | - T J Applegate
- Department of Animal Sciences, Purdue University, W. Lafayette, IN.,Department of Poultry Science, University of Georgia, Athens
| |
Collapse
|
14
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Eriksen GS, Taranu I, Altieri A, Roldán-Torres R, Oswald IP. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J 2018; 16:e05242. [PMID: 32625894 PMCID: PMC7009563 DOI: 10.2903/j.efsa.2018.5242] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Fumonisins, mycotoxins primarily produced by Fusarium verticillioides and Fusarium proliferatum, occur predominantly in cereal grains, especially in maize. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to fumonisins and their modified and hidden forms in feed. Fumonisin B1 (FB 1), FB 2 and FB 3 are the most common forms of fumonisins in feedstuffs and thus were included in the assessment. FB 1, FB 2 and FB 3 have the same mode of action and were considered as having similar toxicological profile and potencies. For fumonisins, the EFSA Panel on Contaminants in the Food Chain (CONTAM) identified no-observed-adverse-effect levels (NOAELs) for cattle, pig, poultry (chicken, ducks and turkeys), horse, and lowest-observed-adverse-effect levels (LOAELs) for fish (extrapolated from carp) and rabbits. No reference points could be identified for sheep, goats, dogs, cats and mink. The dietary exposure was estimated on 18,140 feed samples on FB 1-3 representing most of the feed commodities with potential presence of fumonisins. Samples were collected between 2003 and 2016 from 19 different European countries, but most of them from four Member States. To take into account the possible occurrence of hidden forms, an additional factor of 1.6, derived from the literature, was applied to the occurrence data. Modified forms of fumonisins, for which no data were identified concerning both the occurrence and the toxicity, were not included in the assessment. Based on mean exposure estimates, the risk of adverse health effects of feeds containing FB 1-3 was considered very low for ruminants, low for poultry, horse, rabbits, fish and of potential concern for pigs. The same conclusions apply to the sum of FB 1-3 and their hidden forms, except for pigs for which the risk of adverse health effect was considered of concern.
Collapse
|
15
|
Dose-dependent effects on sphingoid bases and cytokines in chickens fed diets prepared with fusarium verticillioides culture material containing fumonisins. Toxins (Basel) 2015; 7:1253-72. [PMID: 25871822 PMCID: PMC4417966 DOI: 10.3390/toxins7041253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
Abstract
In chickens, the effect of mycotoxins, especially fumonisins (FB), in the gastrointestinal tract (GIT) is not well documented. Thus, this study in broiler chicks determined the effects of consuming diets prepared with Fusarium verticillioides culture material containing FB on intestinal gene expression and on the sphinganine (Sa)/sphingosine (So) ratio (Sa/So; a biomarker of FB effect due to disruption of sphingolipid metabolism). Male broilers were assigned to 6 diets (6 cages/diet; 6 birds/cage) from hatch to 20 days containing 0.4, 5.6, 11.3, 17.5, 47.8, or 104.8 mg FB/kg diet. Exposure to FB altered the Sa/So ratio in all tissues analyzed, albeit to varying extents. Linear dose-responses were observed in the kidney, jejunum and cecum. The liver and the ileum were very sensitive and data fit a cubic and quadratic polynomial model, respectively. Gene expression in the small intestine revealed low but significant upregulations of cytokines involved in the pro-inflammatory, Th1/Th17 and Treg responses, especially at 10 days of age. Interestingly, the cecal tonsils exhibited a biphasic response. Unlike the sphingolipid analysis, the effects seen on gene expression were not dose dependent, even showing more effects when birds were exposed to 11.3 mg FB/kg. In conclusion, this is the first report on the disruption of the sphingolipid metabolism by FB in the GIT of poultry. Further studies are needed to reach conclusions on the biological meaning of the immunomodulation observed in the GIT, but the susceptibility of chickens to intestinal pathogens when exposed to FB, at doses lower than those that would cause overt clinical symptoms, should be addressed.
Collapse
|
16
|
Shale K, Mukamugema J, Lues R, Venter P. Toxicity profile of commercially produced indigenous banana beer. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1300-6. [DOI: 10.1080/19440049.2012.688879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Benlasher E, Geng X, Nguyen NTX, Tardieu D, Bailly JD, Auvergne A, Guerre P. Comparative effects of fumonisins on sphingolipid metabolism and toxicity in ducks and turkeys. Avian Dis 2012; 56:120-7. [PMID: 22545537 DOI: 10.1637/9853-071911-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fumonisins (FBs) are mycotoxins that are found worldwide in maize and maize products. Their main toxic effects have been well characterized in poultry, but differences between species have been demonstrated. Ducks appeared very sensitive to toxicity, whereas turkeys are more resistant. At the same time, alterations of sphingolipid metabolism, with an increase of the concentration of the free sphinganine (Sa) in serum and liver, have been demonstrated in the two species, but the link between the toxicity of FBs and Sa accumulation remains difficult to interpret. The aim of the present work was to compare the effects of FBs (10 mg FB1 + FB2/kg body weight) on sphingolipid metabolism in ducks and turkeys. Growth, feed consumption, and serum biochemistry were also investigated to evaluate toxicity. The main results showed that FBs increased Sa concentrations in liver and serum in ducks and turkeys, but these accumulations were not directly correlated with toxicity. Sa accumulation was higher in the livers of turkeys than in ducks, whereas Sa levels were higher in the sera of ducks than in turkeys. Hepatic toxicity was more pronounced in ducks than in turkeys and accompanied a decrease of body weight and an increase of serum biochemistry in ducks but not in turkeys. So, although FBs increase Sa concentration in the livers of both species, this effect is not directly proportional to toxicity. The mechanisms of FB toxicity and/or the mechanisms of protection of ducks and turkeys to the Sa accumulation within the liver remain to be established.
Collapse
Affiliation(s)
- Emad Benlasher
- Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Unité de Recherche, Mycotoxicologie, 23 Chemin des capelles, BP 87614, 31076 Toulouse Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Silva LJ, Lino CM, Pena A. Sphinganine–sphingosine ratio in urine from two Portuguese populations as biomarker to fumonisins exposure. Toxicon 2009; 54:390-8. [DOI: 10.1016/j.toxicon.2009.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/05/2009] [Accepted: 05/11/2009] [Indexed: 11/26/2022]
|
19
|
Tardieu D, Bailly JD, Benlashehr I, Auby A, Jouglar JY, Guerre P. Tissue persistence of fumonisin B1 in ducks and after exposure to a diet containing the maximum European tolerance for fumonisins in avian feeds. Chem Biol Interact 2009; 182:239-44. [PMID: 19559689 DOI: 10.1016/j.cbi.2009.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Toxicity and persistence of fumonisin B1 (FB1) in liver, kidney and muscle were investigated in ducks fed 5, 10 and 20mg FB1+FB2/kg feed during force-feeding. Mortality and signs of toxicity were only obtained with 20mg/kg, whereas an increased Sa/So ratio was observed from 5mg/kg on. Persistence of FB1 was only found in liver (16 and 20 microg FB1/kg liver in ducks fed 10 and 20 mg FB1+FB2/kg feed, respectively). Toxicokinetic studies were conducted by the intravenous route (IV, single dose: 10mg FB1/kg body weight) and the oral route (single dose: 100mg FB1/kg body weight), in growing ducks and in ducks during force-feeding. After IV administration, serum concentration-time curves were described by a two-compartment open model. Elimination half-life and mean residence time of FB1 were 26 and 24 min, respectively, clearance was 19.3 ml/min/kg. After oral administration, bioavailability, elimination half-life, mean residence time and clearance varied during force-feeding and growth from 2-2.3%, 71-80 min, 200-188 min, 16.7-17 ml/min/kg, respectively. Taken together these results demonstrate that the risk of persistence of FB1 in ducks after force-feeding is very low, Sa/So being a good biomarker which increases before signs of toxicity and risk of persistence of FB1 in tissue (limit of detection 13 microg/kg).
Collapse
Affiliation(s)
- Didier Tardieu
- ENVT, Mycotoxicology Unit, 23 chemin des capelles, BP 87614, 31076 Toulouse Cedex 3, France
| | | | | | | | | | | |
Collapse
|
20
|
Gelineau-van Waes J, Voss KA, Stevens VL, Speer MC, Riley RT. Maternal fumonisin exposure as a risk factor for neural tube defects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 56:145-181. [PMID: 19389609 DOI: 10.1016/s1043-4526(08)00605-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fumonisins are mycotoxins produced by the fungus F. verticillioides, a common contaminant of maize (corn) worldwide. Maternal consumption of fumonisin B(1)-contaminated maize during early pregnancy has recently been associated with increased risk for neural tube defects (NTDs) in human populations that rely heavily on maize as a dietary staple. Experimental administration of purified fumonisin to mice early in gestation also results in an increased incidence of NTDs in exposed offspring. Fumonisin inhibits the enzyme ceramide synthase in de novo sphingolipid biosynthesis, resulting in an elevation of free sphingoid bases and depletion of downstream glycosphingolipids. Increased sphingoid base metabolites (i.e., sphinganine-1-phosphate) may perturb signaling cascades involved in embryonic morphogenesis by functioning as ligands for sphingosine-1-P (S1P) receptors, a family of G-protein-coupled receptors that regulate key biological processes such as cell survival/proliferation, differentiation and migration. Fumonisin-induced depletion of glycosphingolipids impairs expression and function of the GPI-anchored folate receptor (Folr1), which may also contribute to adverse pregnancy outcomes. NTDs appear to be multifactorial in origin, involving complex gene-nutrient-environment interactions. Vitamin supplements containing folic acid have been shown to reduce the occurrence of NTDs, and may help protect the developing fetus from environmental teratogens. Fumonisins appear to be an environmental risk factor for birth defects, although other aspects of maternal nutrition and genetics play interactive roles in determining pregnancy outcome. Minimizing exposures to mycotoxins through enhanced agricultural practices, identifying biomarkers of exposure, characterizing mechanisms of toxicity, and improving maternal nutrition are all important strategies for reducing the NTD burden in susceptible human populations.
Collapse
Affiliation(s)
- J Gelineau-van Waes
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | |
Collapse
|
21
|
Tardieu D, Bailly JD, Skiba F, Métayer JP, Grosjean F, Guerre P. Chronic toxicity of fumonisins in turkeys. Poult Sci 2007; 86:1887-93. [PMID: 17704375 DOI: 10.1093/ps/86.9.1887] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fumonisins are mycotoxins that are found worldwide. They are mainly produced by Fusarium verticillioides during its development on corn. The main toxic effects of these molecules have been well characterized in poultry in the case of acute exposure, but the subclinical and economic effects of chronic exposure are less known. Whereas the latest European recommendations suggest that maximal levels of fumonisins in corn could reach 60 mg/kg and the maximal contamination of poultry feeds could reach 20 mg/kg, no study is available at this level in turkeys. The aim of the present work was thus to characterize the effects of exposure to fumonisins (concentrations of 0, 5, 10, and 20 mg of fumonisin B1 + fumonisin B2/kg of feed) on feed consumption and growth in turkeys over a period of 9 wk. Main biochemical parameters of the liver and alteration of sphingolipid metabolism were investigated in plasma, liver, and kidney. The main results showed no effect on feed consumption and growth in exposed turkeys. Moreover, no effect was observed on the weight of tissues and markers of liver injury. By contrast, a disruption of sphingolipid metabolism was clear at a level of exposure of 10 and 20 mg of fumonisin B1 + fumonisin B2 mg/kg of feed. Both hepatic and kidney concentrations of sphinganine increased gradually throughout the exposure period. These results reveal that disruption of sphingolipid metabolism is an early and sensitive biomarker of fumonisins exposure in turkeys; the consequences on these alterations remain to be established.
Collapse
Affiliation(s)
- D Tardieu
- Ecole Nationale Vétérinaire de Toulouse, Mycotoxicology Unit, 23 chemin des Capelles, BP 87614, 31076 Toulouse Cedex 3, France
| | | | | | | | | | | |
Collapse
|
22
|
Theumer MG, López AG, Aoki MP, Cánepa MC, Rubinstein HR. Subchronic mycotoxicoses in rats. Histopathological changes and modulation of the sphinganine to sphingosine (Sa/So) ratio imbalance induced by Fusarium verticillioides culture material, due to the coexistence of aflatoxin B1 in the diet. Food Chem Toxicol 2007; 46:967-77. [PMID: 18079032 DOI: 10.1016/j.fct.2007.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 09/27/2007] [Accepted: 10/19/2007] [Indexed: 11/30/2022]
Abstract
Mycotoxicoses are diseases caused by consumption of diets contaminated with mycotoxins, a special class of fungal secondary metabolites. Fumonisin B1 (FB1) and aflatoxin B1 (AFB1), the main toxins synthesized by toxicogenic stocks of Fusarium spp. and Aspergillus spp., respectively, can coexist in grains and in its by-products. We investigated a probable synergism of a fumonisins-containing Fusarium verticillioides culture material and AFB1 in the induction of hepatocyte apoptosis in rats subchronically fed on a mixture of them. Furthermore, the possibility of modifications in the fumonisins-induced Sa/So ratio imbalance in tissues and urine from rats poisoned with this mycotoxin, due to the presence of AFB1 in the diet, was evaluated. The co-exposure to fumonisins and AFB1 produced a higher liver toxicity, with respect to their individual administration, inducing apoptosis and mitotic hepatocytes. There was an inversion of the typical Sa/So ratio in rats fed on the culture material as well as in those subjected to a diet co-contamined with fumonisins and AFB1. Moreover, the later had a synergistic effect in the induction of Sa/So variations in kidneys. Therefore, the mixture of fumonisins and AFB1 induced toxic responses which could not be considered a sum of the effects caused individually by these mycotoxins.
Collapse
Affiliation(s)
- M G Theumer
- Laboratorio de Toxicología, Instituto Superior de Investigación, Desarrollo y Servicios de Alimentos (ISIDSA), Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
23
|
|