1
|
Li J, Gu A, Nong XM, Zhai S, Yue ZY, Li MY, Liu Y. Six-Membered Aromatic Nitrogen Heterocyclic Anti-Tumor Agents: Synthesis and Applications. CHEM REC 2023; 23:e202300293. [PMID: 38010365 DOI: 10.1002/tcr.202300293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancer stands as a serious malady, posing substantial risks to human well-being and survival. This underscores the paramount necessity to explore and investigate novel antitumor medications. Nitrogen-containing compounds, especially those derived from natural sources, form a highly significant category of antitumor agents. Among these, antitumor agents with six-membered aromatic nitrogen heterocycles have consistently attracted the attention of chemists and pharmacologists. Accordingly, we present a comprehensive summary of synthetic strategies and clinical implications of these compounds in this review. This entails an in-depth analysis of synthesis pathways for pyridine, quinoline, pyrimidine, and quinazoline. Additionally, we explore the historical progression, targets, mechanisms of action, and clinical effectiveness of small molecule inhibitors possessing these structural features.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
2
|
Su Y, Li J, Ji W, Wang G, Fang L, Zhang Q, Ang L, Zhao M, Sen Y, Chen L, Zheng J, Su C, Qin L. Triple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors. J Immunother Cancer 2022; 10:jitc-2022-004691. [PMID: 35609942 PMCID: PMC9131115 DOI: 10.1136/jitc-2022-004691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Oncolytic virotherapy has become an important branch of cancer immunotherapy. This study investigated the efficacy of an oncolytic adenovirus (OAV), OncoViron, with synergistic mechanisms in the treatment of multiple solid tumors. Methods An OAV, OncoViron, was constructed and investigated by cytological experiments and implanted tumor models of multiple solid tumor cell lines to certify its anticancer efficacy, the synergistic effects of viral oncolysis and transgene anticancer activity of OncoViron, as well as oncolytic virotherapy combined with immunotherapy, were also verified. Results The selective replication of OncoViron mediated high expression of anticancer factors, specifically targeted a variety of solid tumors and significantly inhibited cancer cell proliferation. On a variety of implanted solid tumor models in immunodeficient mice, immunocompetent mice, and humanized mice, OncoViron showed great anticancer effects on its own and in combination with programmed death 1 (PD-1) antibody and chimeric antigen receptor (CAR) T cells. Pathological examination, single-cell sequencing, and spatial transcriptome analysis of animal implanted tumor specimens confirmed that OncoViron significantly altered the gene expression profile of infected cancer cells, not only recruiting a large number of lymphocytes, natural killer cells, and mononuclear macrophages into tumor microenvironment (TME) and activated immune cells, especially T cells but also inducing M1 polarization of macrophages and promoting the release of more immune cytokines, thereby remodeling the TME for coordinating PD-1 antibody or CAR T therapy. Conclusions The chimeric OncoViron is a novel broad-spectrum anticancer product with multiple mechanisms of synergistic and potentiated immunotherapy, creating a good opportunity for combined immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Yinghan Su
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.,National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China
| | - Jiang Li
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Weidan Ji
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lin Fang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qin Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Lin Ang
- Department of Pathology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Min Zhao
- Department of Pathology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Yuan Sen
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lei Chen
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Changqing Su
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China .,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
3
|
Ge Y, Zhang W, Qin J, Zhang C, Tian W, Zhang Q, Shao J, Li S, Fang L, Zheng J. A novel role mediated by adenoviral E1A in suppressing cancer through modulating decorin. Med Oncol 2019; 36:96. [PMID: 31659495 DOI: 10.1007/s12032-019-1325-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/15/2019] [Indexed: 11/27/2022]
Abstract
Oncolytic adenovirus is an emerging alternative to current therapeutics. The adenoviral E1A, the first protein expressed upon oncolytic adenoviral infection, has been identified as an antitumor agent, but the mechanisms of its tumor inhibition ability are unclear enough. Decorin is ubiquitous in the extracellular matrix (ECM), which regulates multiple functions through interaction with ECM. Here, we intended to explore the effects of adenoviral E1A on the tumor extracellular matrix during gene therapy. We demonstrated that reduced decorin expression was found in patients with lung cancer. The adenoviral E1A or a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa, 120-127aa deletion) could increase the expression of decorin and down-regulate VEGF, two members of tumor ECM, involved in both vasculogenesis and angiogenesis. E1A/mE1A-mediated suppressing the migration and invasion ability of tumor cells was depended on decorin. E1A interacted with decorin directly and induced the proteasomal degradation of VEGF. In addition, E1A or mE1A can inhibit tumor growth in a subcutaneous lung cancer xenograft model. It suggested that decorin might be a crucial mediator among ECM components for adenoviral E1A-mediated antitumor activities. These studies on adenovirus E1A provide a new mechanism for the emerging therapies of tumor gene therapy.
Collapse
Affiliation(s)
- Yan Ge
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Qin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weiping Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shasha Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China. .,Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu Province, China.
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China. .,Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu Province, China.
| |
Collapse
|
4
|
A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer. Oncotarget 2018; 7:48309-48320. [PMID: 27340782 PMCID: PMC5217019 DOI: 10.18632/oncotarget.10221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
The conserved regions (CR) of adenoviral E1A had been shown to be necessary for disruption of pRb-E2F transcription factor complexes and induction of the S phase. Here we constructed a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa and 120-127aa deletion, mE1A) and investigated its antitumor capacities in vitro and in vivo. The mE1A suppressed the viability of tumor cells as efficiently as the wild type E1A, and there was no cytotoxic effect on normal cells. Although the mE1A arrested tumor cell cycle with the same manner as E1A, the former played a different role on cell cycle regulation compared with E1A in normal cells, which might contribute to its selective antitumor activity. E1A and mE1A had accumulated inactive p53, decreased the expression of mdm2, Cdkn1a (also named p21), increased p21's nuclear distribution and induced tumor cell apoptosis in a p53-indenpent manner. Further, E1A or mE1A significantly suppressed tumor growth in subcutaneous hepatocellular carcinoma xenograft models. Especially, tumor-bearing mice treated with mE1A had higher survival rate than those treated with E1A. Our data demonstrated that mutant adenoviral E1A significantly induced tumor cell apoptosis in a p53-indenpednt manner and had selective tumor suppressing ability. The observations of adenoviral E1A mutant had provided a novel mechanism for E1A's complex activities during infection.
Collapse
|
5
|
He D, Sun L, Li C, Hu N, Sheng Y, Chen Z, Li X, Chi B, Jin N. Anti-tumor effects of an oncolytic adenovirus expressing hemagglutinin-neuraminidase of Newcastle disease virus in vitro and in vivo. Viruses 2014; 6:856-74. [PMID: 24553109 PMCID: PMC3939485 DOI: 10.3390/v6020856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy has been an attractive drug platform for targeted therapy of cancer over the past few years. Viral vectors can be used to target and lyse cancer cells, but achieving good efficacy and specificity with this treatment approach is a major challenge. Here, we assessed the ability of a novel dual-specific anti-tumor oncolytic adenovirus, expressing the hemagglutinin-neuraminidase (HN) gene from the Newcastle disease virus under the human telomerase reverse transcriptase (hTERT) promoter (Ad-hTERTp-E1a-HN), to inhibit esophageal cancer EC-109 cells in culture and to reduce tumor burden in xenografted BALB/c nude mice. In vitro, infection with Ad-hTERT-E1a-HN could inhibit the growth of EC-109 cells significantly and also protect normal human liver cell line L02 from growth suppression in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Ad-hTERT-E1a-HN also effectively and selectively decreased the sialic acid level on EC-109 cells, but not on L02 cells. Furthermore, Ad-hTERT-E1a-HN was shown to induce the apoptosis pathway via acridine orange and ethidium bromide staining (AO/EB staining), increase reactive oxygen species (ROS), reduce mitochondrial membrane potential and release cytochrome c. In vivo, xenografted BALB/c nude mice were treated via intratumoral or intravenous injections of Ad-hTERT-E1a-HN. Although both treatments showed an obvious suppression in tumor volume, only Ad-hTERT-E1a-HN delivered via intratumoral injection elicited a complete response to treatment. These results reinforced previous findings and highlighted the potential therapeutic application of Ad-hTERT-E1a-HN for treatment of esophageal cancer in clinical trials.
Collapse
Affiliation(s)
- Dongyun He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lili Sun
- Head and Neck Surgery, The Tumor hospital of Jilin province, Changchun 130001, China.
| | - Chang Li
- Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122, China.
| | - Ningning Hu
- Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122, China.
| | - Yuan Sheng
- Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122, China.
| | - Zhifei Chen
- Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122, China.
| | - Xiao Li
- Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122, China.
| | - Baorong Chi
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Ningyi Jin
- Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122, China.
| |
Collapse
|
6
|
CEA promoter-regulated oncolytic adenovirus-mediated Hsp70 expression in immune gene therapy for pancreatic cancer. Cancer Lett 2012; 319:154-163. [PMID: 22261331 DOI: 10.1016/j.canlet.2012.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/19/2011] [Accepted: 01/08/2012] [Indexed: 12/12/2022]
Abstract
Gene therapy is an important means for the comprehensive treatment of pancreatic cancer. Challenges associated with gene therapy include control of vector security and effective genetic screening. In this paper, a CEA promoter-regulated oncolytic adenovirus vector was constructed. The reporter gene assay demonstrated that the viral vector was confirmed to have tumor-specific replication features. In vitro cytology studies showed that the CEA promoter regulated the proliferation of the adenovirus vector carrying the Hsp70 gene (AdCEAp-Hsp70), which significantly increased the expression levels of Hsp70 in the CEA-positive pancreatic cancer cells, resulting in an overall reduction in the survival of cancer cells. In the human pancreatic cancer Panc-1 xenograft model in immune deficient nude mice, the CEA promoter-regulated adenovirus AdCEAp-Hsp70 significantly inhibited tumor growth. In the rat pancreatic cancer DSL-6A/C1 xenograft model in rats, the viral proliferation and high expression levels of Hsp70 promoted the interstitial infiltration of CD4+, CD8+ and gamma/delta T cells into tumors, induced host secretion of the cytokines TGF-β, INF-γ, and IL-6 and had a dual anti-tumor effects that completely inhibited the growth of pancreatic cancer. The results demonstrated that the oncolytic adenovirus under the control of CEA promoter provides additional assurances regarding the safety and efficiency of cancer gene therapy. This gene therapy model improves anti-cancer efficiency and has broad applications and developmental prospects.
Collapse
|
7
|
Fang L, Pu YY, Hu XC, Sun LJ, Luo HM, Pan SK, Gu JZ, Cao XR, Su CQ. Antiangiogenesis gene armed tumor-targeting adenovirus yields multiple antitumor activities in human HCC xenografts in nude mice. Hepatol Res 2010; 40:216-28. [PMID: 19788685 DOI: 10.1111/j.1872-034x.2009.00580.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Gene therapy represents a promising therapeutic strategy for hepatocellular carcinoma (HCC). To improve the ratio of killing efficacy on tumor cells to side-effect on normal cells, we constructed an oncolytic adenovirus vector, AdSu-hE, expressing the human endostatin (hE) gene, in which the chimeric promoter of human epidermal growth factor receptor 2 enhancer and human telomerase reverse transcriptase promoter was used to control the adenoviral E1a gene. METHODS Tumor-selective replication of adenovirus AdSu-hE and its concomitant expression of endostatin were measured by 50% tissue culture infective dose method, fluorescent protein expression, Western blot and enzyme linked immunosorbent assay in cancer and normal cell lines. The antitumor efficacy was observed in nude mice bearing human HCCs. RESULTS The oncolytic adenovirus AdSu-hE replicated restrictedly in telomerase-positive cancer cells and resulted in oncolysis, but did not replicate in normal cell lines. Along with virus replication, AdSu-hE mediated 5-fold increased expression of endostatin in tumor cells compared with that in normal cells. Moreover, AdSu-hE expressed more endostatin in cancer cells than the non-replicative adenovirus vector Ad-hE. In vivo administration of the oncolytic adenovirus AdSu-hE into HCC-bearing nude mice produced a significant tumor reduction by synergistic effects of virus oncolysis and endostatin antiangiogenesis. CONCLUSION The oncolytic virus with antiangiogenesis gene driven by the chimeric promoter has an improved killing efficacy on tumor cells, and may be useful for cancer gene therapy.
Collapse
Affiliation(s)
- Lin Fang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|