1
|
Molina-Pintor I, Rojas-García A, Medina-Díaz I, Barrón-Vivanco B, Bernal-Hernández Y, Ortega-Cervantes L, Ramos A, Herrera-Moreno J, González-Arias C. An update on genotoxic and epigenetic studies of fumonisin B1. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fumonisins (FBs), a widespread group of mycotoxins produced by Fusarium spp., are natural contaminants in cereals and foodstuffs. Fumonisin B1 (FB1) is the most toxic and prevalent mycotoxin of this group, and it has been reported that FB1 accounts for 70-80% of FBs produced by the mycotoxigenic strains. The mode of action of FB1 depends on the structural similarity with sphinganine/sphingosine N-acyltransferase. This fact causes an accumulation of sphingoid bases and blocks the sphingolipid biosynthesis or the function of sphingolipids. Diverse toxic effects and diseases such as hepatocarcinogenicity, hepatotoxicity, nephrotoxicity, and cytotoxicity have been reported, and diseases like leukoencephalomalacia in horses and pulmonary oedema in horses and swine have been described. In humans, FBs have been associated with oesophageal cancer, liver cancer, neural tube defects, and infantile growth delay. However, despite the International Agency for Research on Cancer designated FB1 as a possibly carcinogenic to humans, its genotoxicity and epigenetic properties have not been clearly elucidated. This review aims to summarise the progress in research about the genotoxic and epigenetics effects of FB1.
Collapse
Affiliation(s)
- I.B. Molina-Pintor
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - A.E. Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - I.M. Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - B.S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - Y.Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - L. Ortega-Cervantes
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - A.J. Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, Lleida, 25198, Spain
| | - J.F. Herrera-Moreno
- Laboratory of Precision Environmental Health Sciences, Mailman School of Public Health, Columbia University, 630 west 168th Street, P&S Building Room 16-416, New York, NY, USA
| | - C.A. González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| |
Collapse
|
2
|
Lumsangkul C, Tso KH, Fan YK, Chiang HI, Ju JC. Mycotoxin Fumonisin B 1 Interferes Sphingolipid Metabolisms and Neural Tube Closure during Early Embryogenesis in Brown Tsaiya Ducks. Toxins (Basel) 2021; 13:toxins13110743. [PMID: 34822527 PMCID: PMC8619080 DOI: 10.3390/toxins13110743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 11/26/2022] Open
Abstract
Fumonisin B1 (FB1) is among the most common contaminants produced by Fusarium spp. fungus from corns and animal feeds. Although FB1 has been known to cause physical or functional defects of embryos in humans and several animal species such as Syrian hamsters, rabbits, and rodents, little is known about the precise toxicity to the embryos and the underlying mechanisms have not been fully addressed. The present study aimed to investigate its developmental toxicity and potential mechanisms of action on sphingolipid metabolism in Brown Tsaiya Ducks (BTDs) embryos. We examined the effect of various FB1 dosages (0, 10, 20 and 40 µg/embryo) on BTD embryogenesis 72 h post-incubation. The sphingomyelin content of duck embryos decreased (p < 0.05) in the highest FB1-treated group (40 µg). Failure of neural tube closure was observed in treated embryos and the expression levels of a neurulation-related gene, sonic hedgehog (Shh) was abnormally decreased. The sphingolipid metabolism-related genes including N-acylsphingosine amidohydrolase 1 (ASAH1), and ceramide synthase 6 (CERS6) expressions were altered in the treated embryos compared to those in the control embryos. Apparently, FB1 have interfered sphingolipid metabolisms by inhibiting the functions of ceramide synthase and folate transporters. In conclusion, FB1-caused developmental retardation and abnormalities, such as neural tube defects in Brown Tsaiya Duck embryos, as well as are partly mediated by the disruption of sphingolipid metabolisms.
Collapse
Affiliation(s)
- Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
| | - Ko-Hua Tso
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
| | - Yang-Kwang Fan
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
- Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (H.-I.C.); (J.-C.J.); Tel.: +886-4-2287-0613 (H.-I.C. & J.-C.J.); Fax: +886-4-2286-0265 (H.-I.C. & J.-C.J.)
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, College of Information and Electrical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (H.-I.C.); (J.-C.J.); Tel.: +886-4-2287-0613 (H.-I.C. & J.-C.J.); Fax: +886-4-2286-0265 (H.-I.C. & J.-C.J.)
| |
Collapse
|
3
|
Peillod C, Laborde M, Travel A, Mika A, Bailly JD, Cleva D, Boissieu C, Le Guennec J, Albaric O, Labrut S, Froment P, Tardieu D, Guerre P. Toxic Effects of Fumonisins, Deoxynivalenol and Zearalenone Alone and in Combination in Ducks Fed the Maximum EUTolerated Level. Toxins (Basel) 2021; 13:toxins13020152. [PMID: 33669302 PMCID: PMC7920068 DOI: 10.3390/toxins13020152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/01/2022] Open
Abstract
Toxic effects among fumonisins B (FB), deoxynivalenol (DON) and zearalenone (ZEN) administered alone and combined were investigated in 84-day-old ducks during force-feeding. 75 male ducks, divided into five groups of 15 animals, received daily during the meal a capsule containing the desired among of toxin. Treated animals received dietary levels of toxins equivalent to 20 mg FB1+FB2/kg (FB), 5 mg DON/kg (DON), 0.5 mg ZEN/kg (ZEN) and 20, 5 and 0.5 mg/kg of FB, DON and ZEN (FBDONZEN), respectively. Control birds received capsules with no toxin. After 12 days, a decrease in body weight gain accompanied by an increase in the feed conversion ratio was observed in ducks exposed to FBDONZEN, whereas there was no effect on performances in ducks exposed to FB, DON and ZEN separately. No difference among groups was observed in relative organ weight, biochemistry, histopathology and several variables used to measure oxidative damage and testicular function. A sphinganine to sphingosine ratio of 0.32, 1.19 and 1.04, was measured in liver in controls and in ducks exposed to FB and FBDONZEN, respectively. Concentrations of FB1 in liver were 13.34 and 15.4 ng/g in ducks exposed to FB and FBDONZEN, respectively. Together ZEN and its metabolites were measured after enzymatic hydrolysis of the conjugated forms. Mean concentrations of α-zearalenol in liver were 0.82 and 0.54 ng/g in ducks exposed to ZEN and FBDONZEN, respectively. β-zearalenol was 2.3-fold less abundant than α-zearalenol, whereas ZEN was only found in trace amounts. In conclusion, this study suggests that decreased performance may occur in ducks exposed to a combination of FB, DON and ZEN, but does not reveal any other interaction between mycotoxins in any of the other variables measured.
Collapse
Affiliation(s)
- Céline Peillod
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Marie Laborde
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Angélique Travel
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Amandine Mika
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Jean Denis Bailly
- Equipe Biosynthèse et toxicité des mycotoxines, ENVT, UMR Toxalim, Université de Toulouse, F-31076 Toulouse, France;
| | - Didier Cleva
- Chêne Vert Conseil, Z Bellevue II, 35220 Chateaubourg, France; (D.C.); (C.B.)
| | - Cyril Boissieu
- Chêne Vert Conseil, Z Bellevue II, 35220 Chateaubourg, France; (D.C.); (C.B.)
| | - Jean Le Guennec
- Finalab, 4 bis rue Th. Botrel, BP 351, 22603 Loudéac CEDEX, France;
| | - Olivier Albaric
- ONIRIS, Site de la Chantrerie, BP 40706, 44307 Nantes CEDEX 3, France; (O.A.); (S.L.)
| | - Sophie Labrut
- ONIRIS, Site de la Chantrerie, BP 40706, 44307 Nantes CEDEX 3, France; (O.A.); (S.L.)
| | - Pascal Froment
- Equipe GCR INRA–Physiologie de la Reproduction et des Comportements-UMR INRA-CNRS (UMR 6175)-Université François Rabelais de Tours, 37380 Nouzilly, France;
| | | | - Philippe Guerre
- ENVT, Université de Toulouse, F-31076 Toulouse, France;
- Correspondence: ; Tel.: +33-056-119-3840
| |
Collapse
|
4
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Eriksen GS, Taranu I, Altieri A, Roldán-Torres R, Oswald IP. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J 2018; 16:e05242. [PMID: 32625894 PMCID: PMC7009563 DOI: 10.2903/j.efsa.2018.5242] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Fumonisins, mycotoxins primarily produced by Fusarium verticillioides and Fusarium proliferatum, occur predominantly in cereal grains, especially in maize. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to fumonisins and their modified and hidden forms in feed. Fumonisin B1 (FB 1), FB 2 and FB 3 are the most common forms of fumonisins in feedstuffs and thus were included in the assessment. FB 1, FB 2 and FB 3 have the same mode of action and were considered as having similar toxicological profile and potencies. For fumonisins, the EFSA Panel on Contaminants in the Food Chain (CONTAM) identified no-observed-adverse-effect levels (NOAELs) for cattle, pig, poultry (chicken, ducks and turkeys), horse, and lowest-observed-adverse-effect levels (LOAELs) for fish (extrapolated from carp) and rabbits. No reference points could be identified for sheep, goats, dogs, cats and mink. The dietary exposure was estimated on 18,140 feed samples on FB 1-3 representing most of the feed commodities with potential presence of fumonisins. Samples were collected between 2003 and 2016 from 19 different European countries, but most of them from four Member States. To take into account the possible occurrence of hidden forms, an additional factor of 1.6, derived from the literature, was applied to the occurrence data. Modified forms of fumonisins, for which no data were identified concerning both the occurrence and the toxicity, were not included in the assessment. Based on mean exposure estimates, the risk of adverse health effects of feeds containing FB 1-3 was considered very low for ruminants, low for poultry, horse, rabbits, fish and of potential concern for pigs. The same conclusions apply to the sum of FB 1-3 and their hidden forms, except for pigs for which the risk of adverse health effect was considered of concern.
Collapse
|
5
|
Knutsen HK, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Gutleb AC, Humpf HU, Galli C, Metzler M, Oswald IP, Parent-Massin D, Binaglia M, Steinkellner H, Alexander J. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J 2018; 16:e05172. [PMID: 32625807 PMCID: PMC7009576 DOI: 10.2903/j.efsa.2018.5172] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Contaminants in the Food Chain (CONTAM) established a tolerable daily intake (TDI) for fumonisin B1 (FB 1) of 1.0 μg/kg body weight (bw) per day based on increased incidence of megalocytic hepatocytes found in a chronic study with mice. The CONTAM Panel considered the limited data available on toxicity and mode of action and structural similarities of FB 2-6 and found it appropriate to include FB 2, FB 3 and FB 4 in a group TDI with FB 1. Modified forms of FBs are phase I and phase II metabolites formed in fungi, infested plants or farm animals. Modified forms also arise from food or feed processing, and include covalent adducts with matrix constituents. Non-covalently bound forms are not considered as modified forms. Modified forms of FBs identified are hydrolysed FB 1-4 (HFB 1-4), partially hydrolysed FB 1-2 (pHFB 1-2), N-(carboxymethyl)-FB 1-3 (NCM-FB 1-3), N-(1-deoxy-d-fructos-1-yl)-FB 1 (NDF-FB 1), O-fatty acyl FB 1, N-fatty acyl FB 1 and N-palmitoyl-HFB 1. HFB 1, pHFB 1, NCM-FB 1 and NDF-FB 1 show a similar toxicological profile but are less potent than FB 1. Although in vitro data shows that N-fatty acyl FBs are more toxic in vitro than FB 1, no in vivo data were available for N-fatty acyl FBs and O-fatty acyl FBs. The CONTAM Panel concluded that it was not appropriate to include modified FBs in the group TDI for FB 1-4. The uncertainty associated with the present assessment is high, but could be reduced provided more data are made available on occurrence, toxicokinetics and toxicity of FB 2-6 and modified forms of FB 1-4.
Collapse
|
6
|
Rapid detection of fumonisin B1 using a colloidal gold immunoassay strip test in corn samples. Toxicon 2015; 108:210-5. [DOI: 10.1016/j.toxicon.2015.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 11/23/2022]
|
7
|
Fusariotoxins in Avian Species: Toxicokinetics, Metabolism and Persistence in Tissues. Toxins (Basel) 2015; 7:2289-305. [PMID: 26110506 PMCID: PMC4488703 DOI: 10.3390/toxins7062289] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/29/2023] Open
Abstract
Fusariotoxins are mycotoxins produced by different species of the genus Fusarium whose occurrence and toxicity vary considerably. Despite the fact avian species are highly exposed to fusariotoxins, the avian species are considered as resistant to their toxic effects, partly because of low absorption and rapid elimination, thereby reducing the risk of persistence of residues in tissues destined for human consumption. This review focuses on the main fusariotoxins deoxynivalenol, T-2 and HT-2 toxins, zearalenone and fumonisin B1 and B2. The key parameters used in the toxicokinetic studies are presented along with the factors responsible for their variations. Then, each toxin is analyzed separately. Results of studies conducted with radiolabelled toxins are compared with the more recent data obtained with HPLC/MS-MS detection. The metabolic pathways of deoxynivalenol, T-2 toxin, and zearalenone are described, with attention paid to the differences among the avian species. Although no metabolite of fumonisins has been reported in avian species, some differences in toxicokinetics have been observed. All the data reviewed suggest that the toxicokinetics of fusariotoxins in avian species differs from those in mammals, and that variations among the avian species themselves should be assessed.
Collapse
|
8
|
Antonissen G, Devreese M, Van Immerseel F, De Baere S, Hessenberger S, Martel A, Croubels S. Chronic exposure to deoxynivalenol has no influence on the oral bioavailability of fumonisin B1 in broiler chickens. Toxins (Basel) 2015; 7:560-71. [PMID: 25690690 PMCID: PMC4344641 DOI: 10.3390/toxins7020560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%.
Collapse
Affiliation(s)
- Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| |
Collapse
|
9
|
Benlasher E, Geng X, Nguyen NTX, Tardieu D, Bailly JD, Auvergne A, Guerre P. Comparative effects of fumonisins on sphingolipid metabolism and toxicity in ducks and turkeys. Avian Dis 2012; 56:120-7. [PMID: 22545537 DOI: 10.1637/9853-071911-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fumonisins (FBs) are mycotoxins that are found worldwide in maize and maize products. Their main toxic effects have been well characterized in poultry, but differences between species have been demonstrated. Ducks appeared very sensitive to toxicity, whereas turkeys are more resistant. At the same time, alterations of sphingolipid metabolism, with an increase of the concentration of the free sphinganine (Sa) in serum and liver, have been demonstrated in the two species, but the link between the toxicity of FBs and Sa accumulation remains difficult to interpret. The aim of the present work was to compare the effects of FBs (10 mg FB1 + FB2/kg body weight) on sphingolipid metabolism in ducks and turkeys. Growth, feed consumption, and serum biochemistry were also investigated to evaluate toxicity. The main results showed that FBs increased Sa concentrations in liver and serum in ducks and turkeys, but these accumulations were not directly correlated with toxicity. Sa accumulation was higher in the livers of turkeys than in ducks, whereas Sa levels were higher in the sera of ducks than in turkeys. Hepatic toxicity was more pronounced in ducks than in turkeys and accompanied a decrease of body weight and an increase of serum biochemistry in ducks but not in turkeys. So, although FBs increase Sa concentration in the livers of both species, this effect is not directly proportional to toxicity. The mechanisms of FB toxicity and/or the mechanisms of protection of ducks and turkeys to the Sa accumulation within the liver remain to be established.
Collapse
Affiliation(s)
- Emad Benlasher
- Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Unité de Recherche, Mycotoxicologie, 23 Chemin des capelles, BP 87614, 31076 Toulouse Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Benlashehr I, Repussard C, Jouglar JY, Tardieu D, Guerre P. Toxicokinetics of fumonisin B2 in ducks and turkeys. Poult Sci 2011; 90:1671-5. [PMID: 21753202 DOI: 10.3382/ps.2011-01434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two extraction steps combined with HPLC with fluorescence detection were developed to determine the toxicokinetics of fumonisin B(2) (FB(2)) in ducks and turkeys. The limit of quantification of the method was 25 ng of FB(2)/mL. The mean extraction was 63%. After intravenous administration (single dose: 1 mg of FB(2)/kg of BW), plasma concentration time curves were best described by a 2-compartment open model. In ducks, elimination half-life, mean residence time, and clearance of FB(2) were 32 min, 12.9 min, and 9.3 mL/min per kilogram, respectively. In turkeys, these toxicokinetics parameters were 12.4 min, 5 min, and 8.7 mL/min per kilogram, respectively. Only a small amount of FB(2) was detected in plasma after oral dosing of 10 mg of FB(2)/kg of BW.
Collapse
Affiliation(s)
- I Benlashehr
- UR Mycotoxicologie, Université de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
11
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, MacDonald S, Malone B, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2009-2010. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2010.1249] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2009 and mid-2010. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. New and improved methods for mycotoxins continue to be published. Immunological-based method developments continue to be of wide interest in a broad range of formats. Multimycotoxin determination by LC-MS/MS is now being targeted at the specific ranges of mycotoxins and matrices of interest or concern to the individual laboratory. Although falling outside the main emphasis of the review, some aspects of natural occurrence have been mentioned, especially if linked to novel method developments.
Collapse
Affiliation(s)
- G. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences Vienna, Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin Research, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P. Burdaspal
- National Centre for Food, Spanish Food Safety and Nutrition Agency, Carretera a Pozuelo Km 5.1, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M. Jonker
- RIKILT Institute of Food Safety, Cluster Natural Toxins & Pesticides, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences Vienna, Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin Research, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - B. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS, National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, 70126 Bari, Italy
| | - H. van Egmond
- RIKILT Institute of Food Safety, Cluster Natural Toxins & Pesticides, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - T. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
12
|
BOUDERGUE C, BUREL C, DRAGACCI S, FAVROT M, FREMY J, MASSIMI C, PRIGENT P, DEBONGNIE P, PUSSEMIER L, BOUDRA H, MORGAVI D, OSWALD I, PEREZ A, AVANTAGGIATO G. Review of mycotoxin‐detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. ACTA ACUST UNITED AC 2009. [DOI: 10.2903/sp.efsa.2009.en-22] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|