1
|
Shin YJ, Jo EH, Oh Y, Kim DS, Hyun S, Yu A, Hong HK, Cho YB. Improved Drug-Response Prediction Model of APC Mutant Colon Cancer Patient-Derived Organoids for Precision Medicine. Cancers (Basel) 2023; 15:5531. [PMID: 38067236 PMCID: PMC10705195 DOI: 10.3390/cancers15235531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer is the third most common cancer in the world, with an annual incidence of 2 million cases. The success of first-line chemotherapy plays a crucial role in determining the disease outcome. Therefore, there is an increasing demand for precision medicine to predict drug responses and optimize chemotherapy in order to increase patient survival and reduce the related side effects. Patient-derived organoids have become a popular in vitro screening model for drug-response prediction for precision medicine. However, there is no established correlation between oxaliplatin and drug-response prediction. Here, we suggest that organoid culture conditions can increase resistance to oxaliplatin during drug screening, and we developed a modified medium condition to address this issue. Notably, while previous studies have shown that survivin is a mechanism for drug resistance, our study observed consistent survivin expression irrespective of the culture conditions and oxaliplatin treatment. However, clusterin induced apoptosis inhibition and cell survival, demonstrating a significant correlation with drug resistance. This study's findings are expected to contribute to increasing the accuracy of drug-response prediction in patient-derived APC mutant colorectal cancer organoids, thereby providing reliable precision medicine and improving patient survival rates.
Collapse
Affiliation(s)
- Yong Jae Shin
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Eun Hae Jo
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Yunjeong Oh
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Da Som Kim
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Seungyoon Hyun
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea;
| | - Ahran Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Hye Kyung Hong
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Yong Beom Cho
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea;
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon-si 16419, Republic of Korea
| |
Collapse
|
2
|
Kwak AW, Lee JY, Lee SO, Seo JH, Park JW, Choi YH, Cho SS, Yoon G, Lee MH, Shim JH. Echinatin induces reactive oxygen species-mediated apoptosis via JNK/p38 MAPK signaling pathway in colorectal cancer cells. Phytother Res 2023; 37:563-577. [PMID: 36184899 DOI: 10.1002/ptr.7634] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
Abstract
Colorectal cancer (CRC) is a very common and deadly cancer worldwide, and oxaliplatin is used as first-line chemotherapy. However, resistance usually develops, limiting treatment. Echinatin (Ech) is the main component of licorice and exhibits various therapeutic effects on inflammation-mediated diseases and cancer, ischemia/reperfusion, and liver injuries. The present study elucidated the underlying molecular mechanism of Ech-induced apoptosis in both oxaliplatin-sensitive (HT116 and HT29) and -resistant (HCT116-OxR and HT29-OxR) CRC cells. To evaluate the antiproliferative activities of Ech, we performed MTT and soft agar assays. Ech reduced viability, colony size, and numbers of CRC cells. The underlying molecular mechanisms were explored by various flow cytometry analyses. Ech-induced annexin-V stained cells, reactive oxygen species (ROS) generation, cell cycle arrest, JNK/p38 MAPK activation, endoplasmic reticulum (ER) stress, mitochondrial membrane potential depolarization, and multi-caspase activity. In addition apoptosis-, cell cycle-, and ER stress-related protein levels were confirmed by western blotting. Moreover, we verified ROS-mediated cell death by treatment with inhibitors such as N-acetyl-L-cysteine, SP600125, and SB203580. Taken together, Ech exhibits anticancer activity in oxaliplatin-sensitive and -resistant CRCs by inducing ROS-mediated apoptosis through the JNK/p38 MAPK signaling pathway. This is the first study to show that Ech has the potential to treat drug-resistant CRC, providing new directions for therapeutic strategies targeting drug-resistant CRC.
Collapse
Affiliation(s)
- Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Cheonggye-myeon, Jeonnam, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.,Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Cheonggye-myeon, Jeonnam, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.,Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Cheonggye-myeon, Jeonnam, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.,Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Cheonggye-myeon, Jeonnam, Republic of Korea.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
3
|
Cai J, Su L, Luo W. WD repeat domain 62 (WDR62) promotes resistance of colorectal cancer to oxaliplatin through modulating mitogen-activated protein kinase (MAPK) signaling. Bioengineered 2022; 13:14450-14459. [PMID: 35758246 PMCID: PMC9342197 DOI: 10.1080/21655979.2022.2086381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
WD repeat domain 62 (WDR62) is involved in embryonic brain growth through regulation of glial and neural cell populations. WDR62 is also implicated in the carcinogenesis of various cancers. The role of WDR62 in progression and chemoresistance of colorectal cancer (CRC) was investigated. Firstly, oxaliplatin-resistant CRC cells (HCT116/R and HT29/R) were sequentially exposed to an increasing concentration of oxaliplatin. The results showed that WDR62 was elevated in CRC tissues, and oxaliplatin resistance conferred up-regulation of WDR62 in CRC cells. Knockdown of WDR62 reduced cell proliferation and promoted the apoptosis of oxaliplatin-resistant CRC cells. Moreover, silencing of WDR62 increased fluorescence intensity of γH2AX, and decreased protein expression of p-DNA-PK and Rad51 in the oxaliplatin-resistant CRC cells. The protein expression of p-ERK, p-JNK, and p-p38 in oxaliplatin-resistant CRC cells were down-regulated by knockdown of WDR62. In conclusion, silencing of WDR62 suppressed oxaliplatin resistance and DNA damage repair of CRC cells through inactivation of MAPK signaling.
Collapse
Affiliation(s)
- Juanjuan Cai
- Department of Pharmacy, The Affiliated Hospital of Medical School, Ningbo University, Ningbo city, Zhejiang, China
| | - Lingling Su
- Department of Pharmacy, The Affiliated Hospital of Medical School, Ningbo University, Ningbo city, Zhejiang, China
| | - Weiwei Luo
- Department of Pharmacy, Ningbo No. 6 Hospital, Ningbo city, Zhejiang, China
| |
Collapse
|
4
|
Yang W, Wu W, Liang H, Chen J, Dong X. TOX3 regulates the proliferation and apoptosis of colorectal cancer by downregulating RhoB via the activation of MAPK pathway. Cell Biol Int 2022; 46:1074-1088. [PMID: 35347804 DOI: 10.1002/cbin.11802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Yang
- Department of General Surgery, The first affiliated hospital of Soochow UniversitySuzhou215006P.R.China
| | - Wei Wu
- Department of General Surgery, The affiliated hospital of Yangzhou UniversityYangzhou225000P.R.China
| | - Hailiang Liang
- Department of General Surgery, The affiliated hospital of Yangzhou UniversityYangzhou225000P.R.China
| | - Jiejing Chen
- Department of General Surgery, The affiliated hospital of Yangzhou UniversityYangzhou225000P.R.China
| | - Xiaoqiang Dong
- Department of General Surgery, The first affiliated hospital of Soochow UniversitySuzhou215006P.R.China
| |
Collapse
|
5
|
The p38 MAPK Signaling Activation in Colorectal Cancer upon Therapeutic Treatments. Int J Mol Sci 2020; 21:ijms21082773. [PMID: 32316313 PMCID: PMC7215415 DOI: 10.3390/ijms21082773] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological treatment of colorectal carcinoma currently proceeds through the administration of a combination of different chemotherapeutic agents. In the case of rectal carcinoma, radiation therapy also represents a therapeutic strategy. In an attempt at translating much-needed new targeted therapy to the clinics, p38 mitogen activated protein kinase (MAPK) inhibitors have been tested in clinical trials involving colorectal carcinoma patients, especially in combination with chemotherapy; however, despite the high expectations raised by a clear involvement of the p38 MAPK pathway in the response to therapeutic treatments, poor results have been obtained so far. In this work, we review recent insights into the exact role of the p38 MAPK pathway in response to currently available therapies for colorectal carcinoma, depicting an intricate scenario in which the p38 MAPK node presents many opportunities, as well as many challenges, for its perspective exploitation for clinical purposes.
Collapse
|
6
|
Inhibition of oxaliplatin-induced neurotoxicity by silymarin through increased expression of brain-derived neurotrophic factor and inhibition of p38-MAPK. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Martínez-García D, Manero-Rupérez N, Quesada R, Korrodi-Gregório L, Soto-Cerrato V. Therapeutic strategies involving survivin inhibition in cancer. Med Res Rev 2018; 39:887-909. [PMID: 30421440 DOI: 10.1002/med.21547] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Survivin is a small protein that belongs to the inhibitor of apoptosis protein family. It is abundantly expressed in tumors compared with adult differentiated tissues, being associated with poor prognosis in many human neoplasms. This apoptotic inhibitor has a relevant role in both the promotion of cancer cell survival and in the inhibition of cell death. Consequently, aberrant survivin expression stimulates tumor progression and confers resistance to several therapeutic strategies in a variety of tumors. In fact, efficient survivin downregulation or inhibition results in spontaneous apoptosis or sensitization to chemotherapy and radiotherapy. Therefore, all these features make survivin an attractive therapeutic target to treat cancer. Currently, there are several survivin inhibitors under clinical evaluation, although more specific and efficient survivin inhibitors are being developed. Moreover, novel combination regimens targeting survivin together with other therapeutic approaches are currently being designed and assessed. In this review, recent progress in the therapeutic options targeting survivin for cancer treatment is analyzed. Direct survivin inhibitors and their current development status are explored. Besides, the major signaling pathways implicated in survivin regulation are described and different therapeutic approaches involving survivin indirect inhibition are evaluated. Finally, promising novel inhibitors under preclinical or clinical evaluation as well as challenges of developing survivin inhibitors as a new therapy for cancer treatment are discussed.
Collapse
Affiliation(s)
- David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Noemí Manero-Rupérez
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
8
|
Li N, Yang L, Zhang B, Chen S. Tanshinone IIA effects on ovarian cancer cell line. ACTA ACUST UNITED AC 2018; 70:1369-1377. [PMID: 29943422 DOI: 10.1111/jphp.12961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To explore the potential therapeutic effect of Tanshinone IIA against ovarian cancer in vitro and elucidate the underlying molecular mechanism. METHODS The cell survival upon Tanshinone IIA treatment was determined by the clonogenic assay. Cell apoptosis was analysed by Annexin V/propidium iodide double staining. The cleaved caspase-3/poly ADP-ribose polymerase and apoptosis-related factors were quantified by Western blotting. The relative expression of microRNAs (miRs) was determined by real-time polymerase chain reaction. KEY FINDINGS Tanshinone IIA treatment induced significant apoptosis in TOV-21G cells. Tanshinone suppressed survivin expression while not affected Bax, Bcl-2 and Bcl-xL. We further predicted and experimentally confirmed overexpression of miR-205 in TOV-21G, which ectopic significantly inhibited survivin and promoted cell apoptosis. miR-205-specific antagonist completely abrogated the cell suppressive effect of Tanshinone IIA. CONCLUSIONS Our data suggested that Tanshinone IIA induced cell apoptosis in ovarian carcinoma TOV-21G cells via direct upregulation of miR-205. Our study highlighted the potential therapeutic application of Tanshinone IIA against ovarian malignancy.
Collapse
Affiliation(s)
- Nan Li
- Department of Gynecology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Yang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baolian Zhang
- Department of Obstetrics, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suqin Chen
- Department of Gynecology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Alotaibi AAA, Najafzadeh M, Davies JD, Baumgartner A, Anderson D. Inhibition of survivin expression after using oxaliplatin and vinflunine to induce cytogenetic damage in vitro in lymphocytes from colon cancer patients and healthy individuals. Mutagenesis 2017; 32:517-524. [PMID: 29040706 DOI: 10.1093/mutage/gex022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy drugs usually inflict a lethal dose to tumour cells with the consequence that these cells are being killed by cell death. However, each round of chemotherapy also causes damage to normal somatic cells. The DNA cross-linking agent oxaliplatin (OXP), which causes DNA double-strand breaks, and vinflunine (VFN), which disrupts the mitotic spindle, are two of these chemotherapy drugs which were evaluated in vitro using peripheral lymphocytes from colorectal cancer patients and healthy individuals to determine any differential response. Endpoints examined included micronucleus (MN) induction using the cytokinesis-blocked micronucleus (CBMN) assay and pancentromeric fluorescence in situ hybridisation. Also, survivin expression was monitored since it regulates the mitotic spindle checkpoint and inhibits apoptosis. OXP produced cytogenetic damage (micronuclei in binucleated cells) via its clastogenic but also previously unknown aneugenic action, possibly through interfering with topoisomerase II, whilst VFN produced micronuclei in mononucleated cells because of incomplete karyokinesis. Survivin expression was found to be significantly reduced in a concentration-dependent manner by not only OXP but surprisingly also VFN. This resulted in large numbers of multinucleated cells found with the CBMN assay. As survivin is upregulated in cancers, eliminating apoptosis inhibition might provide a more targeted chemotherapy approach; particularly, when considering VFN, which only affects cycling cells by inhibiting their mitotic spindle, and alongside possibly other pro-apoptotic compounds. Hence, these newly found properties of VFN -the inhibition of survivin expression-might demonstrate a promising chemotherapeutic approach as VFN induces less DNA damage in normal somatic cells compared to other chemotherapeutic compounds.
Collapse
Affiliation(s)
- Amal A A Alotaibi
- University of Bradford, Biomedical Sciences, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| | - Mojgan Najafzadeh
- University of Bradford, Biomedical Sciences, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| | - Justin D Davies
- Bradford Royal Infirmary, Bradford Hospitals NHS Trust, Duckworth Lane BD9 6RJ,UK
| | - Adolf Baumgartner
- University of Bradford, Biomedical Sciences, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK.,York St John University, Biomedical Science, Lord Mayor's Walk, York, North Yorkshire YO31 7EX, UK
| | - Diana Anderson
- University of Bradford, Biomedical Sciences, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| |
Collapse
|
10
|
Manuel-Manresa P, Korrodi-Gregório L, Hernando E, Villanueva A, Martínez-García D, Rodilla AM, Ramos R, Fardilha M, Moya J, Quesada R, Soto-Cerrato V, Pérez-Tomás R. Novel Indole-based Tambjamine-Analogues Induce Apoptotic Lung Cancer Cell Death through p38 Mitogen-Activated Protein Kinase Activation. Mol Cancer Ther 2017; 16:1224-1235. [DOI: 10.1158/1535-7163.mct-16-0752] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
|
11
|
Sun Z, Yue L, Shen Z, Li Y, Sui A, Li T, Tang Q, Yao R, Sun Y. Downregulation of NPM expression by Her-2 reduces resistance of gastric cancer to oxaliplatin. Oncol Lett 2017; 13:2377-2384. [PMID: 28454407 DOI: 10.3892/ol.2017.5722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
Nucleophosmin (NPM) and human epidermal growth factor receptor-2 (Her-2) are abnormally expressed in various types of human malignant tumors, including gastric cancer, and have been closely associated with cancer chemoresistance. However, their interaction and roles in oxaliplatin resistance are not fully understood. Therefore, the present study aimed to elucidate the relationship between NPM and Her-2 in gastric cancer cell lines and clinical samples, and further investigated their role in the resistance of gastric cancer to oxaliplatin. Western blotting and reverse transcription-quantitative polymerase chain reaction confirmed that NPM and Her-2 expression were significantly upregulated in gastric cancer cells and clinical samples, and that their expression levels were strongly correlated. However, Her-2 expression was not affected by upregulation or downregulation of NPM expression in gastric cancer cells. Cell counting kit-8 assays demonstrated that the cell sensitivity to oxaliplatin decreased simultaneously with an increase in NPM expression. Furthermore, inhibition of Her-2 expression using trastuzumab significantly increased the sensitivity of the cells to oxaliplatin, which occurred simultaneously with the downregulation of NPM. These results indicated that inhibition of NPM, as a Her-2 downstream signal, may be a novel strategy to overcome oxaliplatin-resistant gastric cancer, and that trastuzumab and oxaliplatin may exhibit a synergistic antitumor effect in Her-2-positive gastric cancer cells.
Collapse
Affiliation(s)
- Zhenni Sun
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lu Yue
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zan Shen
- Department of Oncology, The Sixth People's Hospital, Medical College of Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yong Li
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Aihua Sui
- Center for Medical Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Tianjun Li
- Center for Medical Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qian Tang
- Center for Medical Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ruyong Yao
- Center for Medical Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yongning Sun
- Department of Oncology, The Sixth People's Hospital, Medical College of Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
12
|
Mohammadian M, Zeynali S, Azarbaijani AF, Khadem Ansari MH, Kheradmand F. Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Res Pharm Sci 2017; 12:517-525. [PMID: 29204180 PMCID: PMC5691578 DOI: 10.4103/1735-5362.217432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The use of heat shock protein 90 inhibitors like 17-allylamino-17-demethoxy-geldanamycin (17-AAG) has been recently introduced as an attractive anticancer therapy. It has been shown that 17-AAG may potentiate the inhibitory effects of some classical anticolorectal cancer (CRC) agents. In this study, two panels of colorectal carcinoma cell lines were used to evaluate the effects of 17-AAG in combination with capecitabine and oxaliplatin as double and triple combination therapies on the proliferation of CRC cell lines. HT-29 and all HCT-116 cell lines were seeded in culture media in the presence of different doses of the mentioned drugs in single, double, and triple combinations. Water-soluble tetrazolium-1 (WST-1) assay was used to investigate cell proliferation 24 h after treatments. Then, dose-response curves were plotted using WST-1outputs, and IC50 values were determined. For double and triple combinations respectively 0.5 × IC50 and 0.25 × IC50 were used. Data was analyzed with the software CompuSyn. Drug interactions were analyzed using Chou-Talalay method to calculate the combination index (CI).The data revealed that 17-AAG shows a potent synergistic interaction (CI < 1) with oxaliplatin and capecitabine in double combinations (0.5 × IC50) in both cell lines. In the case of triple combinations, the findings showed an antagonistic interaction (CI > 1) in HT-29 and a synergistic effect (CI < 1) in HCT-116 (0.25 × IC50) cell lines. It was concluded that double combinations of 17-AAG with oxaliplatin or capecitabine might be effective against HCT-116 and HT-29 cell lines. However, in triple combinations, positive results were seen only against HCT-116. Further investigation is suggested to confirm the effectiveness of these combinations in clinical trials.
Collapse
Affiliation(s)
- Mahshid Mohammadian
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical sciences, Urmia, I.R. Iran
| | - Shima Zeynali
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical sciences, Urmia, I.R. Iran
| | - Anahita Fathi Azarbaijani
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical sciences, Urmia, I.R. Iran
| | | | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical sciences, Urmia, I.R. Iran.,Solid Tumor Research Center and Cellular and Molecular Research Center, Urmia University of Medical sciences, Urmia, I.R. Iran
| |
Collapse
|
13
|
Lyskjær I, Rasmussen MH, Andersen CL. Putting a brake on stress signaling: miR-625-3p as a biomarker for choice of therapy in colorectal cancer. Epigenomics 2016; 8:1449-1452. [PMID: 27779424 DOI: 10.2217/epi-2016-0128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Iben Lyskjær
- Department of Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Mads H Rasmussen
- Department of Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Claus L Andersen
- Department of Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| |
Collapse
|
14
|
FOXO3a and the MAPK p38 are activated by cetuximab to induce cell death and inhibit cell proliferation and their expression predicts cetuximab efficacy in colorectal cancer. Br J Cancer 2016; 115:1223-1233. [PMID: 27685445 PMCID: PMC5104890 DOI: 10.1038/bjc.2016.313] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/08/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cetuximab, a monoclonal antibody against EGFR used for the treatment of colorectal cancer (CRC), is ineffective in many patients. The aim of this study was to identify the signalling pathways activated by cetuximab in CRC cells and define new biomarker of response. METHODS We used in vitro, in vivo models and clinical CRC samples to assess the role of p38 and FOXO3a in cetuximab mechanism of action. RESULTS We show that cetuximab activates the MAPK p38. Specifically, p38 inhibition reduced cetuximab efficacy on cell growth and cell death. At the molecular level, cetuximab activates the transcription factor FOXO3a and promotes its nuclear translocation via p38-mediated phosphorylation, leading to the upregulation of its target genes p27 and BIM and the subsequent induction of apoptosis and inhibition of cell proliferation. Finally, we found that high FOXO3a and p38 expression levels are associated with better response rate and improved outcome in cetuximab-treated patients with CRC harbouring WT KRAS. CONCLUSIONS We identify FOXO3a as a key mediator of cetuximab mechanism of action in CRC cells and define p38 as its activator in this context. Moreover, high FOXO3a and p38 expression could predict the response to cetuximab in patients with CRC harbouring WT KRAS.
Collapse
|
15
|
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun 2016; 7:12436. [PMID: 27526785 PMCID: PMC4990699 DOI: 10.1038/ncomms12436] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/01/2016] [Indexed: 12/14/2022] Open
Abstract
Oxaliplatin resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Herein, we show that miR-625-3p functionally induces oxaliplatin resistance in CRC cells, and identify the signalling networks affected by miR-625-3p. We show that the p38 MAPK activator MAP2K6 is a direct target of miR-625-3p, and, accordingly, is downregulated in non-responder patients of oxaliplatin therapy. miR-625-3p-mediated resistance is reversed by anti-miR-625-3p treatment and ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, reduction of p38 signalling by using siRNAs, chemical inhibitors or expression of a dominant-negative MAP2K6 protein induces resistance to oxaliplatin. Transcriptome, proteome and phosphoproteome profiles confirm inactivation of MAP2K6-p38 signalling as one likely mechanism of oxaliplatin resistance. Our study shows that miR-625-3p induces oxaliplatin resistance by abrogating MAP2K6-p38-regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p.
Collapse
|
16
|
Kiyonari S, Iimori M, Matsuoka K, Watanabe S, Morikawa-Ichinose T, Miura D, Niimi S, Saeki H, Tokunaga E, Oki E, Morita M, Kadomatsu K, Maehara Y, Kitao H. The 1,2-Diaminocyclohexane Carrier Ligand in Oxaliplatin Induces p53-Dependent Transcriptional Repression of Factors Involved in Thymidylate Biosynthesis. Mol Cancer Ther 2015; 14:2332-42. [PMID: 26208523 DOI: 10.1158/1535-7163.mct-14-0748] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 07/10/2015] [Indexed: 11/16/2022]
Abstract
Platinum-based chemotherapeutic drugs are widely used as components of combination chemotherapy in the treatment of cancer. One such drug, oxaliplatin, exerts a synergistic effect against advanced colorectal cancer in combination with 5-fluorouracil (5-FU) and leucovorin. In the p53-proficient colorectal cancer cell line HCT116, oxaliplatin represses the expression of deoxyuridine triphosphatase (dUTPase), a ubiquitous pyrophosphatase that catalyzes the hydrolysis of dUTP to dUMP and inhibits dUTP-mediated cytotoxicity. However, the underlying mechanism of this activity has not been completely elucidated, and it remains unclear whether factors other than downregulation of dUTPase contribute to the synergistic effect of 5-FU and oxaliplatin. In this study, we found that oxaliplatin and dachplatin, platinum-based drugs containing the 1,2-diaminocyclohexane (DACH) carrier ligand, repressed the expression of nuclear isoform of dUTPase (DUT-N), whereas cisplatin and carboplatin did not. Oxaliplatin induced early p53 accumulation, upregulation of primary miR-34a transcript expression, and subsequent downregulation of E2F3 and E2F1. Nutlin-3a, which activates p53 nongenotoxically, had similar effects. Introduction of miR-34a mimic also repressed E2F1 and DUT-N expression, indicating that this miRNA plays a causative role. In addition to DUT-N, oxaliplatin repressed, in a p53-dependent manner, the expression of genes encoding enzymes involved in thymidylate biosynthesis. Consequently, oxaliplatin significantly decreased the level of dTTP in the dNTP pool in a p53-dependent manner. These data indicate that the DACH carrier ligand in oxaliplatin triggers signaling via the p53-miR-34a-E2F axis, leading to transcriptional regulation that ultimately results in accumulation of dUTP and reduced dTTP biosynthesis, potentially enhancing 5-FU cytotoxicity.
Collapse
Affiliation(s)
- Shinichi Kiyonari
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Makoto Iimori
- Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Kazuaki Matsuoka
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Taiho Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Sugiko Watanabe
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan
| | - Tomomi Morikawa-Ichinose
- Metabolic Profiling Research Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan
| | - Daisuke Miura
- Metabolic Profiling Research Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan
| | - Shinichiro Niimi
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Taiho Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Eriko Tokunaga
- Department of Comprehensive Clinical Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Masaru Morita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoshihiko Maehara
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Hiroyuki Kitao
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan.
| |
Collapse
|
17
|
Lin JY, Ke YM, Lai JS, Ho TF. Tanshinone IIA enhances the effects of TRAIL by downregulating survivin in human ovarian carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:929-938. [PMID: 26321742 DOI: 10.1016/j.phymed.2015.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Tanshinone IIA (TIIA), a diterpene quinone from the medicinal plant Salvia miltiorrhiza Bunge (Lamiaceae) was shown to possess apoptotic and TRAIL-sensitizing effects. Still, the molecular mechanisms whereby TIIA induces apoptosis remain largely unknown. PURPOSE The role of survivin, an inhibitor of apoptosis protein, in TIIA-induced apoptosis has never been addressed before and hence was the primary goal of this study. METHODS In this study, we explored the anticancer effect of TIIA in TOV-21G, SKOV3, and OVCAR3 ovarian carcinoma cells. Cytotoxicity was determined by MTS assay. Real-time RT-PCR and Western blotting were used to assess the mRNA and protein expression of related signaling proteins. RESULTS Our results illustrated that TIIA's cytotoxic effect was caused by apoptosis with the involvement of caspases activity. Moreover, TIIA downregulated survivin in a concentration-dependent manner without affecting the expression of Bcl-2, Bcl-xL, and Bax. TIIA-induced survivin downregulation is regulated by both transcriptional processes and proteasomal degradation. Using TOV-21G cells as our cellular model, we demonstrated that TIIA-induced survivin downregulation requires p38 MAPK activation. Importantly, genetic overexpression of survivin rendered cells more resistant to TIIA, indicating an essential role of survivin downregulation in TIIA-induced apoptosis. This TRAIL sensitization effect of TIIA is ascribed to survivin downregulation because the effect was abrogated in cells that overexpressed survivin. CONCLUSION Our findings provide new insights into the action modes of TIIA-mediated anticancer effects and further implicate a rational design for cancer therapeutic regimens by combining TIIA-sensitized TRAIL via downregulating survivin to elicit ovarian cancer cell death.
Collapse
Affiliation(s)
- Jyun-Yi Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yu-Min Ke
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jui-Sheng Lai
- Division of Biotechnology, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Tsing-Fen Ho
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| |
Collapse
|
18
|
Hu CJ, Wang B, Tang B, Chen BJ, Xiao YF, Qin Y, Yong X, Luo G, Zhang JW, Zhang D, Li S, He F, Yang SM. The FOXM1-induced resistance to oxaliplatin is partially mediated by its novel target gene Mcl-1 in gastric cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:290-9. [PMID: 25482013 DOI: 10.1016/j.bbagrm.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 02/07/2023]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic protein that belongs to the Bcl-2 family. The aberrant expression of Mcl-1 is important for sensitivity to chemotherapy drugs in gastric cancer. However, the regulatory mechanism of Mcl-1 in gastric cancer cells remains unclear. In this study, we first found that Forkhead box M1 (FOXM1) and Mcl-1 expression levels were positively correlated in human gastric cancer specimens and that both are associated with poor prognosis of patients treated with oxaliplatin. Second, we demonstrated that the expression level of Mcl-1 was correlated with FOXM1 expression in gastric cancer cells. Third, reporter assays showed that FOXM1 upregulated the promoter activity of the Mcl-1 gene. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays further demonstrated that FOXM1 could bind to a particular site (-635acaaacaa-628) in the promoter region of the Mcl-1 gene. Moreover, CCK-8 assays and analyses of apoptosis revealed that the suppression of the FOXM1/Mcl-1 pathway induced apoptosis and thus increased sensitivity to oxaliplatin in gastric cancer cells, whereas the enhancement of the FOXM1/Mcl-1 pathway inhibited apoptosis and decreased sensitivity to oxaliplatin in gastric cancer cells. Taken together, this study is the first to not only show that Mcl-1 is a novel target gene of FOXM1 but also suggest that targeting FOXM1/Mcl-1 may be a novel strategy to enhance sensitivity to oxaliplatin in gastric cancer.
Collapse
Affiliation(s)
- Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bin Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bai-jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yong Qin
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Gang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jian-Wei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Dan Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
19
|
Maruyama T, Murata S, Nakayama K, Sano N, Ogawa K, Nowatari T, Tamura T, Nozaki R, Fukunaga K, Ohkohchi N. (-)-Epigallocatechin-3-gallate suppresses liver metastasis of human colorectal cancer. Oncol Rep 2013; 31:625-33. [PMID: 24337301 DOI: 10.3892/or.2013.2925] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 12/18/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has been shown to inhibit cell proliferation and induce apoptosis in several types of human tumors. The most common site of distant metastases in colorectal cancer is the liver. However, no previous studies have reported the ability of EGCG to suppress liver metastases of human colorectal cancer. The aim of the present study was to elucidate the potential use of EGCG as chemotherapy targeting liver metastases of human colorectal cancer. To assess the effect of EGCG on human colorectal cancer cell lines, RKO and HCT116, cell viability, cell proliferation and apoptosis were measured by cell counting kit-8, BrdU assay and TUNEL staining, respectively. Protein and gene expression were measured by western blot analysis and RT-PCR analysis, respectively. EGCG inhibited cell proliferation and induced apoptosis. EGCG dephosphorylated constitutively activated Akt and increased the activation of p38. EGCG also decreased the expression of vascular endothelial growth factor receptor 2. Additionally, the ability of EGCG to prevent the development of liver metastases of RKO tumors was evaluated in SCID mice. EGCG suppressed angiogenesis and induced apoptosis in liver metastases without associated body weight loss or hepatotoxicity. Furthermore, the liver metastatic area was significantly reduced by EGCG administration. Our findings indicate that EGCG may be useful in the treatment of liver metastases of human colorectal cancer.
Collapse
Affiliation(s)
- Takehito Maruyama
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Soichiro Murata
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nakayama
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoki Sano
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Koichi Ogawa
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Nowatari
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takafumi Tamura
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Reiji Nozaki
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kiyoshi Fukunaga
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
20
|
Yang CR, Liao WS, Wu YH, Murugan K, Chen C, Chao JI. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction. Toxicol Appl Pharmacol 2013; 273:611-22. [PMID: 24128853 DOI: 10.1016/j.taap.2013.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/27/2013] [Accepted: 10/05/2013] [Indexed: 11/26/2022]
Abstract
Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer.
Collapse
Affiliation(s)
- Chun-Ru Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Shiragami R, Murata S, Kosugi C, Tezuka T, Yamazaki M, Hirano A, Yoshimura Y, Suzuki M, Shuto K, Koda K. Enhanced antitumor activity of cerulenin combined with oxaliplatin in human colon cancer cells. Int J Oncol 2013; 43:431-8. [PMID: 23754252 DOI: 10.3892/ijo.2013.1978] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/05/2013] [Indexed: 11/06/2022] Open
Abstract
Fatty acid synthase is highly expressed in many types of human cancers. Cerulenin, a natural inhibitor of fatty acid synthase, induced apoptosis in the human colon cancer cell lines HCT116 and RKO. Oxaliplatin also induced cell death in these cell lines. Cerulenin treatment was associated with reduced levels of phosphorylated Akt, activation of p38 and induced caspase-3 cleavage and finally caused apoptosis. Oxaliplatin induced activation of the p53-p21 pathway and p38. In combination with cerulenin and oxaliplatin, activation of the p53-p21 pathway and p38 occurred in a smaller concentration and finally induced caspase-3 cleavage in a smaller concentration of cerulenin and oxaliplatin. In xenotransplanted SCID mice, the cerulenin + oxaliplatin group significantly inhibited tumor progression compared to the control, cerulenin and oxaliplatin groups. Based on these studies, inhibiting fatty acid synthase would be an effective strategy to treat unresectable colorectal cancer tumors in combination with oxaliplatin. Fatty acid synthase inhibitor would be one of the best counterparts of oxaliplatin, which reduces the dose and side-effects of oxaliplatin and would make it possible to endure the chemotherapy over a longer period.
Collapse
Affiliation(s)
- Risa Shiragami
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba 299-0111, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mechanistic evaluation of a novel small molecule targeting mitochondria in pancreatic cancer cells. PLoS One 2013; 8:e54346. [PMID: 23349858 PMCID: PMC3549929 DOI: 10.1371/journal.pone.0054346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/12/2012] [Indexed: 12/25/2022] Open
Abstract
Background Pancreatic cancer is one of the deadliest cancers with a 5-year survival rate of 6%. Therapeutic options are very limited and there is an unmet medical need for safe and efficacious treatments. Cancer cell metabolism and mitochondria provide unexplored targets for this disease. We recently identified a novel class of triphenylphosphonium salts, TP compounds, with broad- spectrum anticancer properties. We examined the ability of our prototypical compound TP421– chosen for its fluorescent properties – to inhibit the growth of pancreatic cancer cells and further investigated the molecular mechanisms by which it exerts its anticancer effects. Methodology/Principal Findings TP421 exhibited sub-micromolar IC50 values in all the pancreatic cancer cell lines tested using MTT and colony formation assays. TP421 localized predominantly to mitochondria and induced G0/G1 arrest, ROS accumulation, and activation of several stress-regulated kinases. Caspase and PARP-1 cleavage were observed indicating an apoptotic response while LC3B-II and p62 were accumulated indicating inhibition of autophagy. Furthermore, TP421 induced de-phosphorylation of key signaling molecules involved in FAK mediated adhesion that correlated with inhibition of cell migration. Conclusions/Significance TP421 is a representative compound of a new promising class of mitochondrial-targeted agents useful for pancreatic cancer treatment. Because of their unique mechanism of action and efficacy further development is warranted.
Collapse
|
23
|
Liu W, Wang G, Cao X, Luo X, Li Z, Deng Y, Li X, Wang S, Liu M, Hu J, Wang J. Down-regulation of p110β expression increases chemosensitivity of colon cancer cell lines to oxaliplatin. ACTA ACUST UNITED AC 2012; 32:280-286. [PMID: 22528234 DOI: 10.1007/s11596-012-0049-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 12/18/2022]
Abstract
This study examined the synergetic effect of class IA Phosphoinositide 3-kinases catalytic subunit p110β knockdown in conjunction with oxaliplatin treatment on colon cancer cells. Down-regulation of p110β by siRNA interference and oxaliplatin treatment were applied in colon cancer cell lines HT29, SW620 and HCT116. MTT assay was used to measure the inhibitory effect of p110β knockdown on the proliferation of colon cancer cell lines. SubG1 assay and Annexin-V FITC/PI double-labeling cytometry were applied to detect cell apoptosis. And cell cycle was evaluated by using PI staining and flow cytometry. The expression of caspase 3, cleaved PARP, p-Akt, T-Akt and p110β was determined by western blotting. The results suggested that down-regulation of p110β expression by siRNA obviously reduced cell number via accumulation in G(0)-G(1) phase of the cell cycle in the absence of notablely increased apoptosis in colon cancer cell lines HT29 and SW620 (S phase arrest in HCT116). Moreover, inhibition of p110β expression increased oxaliplatin-induced cell apoptosis and cell cycle arrest in HT29, HCT116 and SW620 cell lines. In addition, increases of cleaved caspase-3 and cleaved PARP induced by oxaliplatin treatment were determined by immunoblotting in p110β knockdown group compared with normal control group and wild-type group. It is concluded that down-regulated expression of p110β could inhibit colon cancer cells proliferation and result in increased chemosensitivity of colorectal cancer cells to oxaliplatin through augmentation of oxaliplatin-induced cell apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Weicheng Liu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaonian Cao
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuelai Luo
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhaoming Li
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Deng
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolan Li
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shijia Wang
- Departement of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengfei Liu
- Departement of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junbo Hu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Wang
- Departement of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Zhang XL, Hu AB, Cui SZ, Wei HB. Thermotherapy enhances oxaliplatin-induced cytotoxicity in human colon carcinoma cells. World J Gastroenterol 2012; 18:646-53. [PMID: 22363135 PMCID: PMC3281221 DOI: 10.3748/wjg.v18.i7.646] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/28/2011] [Accepted: 10/05/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the synergistic effects of hyperthermia in oxaliplatin-induced cytotoxicity in human colon adenocarcinoma Lovo cells.
METHODS: The human colon adenocarcinoma cell line Lovo was obtained from Sun Yat-Sen University. Cells were sealed with parafilm and placed in a circulating water bath, and was maintained within 0.01 °C of the desired temperature (37 °C, 39 °C, 41 °C, 43 °C and 45 °C). Thermal therapy was given alone to the negative control group while oxaliplatin was administered to the treatment group at doses of 12.5 μg/mL and 50 μg/mL. Identification of morphological changes, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and Western blotting were used to investigate the effect of thermochemotherapy on human colon adenocarcinoma Lovo cells, including changes in the signal pathway related to apoptosis.
RESULTS: A temperature-dependent inhibition of cell growth was observed after oxaliplatin exposure, while a synergistic interaction was detected preferentially with sequential combination. Thermochemotherapy changed the morphology of Lovo cells, increased the inhibition rate of the Lovo cells (P < 0.05) and enhanced cellular population in the G0/G1 phase (16.7% ± 4.8 % in phase S plus 3.7% ± 2.4 % in phase G2/M, P < 0.05). Thermochemotherapy increased apoptosis through upregulating p53, Bax and downregulating Bcl-2. Protein levels were elevated in p53, Bax/Bcl-2 in thermochemotherapy group as compared with the control group (P < 0.05).
CONCLUSION: Thermochemotherapy may play an important role in apoptosis via the activation of p53, Bax and the repression of Bcl-2 in Lovo cells.
Collapse
|
25
|
Stool-fermented Plantago ovata husk induces apoptosis in colorectal cancer cells independently of molecular phenotype. Br J Nutr 2011; 107:1591-602. [PMID: 22018732 DOI: 10.1017/s0007114511004910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several studies have suggested that the partially fermentable fibre Plantago ovata husk (PO) may have a protective effect on colorectal cancer (CRC). We studied the potentially pro-apoptotic effect of PO and the implicated mechanisms in CRC cells with different molecular phenotypes (Caco-2, HCT116, LoVo, HT-29, SW480) after PO anaerobic fermentation with colonic bacteria as it occurs in the human colon. The fermentation products of PO induced apoptosis in all primary tumour and metastatic cell lines, independent of p53, adenomatous polyposis coli, β-catenin or cyclo-oxygenase-2 status. Apoptosis was caspase-dependent and both intrinsic and extrinsic pathways were implicated. The intrinsic pathway was activated through a shift in the balance towards a pro-apoptotic environment with an up-regulation of B-cell lymphoma protein 2 homologous antagonist killer (BAK) and a down-regulation of B-cell lymphoma-extra large (Bcl-xL) seen in HCT116 and LoVo cells. This resulted in mitochondrial membrane depolarisation, increased expression of caspase activators second mitochondria-derived activator of caspases (Smac)/Diablo, death effector apoptosis-inducing factor, apoptosome member apoptotic protease activating factor 1 and down-regulation of inhibitors of apoptosis Survivin and X-linked inhibitor of apoptosis in most cells. The extrinsic pathway was activated presumably through the up-regulation of death receptor (DR5). Some important differences were seen between primary tumour and metastatic CRC cells. Thus, metastatic PO-treated LoVo cells had a remarkable up-regulation of TNF-α ligand along with death-inducing signalling complex components receptor interacting protein and TNF-α receptor 1-associated death domain protein. The extrinsic pathway modulator FCICE-inhibitory protein (FLIP), an inhibitor of both spontaneous death ligand-independent and death receptor-mediated apoptosis, was significantly down-regulated after PO treatment in all primary tumour cells, but not in metastatic LoVo. These findings suggest that PO could potentially be a useful chemotherapy adjuvant.
Collapse
|
26
|
Hernandez JM, Farma JM, Coppola D, Hakam A, Fulp WJ, Chen DT, Siegel EM, Yeatman TJ, Shibata D. Expression of the antiapoptotic protein survivin in colon cancer. Clin Colorectal Cancer 2011; 10:188-93. [PMID: 21855041 DOI: 10.1016/j.clcc.2011.03.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/12/2010] [Accepted: 10/22/2010] [Indexed: 01/20/2023]
Abstract
BACKGROUND The antiapoptotic protein survivin has been demonstrated to play an important role in colorectal carcinogenesis. However it is unclear whether the upregulation of survivin is maintained through progressive stages of disease, or if other apoptosis-related genes are coexpressed and/or repressed. We sought to evaluate survivin expression in colonic neoplasia and identify relationships with additional regulators of apoptosis. PATIENTS AND METHODS Tissue samples from 168 patients with primary colorectal cancer were profiled using the GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA) and evaluated for survivin expression. Immunohistochemical staining for survivin and a panel of apoptosis-associated proteins were used in 86 patients with tissue microarray (TMA) blocks; scoring was by stain intensity and percentage of positive cells (range, 0-9). RESULTS Survivin mRNA was upregulated (1.8-fold increase) in primary colon cancers- irrespective of American Joint Committee on Cancer (AJCC) stage- and metastases compared with normal colonic tissue (P < .0001). Survivin staining was positive in 93% of adenocarcinomas (median immunohistochemistry [IHC] score: 2 [range, 1-6]), 100% of adenomas (1 [range,1-2]), and 43% of normal colonic mucosa (1, [range 1-2]) (P = .006). Survivin expression increased with worsening tumor grade (P < .05). In colon cancers, survivin expression positively correlated with the coexpression of PUMA (P < .001), TACE (P = .003), and MCL1 (P = .01), and trended toward an inverse correlation with BAX (P = .058). CONCLUSIONS Survivin expression increases during the normal mucosa-adenoma-carcinoma sequence and is maintained throughout progression of disease, which strengthens its appeal as a therapeutic target. Furthermore, we have demonstrated co-overexpression of several other apoptosis-related genes, which may in turn serve as additional and potentially synergistic therapeutic targets.
Collapse
|