1
|
Wang D, Lv J, Fu Y, Shang Y, Liu J, Lyu Y, Wei M, Yu X. Optimization of Microwave-Assisted Extraction Process of Total Flavonoids from Salicornia bigelovii Torr. and Its Hepatoprotective Effect on Alcoholic Liver Injury Mice. Foods 2024; 13:647. [PMID: 38472759 DOI: 10.3390/foods13050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The objective of this study was to determine the optimal extraction conditions for total flavonoids from S. bigelovii using microwave-assisted extraction and to analyze the protective effect of total flavonoids from S. bigelovii on alcoholic liver injury in mice. The optimization of the process conditions for the microwave-assisted extraction of total flavonoids from S. bigelovii was performed using response surface methodology, and an alcohol-induced acute liver injury model in mice was used to investigate the effects of different doses of total flavonoids (100 mg/kg, 200 mg/kg, and 400 mg/kg) on the levels and activities of serum alanine aminotransferase kits (ALT), glutamic oxaloacetic transaminase kits (AST), superoxide dismutase kits (SOD), glutathione peroxidase kits (GSH-Px), and malondialdehyde (MDA). We performed hematoxylin-eosin (H&E) staining analysis on pathological sections of mouse liver tissue, and qRT-PCR technology was used to detect the expression levels of the inflammatory factors IL-1 β, IL-6, and TNF-α. The results revealed that the optimal extraction process conditions for total flavonoids in S. bigelovii were a material-to-liquid ratio of 1:30 (g/mL), an ethanol concentration of 60%, an extraction temperature of 50 °C, an ultrasound power of 250 W, and a yield of 5.71 ± 0.28 mg/g. Previous studies have demonstrated that the flavonoids of S. bigelovii can significantly inhibit the levels of ALT and AST in the serum (p < 0.001), reduce MDA levels (p < 0.001), increase the activity of the antioxidant enzymes SOD and GSH-Px (p < 0.001), and inhibit the IL-1 β, IL-6, and TNF-α gene expression levels (p < 0.001) of inflammatory factors. The total flavonoids of S. bigelovii exert a protective effect against alcoholic liver injury by reducing the levels of inflammation, oxidative stress, and lipid peroxidation caused by alcohol. The results of this study lay the foundation for the high-value utilization of S. bigelovii and provide new resources for the development of liver-protective drugs.
Collapse
Affiliation(s)
- Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jing Lv
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yan Fu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ming Wei
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
2
|
Liu X, Ma S, Zhang Y, Fu Y, Cai S. Transmembrane behaviors and quantitative structure-activity relationship of dietary flavonoids in the presence of intestinal digestive products from different carbohydrate sources based on in vitro and in silico analysis. Food Chem X 2023; 20:100994. [PMID: 38144778 PMCID: PMC10740061 DOI: 10.1016/j.fochx.2023.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Bioavailability plays a key role for flavonoids to exert their bioactivities. This study investigated the transmembrane transport behavior and structure-activity of dietary flavonoids. Results showed that the apparent permeability coefficients of some flavonoids could be significantly increased when digestion products from rice flour (RD) or wheat flour (WD) are present (p < 0.05), especially in the WD, potentially due to higher reducing sugar (p < 0.05). 3D-QSAR revealed that the hydrogen bond acceptor groups at positions 5 and 6 of ring A, small-volume groups at position 3', hydrophobic groups at position 4', and large-volume groups at position 5' of ring B increased the transmembrane transport of flavonoids in the WD. A hydrogen bond donor group at position 4' of ring B enhanced the transmembrane transport of flavonoid compounds in the RD. These findings contribute to our comprehensive understanding of flavonoid absorption within the context of intestinal carbohydrate digestion.
Collapse
Affiliation(s)
- Xiaojing Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Shuang Ma
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People’s Republic of China
| | - Yuanyue Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People’s Republic of China
| | - Yishan Fu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People’s Republic of China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People’s Republic of China
| |
Collapse
|
3
|
Preet G, Haj Hasan A, Ramlagan P, Fawdar S, Boulle F, Jaspars M. Anti-Neurodegenerating Activity: Structure-Activity Relationship Analysis of Flavonoids. Molecules 2023; 28:7188. [PMID: 37894669 PMCID: PMC10609304 DOI: 10.3390/molecules28207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
An anti-neurodegeneration activity study was carried out for 80 flavonoid compounds. The structure-activity analysis of the structures was carried out by performing three different anti-neurodegeneration screening tests, showing that in these structures, the presence of a hydroxy substituent group at position C3' as well as C5' of ring B and a methoxy substituent group at the C7 position of ring A play a vital role in neuroprotective and antioxidant as well as anti-inflammatory activity. Further, we found structure (5) was the top-performing active structure out of 80 structures. Subsequently, a molecular docking study was carried out for the 3 lead flavonoid compounds (4), (5), and (23) and 21 similar hypothetical proposed structures to estimate the binding strength between the tested compounds and proteins potentially involved in disease causation. Ligand-based pharmacophores were generated to guide future drug design studies.
Collapse
Affiliation(s)
- Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
| | - Ahlam Haj Hasan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | - Shameem Fawdar
- Axonova Ltd., Grand Port 51405, Mauritius; (P.R.); (S.F.); (F.B.)
| | - Fabien Boulle
- Axonova Ltd., Grand Port 51405, Mauritius; (P.R.); (S.F.); (F.B.)
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
| |
Collapse
|
4
|
Demonceaux M, Goux M, Hendrickx J, Solleux C, Cadet F, Lormeau É, Offmann B, André-Miral C. Regioselective glucosylation of (+)-catechin using a new variant of sucrose phosphorylase from Bifidobacterium adolescentis. Org Biomol Chem 2023; 21:2307-2311. [PMID: 36857722 DOI: 10.1039/d3ob00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Mutation Q345F in sucrose phosphorylase from Bifidobacterium adolescentis (BaSP) has shown to allow efficient (+)-catechin glucosylation yielding a regioisomeric mixture: (+)-catechin-3'-O-α-D-glucopyranoside, (+)-catechin-5-O-α-D-glucopyranoside and (+)-catechin-3',5-O-α-D-diglucopyranoside with a ratio of 51 : 25 : 24. Here, we efficiently increased the control of (+)-catechin glucosylation regioselectivity with a new variant Q345F/P134D. The same products were obtained with a ratio of 82 : 9 : 9. Thanks to bioinformatics models, we successfully explained the glucosylation favoured at the OH-3' position due to the mutation P134D.
Collapse
Affiliation(s)
| | - Marine Goux
- US2B, CNRS UMR 6286, Nantes University, Nantes 44300, France.
| | | | - Claude Solleux
- US2B, CNRS UMR 6286, Nantes University, Nantes 44300, France.
| | - Frédéric Cadet
- Laboratory of Excellence LABEX GR, DSIMB, Inserm UMR S1134, University of Paris City and University of Reunion, Paris 75014, France
| | - Émilie Lormeau
- US2B, CNRS UMR 6286, Nantes University, Nantes 44300, France.
| | - Bernard Offmann
- US2B, CNRS UMR 6286, Nantes University, Nantes 44300, France.
| | | |
Collapse
|
5
|
Zhao L, Zheng M, Cai H, Chen J, Lin Y, Wang F, Wang L, Zhang X, Liu J. The activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation. J Nutr Biochem 2023; 112:109208. [PMID: 36370929 DOI: 10.1016/j.jnutbio.2022.109208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
Mitochondrial reactive oxygen species (ROS)generation plays an essential role in the process of adipocyte differentiation and is involved in the development of obesity and associated metabolic diseases. Various dietary flavonoids possess the substantial anti-adipogenic activity. However, it is unclear whether these flavonoids inhibit adipocyte differentiation by reducing ROS generation. In this study, the effects of six common dietary flavonoids on adipocyte differentiation were assessed in 3T3-L1 cells. The flavonoids with the same backbone of 5,7-dihydroxylflavone, including flavones apigenin, chrysin, luteolin and flavonols kaempferol, myricetin, quercetin, dose-dependently inhibited 3T3-L1 adipocyte differentiation, suggesting an associated hierarchy of inhibitory capability: luteolin > quercetin > myricetin > apigenin/kaempferol > chrysin. Meanwhile, six flavonoids were found to inhibit adipogenic gene expression and the early stage of adipocyte differentiation. Among the tested flavonoids, luteolin significantly reduced both intracellular and mitochondrial ROS generation during adipocyte differentiation. Further, luteolin treatment depressed the elevation of H2O2 concentration in the early stage of 3T3-L1 differentiation and reversed the facilitated effects of exogenous H2O2 on 3T3-L1 adipocyte differentiation and ROS generation. Altogether, the activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation, elucidating a new mechanism underlying the anti-adipogenic actions of flavonoids.
Collapse
Affiliation(s)
- Lingli Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Mengfei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Hao Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China.
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, P R China.
| |
Collapse
|
6
|
Martínez-Costa OH, Rodrigues-Miranda L, Clemente SM, Parola AJ, Basilio N, Samhan-Arias AK. Biochemical and Biophysical Characterization of the Caveolin-2 Interaction with Membranes and Analysis of the Protein Structural Alteration by the Presence of Cholesterol. Int J Mol Sci 2022; 23:15203. [PMID: 36499524 PMCID: PMC9822168 DOI: 10.3390/molecules28010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Caveolin-2 is a protein suitable for the study of interactions of caveolins with other proteins and lipids present in caveolar lipid rafts. Caveolin-2 has a lower tendency to associate with high molecular weight oligomers than caveolin-1, facilitating the study of its structural modulation upon association with other proteins or lipids. In this paper, we have successfully expressed and purified recombinant human caveolin-2 using E. coli. The structural changes of caveolin-2 upon interaction with a lipid bilayer of liposomes were characterized using bioinformatic prediction models, circular dichroism, differential scanning calorimetry, and fluorescence techniques. Our data support that caveolin-2 binds and alters cholesterol-rich domains in the membranes through a CARC domain, a type of cholesterol-interacting domain in its sequence. The far UV-CD spectra support that the purified protein keeps its folding properties but undergoes a change in its secondary structure in the presence of lipids that correlates with the acquisition of a more stable conformation, as shown by differential scanning calorimetry experiments. Fluorescence experiments using egg yolk lecithin large unilamellar vesicles loaded with 1,6-diphenylhexatriene confirmed that caveolin-2 adsorbs to the membrane but only penetrates the core of the phospholipid bilayer if vesicles are supplemented with 30% of cholesterol. Our study sheds light on the caveolin-2 interaction with lipids. In addition, we propose that purified recombinant caveolin-2 can provide a new tool to study protein-lipid interactions within caveolae.
Collapse
Affiliation(s)
- Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029-Madrid, Spain
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), C/Arturo Duperier 4, 28029-Madrid, Spain
| | - Laura Rodrigues-Miranda
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029-Madrid, Spain
| | - Sofia M. Clemente
- Laboratório Associado Para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - António Jorge Parola
- Laboratório Associado Para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno Basilio
- Laboratório Associado Para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029-Madrid, Spain
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), C/Arturo Duperier 4, 28029-Madrid, Spain
- Laboratório Associado Para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Yadav B, Vishwakarma V, Kumar S, Aggarwal NK, Gupta R, Yadav A. Ameliorative role of naringenin against lead-induced genetic damage and oxidative stress in cultured human lymphocytes. J Biochem Mol Toxicol 2022; 36:e23036. [PMID: 35289026 DOI: 10.1002/jbt.23036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022]
Abstract
Lead (Pb) is a ubiquitous toxic heavy metal that is known to induce damage to major macromolecules (lipids, proteins, and nucleic acids) by enhancing the level of reactive oxygen species (ROS). Naringenin, a predominant flavonoid primarily found in citrus fruits has attained increasing attention due to its various pharmacological properties. Thus, the present investigation aimed to explore the ameliorative role of naringenin against Pb-induced toxicity in human peripheral blood lymphocytes (PBLs) under in vitro conditions. For this purpose, PBLs were exposed to Pb (350 µg/ml) alone as well in combination with naringenin (10 and 30 µg/ml). Sister chromatid exchange (SCE) and alkaline comet assay were used as genotoxic indices to evaluate the genotoxic and antigenotoxic activity of Pb and naringenin, respectively. Lipid peroxidation (LPO), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH) assays were used as oxidative damage markers. The results revealed that Pb induced a significant (p < 0.05) increase in genetic and oxidative damage as compared with the untreated sample whereas the treatment of cells along with naringenin (10 and 30 µg/ml) and Pb (350 µg/ml) caused a significant reduction in genetic damage and elevation in SOD, GPx, and CAT activities and GSH level, accompanied by a significant reduction in LPO level as compared with Pb alone treated sample. So, the present investigation revealed that naringenin might be used as a protective agent against Pb-induced toxicity due to its antigenotoxic and antioxidative properties.
Collapse
Affiliation(s)
- Bharti Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Veena Vishwakarma
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ranjan Gupta
- Department of Biochemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
8
|
Quercetin Hybrids—Synthesis, Spectral Characterization and Radical Scavenging Potential. MOLBANK 2022. [DOI: 10.3390/m1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
New quercetin-based derivatives are synthesized in an easily accessible one-pot manner. The method is based on the reaction of quercetin with in situ formed electrophilic N-alkoxycarbonylazolium ions. The position of the newly formed C-C bond and structure were spectrally characterized by 1D, 2D 1H, 13C-NMR, IR, and MS analysis. Thus, in all cases, good regioselectivity in the C-8 position for the obtained products was demonstrated. The obtained compounds were evaluated for their DPPH and ABTS free radical scavenging activity and compared to natural compounds—quercetin and rutin.
Collapse
|
9
|
Bayat P, Farshchi M, Yousefian M, Mahmoudi M, Yazdian-Robati R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. Int Immunopharmacol 2021; 95:107562. [PMID: 33770729 DOI: 10.1016/j.intimp.2021.107562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, are diseases resulting in neurological disabilities that are regarded as chronic, inflammatory, and autoimmune diseases of central nervous system (CNS). In this respect, the use of anti-inflammatory compounds including flavonoids, polyphenolic compounds abundantly found in vegetables and fruits, has proposed to combat MS to dampen the inflammation and thereby ameliorating the disease severity. The objective of this study was to clarify the probable therapeutic effect of flavonoids for treatment of MS. Therefore, only English published articles that reported the therapeutic effect of flavonoids alone or in combination with other anti-MS therapeutic agents on MS, were selected by searching scientific electronic databases including PubMed, Scopus and Web of Science. Evaluation of the selected researches (686) showed that a total of 13 studies were suitable to be included in this systematic review. Interestingly, all of the studies (11 studies concerning EAE and 2 studies concerning MS) reported positive outcomes for the therapeutic effect of flavonoids on EAE and MS. All flavonoid compounds which are mentioned herein could successfully decrease the maximum clinical score of EAE, which is particularly connected to the anti-inflammatory property of these compounds. The literature review clearly discloses that flavonoids alone or in combination with other anti-MS therapeutic agents can pave the way for improving MS therapeutic strategies.
Collapse
Affiliation(s)
- Payam Bayat
- Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maral Farshchi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Yousefian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
10
|
Gao X, Yanan J, Santhanam RK, Wang Y, Lu Y, Zhang M, Chen H. Garlic flavonoids alleviate H 2 O 2 induced oxidative damage in L02 cells and induced apoptosis in HepG2 cells by Bcl-2/Caspase pathway. J Food Sci 2021; 86:366-375. [PMID: 33448034 DOI: 10.1111/1750-3841.15599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Liver damage is a common liver disorder, which could induce liver cancer. Oral antioxidant is one of the effective treatments to prevent and alleviate liver damage. In this study, three flavonoids namely myricetin, isoquercitrin, and isorhamnetin were isolated and identified from Laba garlic. The isolated compounds were investigated on the protective effects against H2 O2 -induced oxidative damages in hepatic L02 cells and apoptosis inducing mechanism in hepatic cancer cells HepG2 by using MTT assay, flow cytometry and western blotting analysis. Myricetin, isoquercitrin, and isorhamnetin showed proliferation inhibition on HepG2 cells with IC50 value of 44.32 ± 0.213 µM, 49.68 ± 0.192 µM, and 54.32 ± 0.176 µM, respectively. While they showed low toxicity on normal cell lines L02. They could significantly alleviate the oxidative damage towards L02 cells (P < 0.05), via inhibiting the morphological changes in mitochondria and upholding the integrity of mitochondrial structure and function. The fluorescence intensity of L02 cells pre-treated with myricetin, isoquercitrin, and isorhamnetin (100 µM) was 89.23 ± 1.26%, 89.35 ± 1.43% and 88.97 ± 0.79%, respectively. Moreover, the flavonoids could induce apoptosis in HepG2 cells via Bcl-2/Caspase pathways, where it could up-regulate the expression of Bax and down-regulate the expression of Bcl-2, Bcl-xL, pro-Caspase-3, and pro-Caspase-9 proteins in a dose dependent manner. Overall, the results suggested that the flavonoids from Laba garlic might be a promising candidate for the treatment of various liver disorders. PRACTICAL APPLICATION: Flavonoids from Laba garlic showed selective toxicity towards HepG2 cells in comparison to L02 cells via regulating Bcl-2/caspase pathway. Additionally, the isolated flavonoids expressively barred the oxidative damage induced by H2 O2 in L02 cells. These results suggested that the flavonoids from laba garlic could be a promising agent towards the development of functional foods.
Collapse
Affiliation(s)
- Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Yanan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, 21030, Malaysia
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yangpeng Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Agricultural University, Tianjin, 300384, P.R. China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
11
|
Shen CY, Lin JJ, Jiang JG, Wang TX, Zhu W. Potential roles of dietary flavonoids from Citrus aurantium L. var. amara Engl. in atherosclerosis development. Food Funct 2020; 11:561-571. [PMID: 31850465 DOI: 10.1039/c9fo02336d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dietary consumption of flavonoids correlated positively with lower risk of cardiovascular disease. However, the precise roles of flavonoids from the blossoms of Citrus aurantium Linn variant amara Engl (CAVA) in atherosclerosis (AS) are still poorly understood. This study aimed to find novel flavonoid-type skeletons with protection against AS. Total flavonoids (CAVAF), homoeriodictyol (HE) and hesperetin-7-O-β-d-glucopyranoside (HG) were isolated from the blossoms of Citrus aurantium Linn variant amara Engl. by chromatography. Their suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses and ox-LDL-induced foam cell formation were systematically and comparatively investigated using macrophage RAW264.7 cells. HE was more powerful than HG in inhibiting LPS-induced production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and gene expression in RAW264.7 cells. HE and HG showed different responses to extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), P38, P65, IκBα, IκKα/β phosphorylation, and nuclear factor-kappa B (NF-κB) nuclear translocation. HE and HG also differentially decreased oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation by regulating peroxisome proliferator-activated receptor-gamma (PPARγ), phospholipid ATP-binding cassette transporter A1 (ABCA1), phospholipid ATP-binding cassette transporter G1 (ABCG1), scavenger receptor class B type I (SRB1), scavenger receptor class A type I (SRA1) and cluster of differentiation 36 (CD36) expression at gene and protein levels in RAW264.7 cells. HG showed weaker potential than HE in preventing AS development. Their chemical differences might partially explain the discrepancy in their bioactivity. In conclusion, HE and HG might be developed into novel therapeutic agents against inflammation and AS-associated diseases.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | | | | | | | | |
Collapse
|
12
|
Khater M, Greco F, Osborn HMI. Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules 2020; 25:E4712. [PMID: 33066630 PMCID: PMC7594036 DOI: 10.3390/molecules25204712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract: An imbalance of angiogenesis contributes to many pathologies such as cancer, arthritis and retinopathy, hence molecules that can modulate angiogenesis are of considerable therapeutic importance. Despite many reports on the promising antiangiogenic properties of naturally occurring flavonoids, no flavonoids have progressed to the clinic for this application. This systematic review and meta-analysis therefore evaluates the antiangiogenic activities of a wide range of flavonoids and is presented in two sections. The first part of the study (Systematic overview) included 402 articles identified by searching articles published before May 2020 using ScienceDirect, PubMed and Web of Science databases. From this initial search, different classes of flavonoids with antiangiogenic activities, related pathologies and use of in vitro and/or in/ex vivo angiogenesis assays were identified. In the second part (Meta-analysis), 25 studies concerning the antiangiogenic evaluation of flavonoids using the in vivo chick chorioallantoic membrane (CAM) assay were included, following a targeted search on articles published prior to June 2020. Meta-analysis of 15 out of the 25 eligible studies showed concentration dependent antiangiogenic activity of six compared subclasses of flavonoids with isoflavones, flavonols and flavones being the most active (64 to 80% reduction of blood vessels at 100 µM). Furthermore, the key structural features required for the antiangiogenic activity of flavonoids were derived from the pooled data in a structure activity relationship (SAR) study. All in all, flavonoids are promising candidates for the development of antiangiogenic agents, however further investigations are needed to determine the key structural features responsible for their activity.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre, Cairo 12622, Egypt
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| |
Collapse
|
13
|
Comparison of In Vitro and In Vivo Antioxidant Activities of Six Flavonoids with Similar Structures. Antioxidants (Basel) 2020; 9:antiox9080732. [PMID: 32796543 PMCID: PMC7465758 DOI: 10.3390/antiox9080732] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
The in vitro and in vivo antioxidant activities of six flavonoids with similar structures, including epicatechin (EC), epigallocatechin (EGC), procyanidin B2 (P), quercetin (Q), taxifolin (T), and rutin (R) were compared. The structures of the six flavonoids and their scavenging activities for 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals were closely related. The flavonoids decreased serum contents of malondialdehyde (MDA) and nitric oxide (NO), and increased serum total antioxidative capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels to different degrees in d-galactose-treated mice. The changes in mRNA expression of liver GSH-Px1, CAT, SOD1, and SOD2 by d-galactose were dissimilarly restored by the six flavonoids. Moreover, the six flavonoids differentially prevented the inflammatory response caused by oxidative stress by inhibiting interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, and restoring IL-10 levels. These six flavonoids from two subclasses revealed the following antioxidant capability: P > EC, EGC > EC, Q > T, Q > R. Our results indicate that (1) the pyrogallol, dimerization, and C2=C3 double bonds of flavonoids enhanced antioxidant activity and (2) the C3 glycosylation of flavonoids attenuated antioxidant capacity.
Collapse
|
14
|
Cheriet T, Ben-Bachir B, Thamri O, Seghiri R, Mancini I. Isolation and Biological Properties of the Natural Flavonoids Pectolinarin and Pectolinarigenin-A Review. Antibiotics (Basel) 2020; 9:E417. [PMID: 32708783 PMCID: PMC7400350 DOI: 10.3390/antibiotics9070417] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Flavonoids are metabolites widely distributed in plants and commonly present in foods, such as fruits and vegetables. Pectolinarin, which belongs to the flavone subclass, has attracted considerable attention due to its presence in many medicinal plants. It has turned out to be a good biological agent especially due to its antioxidant, anti-inflammatory, antidiabetic, and antitumor activities, evaluated both in vitro and in vivo. Its aglycone, the metabolite pectolinarigenin, is also known for a series of biological properties including anti-inflammatory and antidiabetic effects. In the first overview on the two metabolites here presented, their collection, isolation and the results of their biological evaluation are reported.
Collapse
Affiliation(s)
- Thamere Cheriet
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri, 25000 Constantine, Algeria;
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Balkeis Ben-Bachir
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Oumelkhir Thamri
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Ramdane Seghiri
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri, 25000 Constantine, Algeria;
| | - Ines Mancini
- Laboratorio di Chimica Bioorganica, Dipartimento di Fisica, Universita’ di Trento, I-38123 Povo-Trento, Italy
| |
Collapse
|
15
|
Alseekh S, Perez de Souza L, Benina M, Fernie AR. The style and substance of plant flavonoid decoration; towards defining both structure and function. PHYTOCHEMISTRY 2020; 174:112347. [PMID: 32203741 DOI: 10.1016/j.phytochem.2020.112347] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/19/2023]
Abstract
Over 8000 different flavonoids have been described and a considerable number of new flavonoid structures are being elucidated every year. The advent of metabolomics alongside the development of phytochemical genetics - wherein the genetic basis underlying the regulation of the levels of plant metabolites is determined - has provided a massive boost to such efforts. That said our understanding of the individual function(s) of the vast majority of the metabolites that constitute this important class of phytochemicals remains unknown. Here we review what is known concerning the major decorative modifications of flavonoids in plants, namely hydroxylation, glycosylation, methylation and acylation. Our major focus is with regard to the in planta function of these modified compounds, however, we also highlight the demonstrated bioactive roles which they possess. We additionally performed a comprehensive survey of the flavonoids listed in the KNApSAcK database in order to assess the frequency of occurrence of each type of flavonoid modification. We conclude that whilst considerable research has been carried out regarding the biological roles of flavonoids most studies to date have merely provided information on the compound class or sub-classes thereof as a whole with too little currently known on the specific role of individual metabolites. We, therefore, finally suggest a framework based on currently available tools by which the relative importance of the individual compounds can be assessed under various biological conditions in order to fill this knowledge-gap.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
16
|
Karakousi CV, Gabrieli C, Kokkalou E. Chemical composition and biological activities of Indigofera hirsuta aerial parts’ methanol fractions. Nat Prod Res 2020; 34:558-562. [DOI: 10.1080/14786419.2018.1489390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Christina-Vasiliki Karakousi
- Laboratory of Pharmacognosy and Natural Compounds, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysi Gabrieli
- Laboratory of Pharmacognosy and Natural Compounds, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eugene Kokkalou
- Laboratory of Pharmacognosy and Natural Compounds, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Bello OM, Ogbesejana AB, Adetunji CO, Oguntoye SO. Flavonoids Isolated from Vitex grandifolia, an Underutilized Vegetable, Exert Monoamine A & B Inhibitory and Anti-inflammatory Effects and Their Structure-activity Relationship. Turk J Pharm Sci 2019; 16:437-443. [PMID: 32454747 DOI: 10.4274/tjps.galenos.2018.46036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022]
Abstract
Objectives Vitex grandifolia belongs to family Lamiaceae; it consists of flowering plants and it is also called the mint family. The Yoruba people of southwest Nigeria called it "Oriri" or "Efo oriri". This plant is classified as an underutilized vegetable and little is known about its phytochemistry or its biological evaluations. Materials and Methods Methanol extracts of the dried leaves and stem of the plant were subjected to fractionation and isolation using vacuum layer and column chromatography methods. The structures of the compounds were elucidated using spectroscopic techniques including IR, 1D-, and 2D-NMR and by comparison with the data reported in the literature. They were evaluated in vitro for the inhibition of monoamine recombinant human MAO-A and -B and anti-inflammatory activities. Results Three known flavonoids were isolated from the methanolic extract of the leaves of V. grandifolia for the first time to the best of our knowledge, i.e. isoorientin (1), orientin (2), and isovitexin (3). Most of the isolated compounds showed selective inhibition of monoamine oxidase B, inhibition of MAO-B by isoorientin (1) and orientin (2) were 9-fold more potent (IC50 (μg/mL) of 11.08 and 11.04) compared to the inhibition of MAO-A (IC50 (μg/mL) of ˃100), while clorgyline and deprenyl were used as positive standards. The isolated flavonoids displayed good activity against the NF-ﭏb assay with IC50 (μg/mL) of 8.9, 12, and 18. This study establishes a link between the structure and the biological activities on the basis of the different patterns of substitution, particularly the C2=C3 double bond and the position of glucose moiety. Conclusion This study is the first to establish the phytochemistry of the polar part of V. grandifolia and the anti-inflammatory and neuroprotective role of these isolated compounds.
Collapse
Affiliation(s)
- Oluwasesan M Bello
- Federal University Dutsin-Ma, Department of Applied Chemistry, Katsina State, Nigeria.,University of Ilorin, Department of Chemistry, Kwara State, Nigeria
| | - Abiodun B Ogbesejana
- Federal University Dutsin-Ma, Department of Applied Chemistry, Katsina State, Nigeria
| | - Charles Oluwaseun Adetunji
- Edo University Iyamho, Department of Microbiology, Applied Microbiology, Biotechnology and Nanotechnology Laboratory, KM 7, Auchi-Abuja Road, Iyamho, Edo State, Nigeria
| | | |
Collapse
|
18
|
Song D, Cheng L, Zhang X, Wu Z, Zheng X. The modulatory effect and the mechanism of flavonoids on obesity. J Food Biochem 2019; 43:e12954. [PMID: 31368555 DOI: 10.1111/jfbc.12954] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
With the improvement of living standards, obesity has become a serious health problem all over the word. Currently, the methods and drugs for obesity treatment have some limitations and side effects. Flavonoids are active constituents with various biological activities, widely found in plants, and numerous studies have shown that flavonoids can inhibit obesity and related metabolism disorders effectively. This perspective reviews the recent progress in understanding the anti-obesity effects of flavonoids through modulating food intake, enzyme activities, nutrition absorption, adipogenesis and adipocyte lifecycle, thermogenesis, energy consumption, and intestinal microbiota. PRACTICAL APPLICATIONS: Natural bioactive substance flavonoids have anti-obesity property, which may play a role in anti-obesity drugs or functional food without any side effects. Flavonoids can inhibit weight gain directly or through their biologically active metabolites by various potential pathways. A better understanding of the modulatory effect and the mechanism of flavonoids on obesity will allow us to better utilize flavonoids in plants to treat obesity and related metabolic syndrome.
Collapse
Affiliation(s)
- Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, P.R. China
| |
Collapse
|
19
|
Bioactivities of Flavonoids from Lopezia racemosa. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3286489. [PMID: 31111047 PMCID: PMC6487151 DOI: 10.1155/2019/3286489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 11/22/2022]
Abstract
Lopezia racemosa Cav. (Onagraceae) has been used in Mexican traditional medicine to alleviate stomachache, biliary colic, urine retention, stomach cancer, and skin, dental, buccal, and urinary infections. The objective of this study was to determine the bioactivities of specific parts of the plant to scientifically confirm its traditional use. Aerial parts and flowers were macerated and subsequently extracted with hexane, chloroform, and methanol. This study was focused on the analysis of polar components, and thus the methanolic fractions were selected for further investigations. These fractions were evaluated for their antimicrobial activity using a panel of bacterial Gram-positive and -negative strains, as well as fungal strains, including filamentous fungi and yeasts. In addition, the cytotoxic activity of the extract was assessed by MTT using the human-derived monocytic THP-1 and the normal human fibroblast cell lines. Various fractions showed antimicrobial activity against various pathogens, although the most relevant were against Pseudomonas aeruginosa and Trichophyton mentagrophytes. No inhibition of yeasts was recorded. Only four fractions showed cytotoxic effects when the human-derived THP-1 and fibroblast cells were assessed. The four flavonoids isolated from the extract were luteolin, luteolin-6-C-hexoside, luteolin-8-C-hexoside, and hyperoside. The biological activities presented in this study validate some traditional uses of the plant.
Collapse
|
20
|
Abstract
Flavonoids are tricyclic polyphenolic compounds naturally occurring in plants. Being nature’s antioxidants flavonoids have been shown to reduce the damages induced by oxidative stress in cells. Besides being an antioxidant, flavonols are demonstrated to have anti-infective properties, i.e., antiviral, antifungal, anti-angiogenic, anti-tumorigenic, and immunomodulatory bioproperties. Plants use them as one of their defense mechanisms against radiation-induced DNA damage and also for fungal infections. The use of flavonols for fabrication of new drugs has been underway with objectives to develop safer and effective therapeutic agents. This review covers 15 flavonols for their structure, biological properties, role in plant metabolisms, and current research focused on computational drug design using flavonols for searching drug leads.
Collapse
|
21
|
|
22
|
Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci 2017; 13:12-23. [PMID: 32104374 PMCID: PMC7032191 DOI: 10.1016/j.ajps.2017.08.004] [Citation(s) in RCA: 489] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/30/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonoids, a class of polyphenol secondary metabolites, are presented broadly in plants and diets. They are believed to have various bioactive effects including anti-viral, anti-inflammatory, cardioprotective, anti-diabetic, anti-cancer, anti-aging, etc. Their basic structures consist of C6-C3-C6 rings with different substitution patterns to produce a series of subclass compounds, and correlations between chemical structures and bioactivities have been studied before. Given their poor bioavailability, however, information about associations between structure and biological fate is limited and urgently needed. This review therefore attempts to bring some order into relationships between structure, activity as well as pharmacokinetics of bioactive flavonoids.
Collapse
Affiliation(s)
- Tian-Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kai-Shun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
23
|
Development of an ultra-fast liquid chromatography–tandem mass spectrometry method for simultaneous determination of seven flavonoids in rat plasma: Application to a comparative pharmacokinetic investigation of Ginkgo biloba extract and single pure ginkgo flavonoids after oral administration. J Chromatogr B Analyt Technol Biomed Life Sci 2017. [DOI: 10.1016/j.jchromb.2017.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Kocyigit A, Koyuncu I, Taskin A, Dikilitas M, Bahadori F, Turkkan B. Antigenotoxic and antioxidant potentials of newly derivatized compound naringenin-oxime relative to naringenin on human mononuclear cells. Drug Chem Toxicol 2015; 39:66-73. [PMID: 25826180 DOI: 10.3109/01480545.2015.1026973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated antigenotoxic and antioxidative effects of newly derivatized compound naringenin-oxime (NG-Ox) compared to its mother compound naringenin (NG) against oxidative damage induced by hydrogen peroxide (HP) in human peripheral blood mononuclear cells (PBMC). Antigenotoxic activity was assessed using alkaline single cell gel electrophoresis assay (comet assay). Oxidative status was evaluated by measurement of total antioxidant status, total oxidant status and lipid hydroperoxide levels in the cells. Oxidative stress index was also calculated. Both NG and NG-Ox show a protective effect against HP-induced oxidative damage on PBMC and are able to reduce oxidative stress. The percentage of antigenotoxic and antioxidant potential progressively increased in a dose-dependent manner. However, these activities were found to be more significant in NG-Ox-treated cells than in NG-treated cells. Taken together, these observations provide evidences indicating that both NG and NG-Ox are able to protect cells against oxidative damage and apparently NG-Ox is more effective than NG.
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- a Department of Medical Biochemistry, Faculty of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | | | - Abdullah Taskin
- c Department of Medical Biochemistry, Faculty of Medicine and
| | - Murat Dikilitas
- d Department of Plant Protection, Faculty of Agriculture , Harran University , S. Urfa , Turkey
| | - Fatemeh Bahadori
- e Department of Pharmaceutical Biotechnology, Faculty of Pharmacy , Bezmialem Vakif University , Istanbul , Turkey , and
| | - Baki Turkkan
- f Department of Chemistry, Faculty of Arts and Sciences , Harran University , S. Urfa , Turkey
| |
Collapse
|
25
|
Cingolani F, Casasampere M, Sanllehí P, Casas J, Bujons J, Fabrias G. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II. J Lipid Res 2014; 55:1711-20. [PMID: 24875537 PMCID: PMC4109765 DOI: 10.1194/jlr.m049759] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/27/2014] [Indexed: 01/05/2023] Open
Abstract
Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Mireia Casasampere
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Pol Sanllehí
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Faculty of Pharmacy, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), University of Barcelona, E-08028 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry and Molecular Modeling, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
26
|
Tsuji PA, Stephenson KK, Wade KL, Liu H, Fahey JW. Structure-Activity Analysis of Flavonoids: Direct and Indirect Antioxidant, and Antiinflammatory Potencies and Toxicities. Nutr Cancer 2013; 65:1014-25. [DOI: 10.1080/01635581.2013.809127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Thuan NH, Sohng JK. Recent biotechnological progress in enzymatic synthesis of glycosides. J Ind Microbiol Biotechnol 2013; 40:1329-56. [PMID: 24005992 DOI: 10.1007/s10295-013-1332-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most important post-modification processes of small molecules and enables the parent molecule to have increased solubility, stability, and bioactivity. Enzyme-based glycosylation has achieved significant progress due to advances in protein engineering, DNA recombinant techniques, exploitation of biosynthetic gene clusters of natural products, and computer-based modeling programs. Our report summarizes glycosylation data that have been published within the past five years to provide an overall review of current progress. We also present the future trends and perspectives for glycosylation.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, #100, Kalsan-ri, Tangjeong-myeon, Asan-si, Chungnam, 336-708, Republic of Korea
| | | |
Collapse
|
28
|
Krych J, Gebicka L. Catalase is inhibited by flavonoids. Int J Biol Macromol 2013; 58:148-53. [PMID: 23567286 DOI: 10.1016/j.ijbiomac.2013.03.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 01/01/2023]
Abstract
Catalases, heme enzymes, which catalyze decomposition of hydrogen peroxide to water and molecular oxygen, belong to the antioxidant defense system of the cell. In this work we have shown that catalase from bovine liver is inhibited by flavonoids. The inhibition is, at least partially, due to the formation of hydrogen bonds between catalase and flavonoids. In the presence of some flavonoids the formation of unreactive catalase compound II has been detected. The most potent catalase inhibitors among the tested flavonoids have appeared myricetin, epicatechin gallate and epigallocatechin gallate. The relationship between the degree of enzyme inhibition and molecular structure of flavonoids has been analyzed.
Collapse
Affiliation(s)
- Justyna Krych
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology (TUL), Lodz, Poland
| | | |
Collapse
|
29
|
Çelik H, Koşar M, Arinç E. In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (-)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase. Toxicology 2013; 308:34-40. [PMID: 23567315 DOI: 10.1016/j.tox.2013.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
The microsomal NADH-dependent electron transport system consisting of cytochrome b5 reductase and cytochrome b5 participates in a number of physiologically important processes including lipid metabolism as well as is involved in the metabolism of various drug and xenobiotics. In the present study, we assessed the inhibitory effects of eight dietary flavonoids representing five distinct chemical classes on cytochrome b5 reduction by purified cytochrome b5 reductase. From the flavonoids tested, myricetin was the most potent in inhibiting cytochrome b5 reduction with an IC50 value of 0.35μM. Myricetin inhibited b5 reductase noncompetitively with a Ki of 0.21μM with respect to cofactor NADH, and exhibited a non-linear relationship indicating non-Michaelis-Menten kinetic binding with respect to cytochrome b5. In contrast to the potent inhibitory activity of myricetin, (+)-taxifolin was found to be a weak inhibitor (IC50=9.8μM). The remaining flavonoids were inactive within the concentration range tested (1-50μM). Analysis of structure-activity data suggested that simultaneous presence of three OH groups in ring B is a primary structural determinant for a potent enzyme inhibition. Our results suggest that inhibition of the activity of this system by myricetin or myricetin containing diets may influence the metabolism of therapeutic drugs as well as detoxification of xenobiotics.
Collapse
Affiliation(s)
- Haydar Çelik
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey.
| | | | | |
Collapse
|
30
|
Current world literature. Curr Opin Lipidol 2013; 24:86-94. [PMID: 23298962 DOI: 10.1097/mol.0b013e32835cb4f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Qin S, Chen J, Tanigawa S, Hou DX. Microarray and pathway analysis highlight Nrf2/ARE-mediated expression profiling by polyphenolic myricetin. Mol Nutr Food Res 2012; 57:435-46. [PMID: 23281314 DOI: 10.1002/mnfr.201200563] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/16/2012] [Accepted: 10/29/2012] [Indexed: 12/30/2022]
Abstract
SCOPE Myricetin is a dietary flavonol and widely distributed in many edible plants. It has been reported to have many bioactivities and considered as a promising chemopreventive compound. The present study aimed to investigate the influences of myricetin on gene expressions in genome-wide and underlying mechanisms. METHODS AND RESULTS Among total 44K gene probes, myricetin treatment upregulated the signals of 143 gene probes (0.33% of total probes) and downregulated signals of 476 gene probes (1.08% of total probes) by greater than or equal to twofold in HepG2 cells. The network pathway analysis revealed that nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response element (ARE) activation is involved in myricetin-induced genes expressions. Molecular data revealed that myricetin activated Nrf2-ARE pathway by inhibiting Nrf2 ubiquitination and protein turnover, stimulating Nrf2 expression and kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 modification. All of these events finally increased nuclear Nrf2 accumulation and ARE-binding activity to enhance ARE-mediated genes expressions. Additionally, treatment with Nrf2 small interfering RNA attenuated the myricetin-induced ARE activity and gene expression. CONCLUSION An Nrf2-mediated ARE activation is involved in myricetin-induced expression profiling in hepatic cells.
Collapse
Affiliation(s)
- Si Qin
- Course of Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
| | | | | | | |
Collapse
|
32
|
Celik H, Arinç E. Evaluation of bioreductive activation of anticancer drugs idarubicin and mitomycin C by NADH-cytochrome b5 reductase and cytochrome P450 2B4. Xenobiotica 2012; 43:263-75. [PMID: 22928801 DOI: 10.3109/00498254.2012.715212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
This study attempted to investigate the ability of microsomal NADH-cytochrome b5 reductase and cytochrome P450 2B4 to reductively activate idarubicin and mitomycin C. In vitro plasmid DNA damage experiments and assays using purified hepatic enzymes were employed to examine their respective roles in the metabolic activation of anticancer drugs. Mitomycin C was found to be not a good substrate for microsomal b5 reductase unlike P450 reductase. It produced low amounts of strand breaks in DNA when incubated with b5 reductase and its one-electron reduction by purified enzyme was found as negligible. Our findings revealed that P450 reductase-mediated metabolism of idarubicin resulted in a large increase in single-strand DNA breaks, whereas, b5 reductase neither catalyzed the reduction of idarubicin nor mediated the formation of DNA damage in the presence of idarubicin. The reconstitution studies, on the other hand, have identified rabbit liver CYP2B4 isozyme as being a potential candidate enzyme for reductive bioactivation of idarubicin and mitomycin C. Thus, the present novel findings strongly suggest that while b5 reductase could not play a key role in the cytotoxic and/or antitumor effects of idarubicin and mitomycin C, CYP2B4 could potentiate their activity in combination with P450 reductase.
Collapse
Affiliation(s)
- Haydar Celik
- Biochemistry Graduate Programme and Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|