1
|
Zhao XL, Cao ZJ, Li KD, Tang F, Xu LY, Zhang JN, Liu D, Peng C, Ao H. Gallic acid: a dietary metabolite's therapeutic potential in the management of atherosclerotic cardiovascular disease. Front Pharmacol 2025; 15:1515172. [PMID: 39840111 PMCID: PMC11747375 DOI: 10.3389/fphar.2024.1515172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) causes significant morbidity and mortality globally. Most of the chemicals specifically target certain pathways and minimally impact other diseases associated with ASCVD. Moreover, interactions of these drugs can cause toxic reactions. Consequently, the exploration of multi-targeted and safe medications for treating and preventing ASCVD has become an increasingly popular trend. Gallic acid (GA), a natural secondary metabolite found in various fruits, plants, and nuts, has demonstrated potentials in preventing and treating ASCVD, in addition to its known antioxidant and anti-inflammatory effects. It alleviates the entire process of atherosclerosis (AS) by reducing oxidative stress, improving endothelial dysfunction, and inhibiting platelet activation and aggregation. Additionally, GA can treat ASCVD-related diseases, such as coronary heart disease (CHD) and cerebral ischemia. However, the pharmacological actions of GA in the prevention and treatment of ASCVD have not been comprehensively reviewed, which limits its clinical development. This review primarily summarizes the in vitro and in vivo pharmacological actions of GA on the related risk factors of ASCVD, AS, and ASCVD. Additionally, it provides a comprehensive overview of the toxicity, extraction, synthesis, pharmacokinetics, and pharmaceutics of GA,aimed to enhance understanding of its clinical applications and further research and development.
Collapse
Affiliation(s)
- Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang-Jing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke-Di Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
4
|
Ouamnina A, Alahyane A, Elateri I, Ouhammou M, Abderrazik M. In Vitro and Molecular Docking Studies of Antiglycation Potential of Phenolic Compounds in Date Palm (Phoenix dactylifera L.) Fruit: Exploring Local Varieties in the Food Industry. HORTICULTURAE 2024; 10:657. [DOI: 10.3390/horticulturae10060657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The Moroccan date-growing sector is rich in a wide diversity of varieties but faces major challenges, notably the undervaluation of certain varieties intended mainly for animal feed. In this study, our objective was to evaluate the antiglycation activity of four date varieties, including three low-market-value varieties and one high-market-value variety, harvested during two seasons (2021 and 2022). In addition, to improve our knowledge of the antiglycation potential, molecular docking analyses were carried out. The results of the antiglycation activity of the date extracts showed strong activity, particularly for the ‘Khalt Khal’ variety, which showed a 50% inhibition concentration (IC50) of 1.83 mg/mL and 2 mg/mL in 2021 and 2022, respectively. In addition, the molecular docking analysis also showed the possible link between the bioactive compounds identified and their mechanisms of action. Our findings suggest new evidence for the antiglycation properties of the bioactive compounds present in dates. These results suggest the use of these varieties as a source of bioactive molecules or as a food additive. This could make it possible to create medicines or food products with a high commercial value using dates, which could help to treat the complications associated with glycation.
Collapse
Affiliation(s)
- Abdoussadeq Ouamnina
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| | - Abderrahim Alahyane
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
- Higher Institute of Nursing Professions and Health Techniques of Guelmim (ISPITSG), Guelmin 81000, Morocco
| | - Imane Elateri
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| | - Mourad Ouhammou
- Laboratory of Material Sciences and Process Optimization, Faculty of Sciences, Semlalia, Cadi Ayyad University, BP 2390, Marrakech 40000, Morocco
| | - Mohamed Abderrazik
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| |
Collapse
|
5
|
Chroho M, Bailly C, Bouissane L. Ethnobotanical Uses and Pharmacological Activities of Moroccan Ephedra Species. PLANTA MEDICA 2024; 90:336-352. [PMID: 38423032 DOI: 10.1055/a-2269-2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ephedra species are among the most popular herbs used in traditional medicine for a long time. The ancient Chinese medical book "Treatise on Febrile Diseases" refers to the classic traditional Chinese medicine prescription Ge Gen decoction, which consists of seven herbs, including an Ephedra species. Ephedra species are utilized all over the world to treat symptoms of the common cold and coughs, and to combat major human diseases, such as asthma, cancers, diabetes, cardiovascular and digestive disorders, and microbial infections. This study aimed at identifying specific Ephedra species used traditionally in Morocco for therapeutic purposes. The plant parts, their preparation process, and the treated pathologies were identified and analyzed. The results revealed five ethnobotanically important species of Ephedra: Ephedra alata Decne, Ephedra altissima Desf., Ephedra distachya L., Ephedra fragilis Desf., and Ephedra nebrodensis Tineo. These species are used traditionally in Morocco for treating people with diabetes, cancer, rheumatism, cold and asthma, hypertension, influenza virus infection, and respiratory ailments. In addition, they are occasionally used as calefacient agents, to regulate weight, or for capillary care. Few studies have underlined the antibacterial and antioxidant activities of some of these Moroccan Ephedra species, but little information is available regarding the natural products at the origin of the bioactivities. Further phytochemical investigations and clinical data are encouraged to better support the use of these plants.
Collapse
Affiliation(s)
- Mounia Chroho
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol, Faculty of Pharmacy, University of Lille, France
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| |
Collapse
|
6
|
Roudbari M, Barzegar M, Sahari MA. Pistachio green hull and pomegranate peel extracts as two natural antiglycation agents. Food Sci Nutr 2024; 12:3688-3695. [PMID: 38726394 PMCID: PMC11077175 DOI: 10.1002/fsn3.4039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced glycation end products (AGEs) are formed in the final step of the nonenzymatic Maillard reaction, which can contribute to various health problems such as diabetes mellitus, renal failure, and chronic inflammation. Bioactive compounds with antiglycation properties have the potential to inhibit AGE-related diseases. This study investigated the antiglycation potential of pistachio green hull (PGH) and pomegranate peel (PP) extracts, which are polyphenol-rich agro-residues, against fluorescent AGE formation and compared the results with pyridoxine (vitamin B6), metformin, and EDTA (as usual chemical antiglycation agents). The results showed that PGH and PP effectively inhibited the formation of AGEs in bovine serum albumin-glucose (BSA-Glu) and BSA-fructose (BSA-Fru) with antiglycation activities ranging from 92% to 97%. PP extract (with an IC50 of 94 mg ml-1) had a greater antiglycation ability than PGH extract (with an IC50 of 142 mg ml-1). Also, results indicated that the antiglycation activities of the extracts were comparable to that of pyridoxine, and higher than metformin and EDTA. These findings suggest that the two studied extracts can be used for sustainable production of high-added-value food products with a positive effect on consumers' health.
Collapse
Affiliation(s)
- Mozhgan Roudbari
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohammad Ali Sahari
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
7
|
Apte MM, Khattar E, Tupe RS. Mechanistic role of Syzygium cumini (L.) Skeels in glycation induced diabetic nephropathy via RAGE-NF-κB pathway and extracellular proteins modifications: A molecular approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117573. [PMID: 38110133 DOI: 10.1016/j.jep.2023.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties. Additionally, the non-enzymatic formation of advanced glycation end products (AGEs) increases during hyperglycemia in diabetes. AGEs interaction with their receptor of AGEs (RAGE) promotes inflammation via Nuclear Factor-κB (NF-κB) and the accumulation of Extracellular Matrix (ECM) proteins, contributing to the renal dysfunction in DN. However, the molecular mechanism through which SC formulations interact with the AGEs-RAGE-NF-κB pathway has not yet been investigated. AIM This study aims to examine the impact of SC formulations on the RAGE-NF-κB pathway and ECM protein modifications in glycation-induced DN using a molecular approach. MATERIALS AND METHODS Human serum albumin (10 mg/ml) was glycated with MGO (55 mM) in the presence of SC formulations - Mother tincture (MT), 30C, 200C for 7 days. Glycated samples were added to renal cells (HEK 293) for 24 h. Subsequently, cellular gene and protein expressions of RAGE, NF-κB, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen IV (Col IV), and fibronectin were determined using RT-qPCR and Western blot analysis. The immunofluorescence, luciferase assay, and chromatin immunoprecipitation techniques were employed to gain insights into glycation-induced NF-κB nuclear translocation, transcriptional activity, and its effect on RAGE promoter activity in SC-treated cells. RESULTS SC formulations significantly downregulated glycation-induced elevated levels of RAGE and NF-κB. Mechanistically, SC formulations prevented NF-κB nuclear translocation, transcriptional activity, and RAGE promoter activity. Also, SC formulations significantly attenuated glycation-enhanced expressions of inflammatory cytokines (IL-6, TNF-α, and VEGF) and ECM proteins (Col IV and fibronectin). CONCLUSION Our findings enlighten the molecular mechanism of SC in DN by targeting the AGEs-RAGE-NF-κB signaling pathway, inflammatory responses, and ECM accumulation. Hence, the study validates the protective role of SC formulations and signifies its novel potential for treating DN.
Collapse
Affiliation(s)
- Mayura M Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Ekta Khattar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India.
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
8
|
Wahid M, Saqib F, Abbas G, Shah S, Alshammari A, Albekairi TH, Ali A, Khurm M, Mubarak MS. Cardioprotective and hypotensive mechanistic insights of hydroethanolic extract of Cucumis melo L. kernels in isoprenaline-induced cardiotoxicity based on metabolomics and in silico electrophysiological models. Front Pharmacol 2024; 14:1277594. [PMID: 38348351 PMCID: PMC10859416 DOI: 10.3389/fphar.2023.1277594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
Background: Cardiovascular diseases (CVD) continue to threaten health worldwide, and account for a significant portion of deaths and illnesses. In both developing and industrialized nations, they challenge their health systems. There are several traditional uses of Cucurbitaceae seeds in Pakistan, India, Iran, and China, including treating cardiovascular, neurological, and urogenital diseases. Methods: In the present work, integrated techniques of metabolomics profiling and computational cardiomyocyte stimulation were used to investigate possible mechanisms of C. melo in isoprenaline (ISO)-induced myocardial infarction. In vitro, vasoconstrictions, paired atria, and in vivo invasive blood pressure measurement models were performed to explore the mechanism of action of C. melo hydroethanolic seed extract (Cm-EtOH). Results: Results showed that Cm-EtOH demonstrates NO-based endothelium-derived relaxing factor (EDRF) vasorelaxant response, negative chronotropic and inotropic response in the atrium, and hypotensive effects in normotensive rats. Results also revealed that Cm-EtOH decreases cardiomyocyte hypertrophy and reverts the altered gene expressions, biochemical, and metabolites in ISO-induced myocardial infarction (MI) rats. The extract additionally reversed ISO-induced MI-induced oxidative stress, energy consumption, and amino acid metabolism. Moreover, C. melo seeds increased EDRF function, energy production, and antioxidant capacity to treat myocardial and vascular disorders. In computational cardiomyocyte simulation, gallic acid reduced action potential duration, upstroke velocity (dV/dtmax), and effective refractory period. Conclusion: This study highlights the therapeutic potential of C. melo seeds to treat cardiovascular diseases and provides mechanistic insight into its antihypertensive and cardioprotective activities.
Collapse
Affiliation(s)
- Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anam Ali
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Khurm
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | | |
Collapse
|
9
|
Spagnuolo L, Della Posta S, Fanali C, Dugo L, De Gara L. Chemical Composition of Hazelnut Skin Food Waste and Protective Role against Advanced Glycation End-Products (AGEs) Damage in THP-1-Derived Macrophages. Molecules 2023; 28:molecules28062680. [PMID: 36985650 PMCID: PMC10054400 DOI: 10.3390/molecules28062680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Glycation and the accumulation of advanced glycation end-products (AGEs) are known to occur during aging, diabetes and neurodegenerative diseases. Increased glucose or methylglyoxal (MGO) levels in the blood of diabetic patients result in increased AGEs. A diet rich in bioactive food compounds, like polyphenols, has a protective effect. The aim of this work is to evaluate the capacity of hazelnut skin polyphenolic extract to protect THP-1-macrophages from damage induced by AGEs. The main polyphenolic subclass was identified and quantified by means of HPLC/MS and the Folin–Ciocalteu method. AGEs derived from incubation of bovine serum albumin (BSA) and MGO were characterized by fluorescence. Cell viability measurement was performed to evaluate the cytotoxic effect of the polyphenolic extract in macrophages. Reactive oxygen species’ (ROS) production was assessed by the H2-DCF-DA assay, the inflammatory response by real-time PCR for gene expression, and the ELISA assay for protein quantification. We have shown that the polyphenolic extract protected cell viability from damage induced by AGEs. After treatment with AGEs, macrophages expressed high levels of pro-inflammatory cytokines and ROS, whereas in co-treatment with polyphenol extract there was a reduction in either case. Our study suggests that hazelnut skin polyphenol-rich extracts have positive effects and could be further investigated for nutraceutical applications.
Collapse
Affiliation(s)
| | | | | | - Laura Dugo
- Correspondence: ; Tel.: +39-06-22541-9470
| | | |
Collapse
|
10
|
Chaiwangyen W, Chumphukam O, Kangwan N, Pintha K, Suttajit M. Anti-aging effect of polyphenols: possibilities and challenges. PLANT BIOACTIVES AS NATURAL PANACEA AGAINST AGE-INDUCED DISEASES 2023:147-179. [DOI: 10.1016/b978-0-323-90581-7.00022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
12
|
Therapeutic and Nutraceutical Effects of Polyphenolics from Natural Sources. Molecules 2022; 27:molecules27196225. [PMID: 36234762 PMCID: PMC9572829 DOI: 10.3390/molecules27196225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of cardiovascular disease, oxidative stress-related complications, and chronic age-related illnesses is gradually increasing worldwide. Several causes include the ineffectiveness of medicinal treatment therapies, their toxicity, their inability to provide radical solutions in some diseases, and the necessity of multiple drug therapy in certain chronic diseases. It is therefore necessary for alternative treatment methods to be sought. In this review, polyphenols were identified and classified according to their chemical structure, and the sources of these polyphenol molecules are indicated. The cardioprotective, ROS scavenging, anti-aging, anticancer properties of polyphenolic compounds have been demonstrated by the results of many studies, and these natural antioxidant molecules are potential alternative therapeutic agents.
Collapse
|
13
|
Rochín-Hernández LS, Rochín-Hernández LJ, Flores-Cotera LB. Endophytes, a Potential Source of Bioactive Compounds to Curtail the Formation–Accumulation of Advanced Glycation End Products: A Review. Molecules 2022; 27:molecules27144469. [PMID: 35889349 PMCID: PMC9322667 DOI: 10.3390/molecules27144469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Endophytes, microorganisms that live in the internal tissues and organs of the plants, are known to produce numerous bioactive compounds, including, at times, some phytochemicals of their host plant. For such reason, endophytes have been quoted as a potential source for discovering bioactive compounds, particularly, of medical interest. Currently, many non-communicable diseases are threatening global human health, noticeably: diabetes, neurodegenerative diseases, cancer, and other ailment related to chronic inflammation and ageing. Intriguingly, the pathogenesis and development of these diseases have been linked to an excessive formation and accumulation of advanced glycation end products (AGEs). AGEs are a heterogeneous group of compounds that can alter the conformation, function, and lifetime of proteins. Therefore, compounds that prevent the formation and consequent accumulation of AGEs (AntiAGEs compounds) could be useful to delay the progress of some chronic diseases, and/or harmful effects of undue AGEs accumulation. Despite the remarkable ability of endophytes to produce bioactive compounds, most of the natural antiAGEs compounds reported in the literature are derived from plants. Accordingly, this work covers 26 plant antiAGEs compounds and some derivatives that have been reported as endophytic metabolites, and discusses the importance, possible advantages, and challenges of using endophytes as a potential source of antiAGEs compounds.
Collapse
Affiliation(s)
- Lory Sthephany Rochín-Hernández
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Lory Jhenifer Rochín-Hernández
- Department of Biomedicine and Molecular Biology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
- Correspondence: ; Tel.: +55-13499526
| |
Collapse
|
14
|
Burr SD, Dorroh CC, Stewart JA. Rap1a Activity Elevated the Impact of Endogenous AGEs in Diabetic Collagen to Stimulate Increased Myofibroblast Transition and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23094480. [PMID: 35562872 PMCID: PMC9101126 DOI: 10.3390/ijms23094480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/07/2022] Open
Abstract
Diabetics have an increased risk for heart failure due to cardiac fibroblast functional changes occurring as a result of AGE/RAGE signaling. Advanced glycation end products (AGEs) levels are higher in diabetics and stimulate elevated RAGE (receptor for AGE) signaling. AGE/RAGE signaling can alter the expression of proteins linked to extracellular matrix (ECM) remodeling and oxidative stressors. Our lab has identified a small GTPase, Rap1a, that may overlap the AGE/RAGE signaling pathway. We sought to determine the role Rap1a plays in mediating AGE/RAGE changes and to assess the impact of isolated collagen on further altering these changes. Primary cardiac fibroblasts from non-diabetic and diabetic mice with and without RAGE expression and from mice lacking Rap1a were cultured on tail collagen extracted from non-diabetic or diabetic mice, and in addition, cells were treated with Rap1a activator, EPAC. Protein analyses were performed for changes in RAGE-associated signaling proteins (RAGE, PKC-ζ, ERK1/2) and downstream RAGE signaling outcomes (α-SMA, NF-κB, SOD-2). Increased levels of endogenous AGEs within the diabetic collagen and increased Rap1a activity promoted myofibroblast transition and oxidative stress, suggesting Rap1a activity elevated the impact of AGEs in the diabetic ECM to stimulate myofibroblast transition and oxidative stress.
Collapse
|
15
|
Samynathan R, Subramanian U, Venkidasamy B, Shariati MA, Chung IM, Thiruvengadam M. S-Allylcysteine (SAC) Exerts Renoprotective Effects via Regulation of TGF-
β1/Smad3 Pathway Mediated Matrix Remodeling in Chronic Renal Failure. Curr Pharm Des 2022; 28:661-670. [DOI: 10.2174/1381612828666220401114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Background: S-Allylcysteine (SAC), an organosulfur phytochemical sourced from aged garlic extract,
is well known for its varied biomedical applications, such as anti-oxidant, anti-inflammatory, and detoxification
mechanisms. Despite this, the scientific findings on the defensive impact of SAC against kidney failure
(KF) are still unclear. Therefore, in the current investigation, the animal model of KF was induced by adenine
in Wistar rats, and the animals were divided into four groups as control, KF induction using adenine, SAC treated
KF rats for an experimental duration of 8 weeks.
Methods: KF progression was assessed by various serum and tissue markers, and the results demonstrated that
the renal functions’ markers, KIM-1 (kidney injury molecule-1), cystatin, NGAL (neutrophil gelatinase-associated
lipocalin), were found increased in adenine-treated rats compared to control. In addition, the inflammatory
markers, matrix proteins, and fibrosis signatures explicated by RT-PCR, ELISA demonstrated a profound increase.
On the other hand, rats received SAC mitigated KF considerably (p < 0.001) with restored cellular functions.
Besides, SAC pre-treatment abrogated the cytokines and pro-inflammatory signals (COX-2 and PGE2) in
a dose-dependent manner.
Conclusion: Furthermore, the fibrosis signaling markers mediators, such as SMAD-2,-3 were increased with associated
matrix proteins. Thus, the present study substantiated that SAC possesses a significant renoprotective
effect that might have been demonstrated by the inhibition of the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Ramkumar Samynathan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk
Colony, Chennai 600051, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow, 109004, Russian Federation
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
16
|
Li X, Chen H, Jia Y, Peng J, Li C. Inhibitory Effects against Alpha-Amylase of an Enriched Polyphenol Extract from Pericarp of Mangosteen (Garcinia mangostana). Foods 2022; 11:foods11071001. [PMID: 35407086 PMCID: PMC8997748 DOI: 10.3390/foods11071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
The pericarp of mangosteen, a by-product of the mangosteen, is rich in polyphenols. In this study, an efficient and environmentally friendly method for preparative enrichment of polyphenols from mangosteen pericarp (MPPs) was developed, and the inhibitory effects on starch digestion were also evaluated. It was found that the optimal extract method of MPPs was at a solid to solvent ratio of 1:50 g/mL, pH of 2, and at 80 °C for 2 h. The IC50 of MPPs for α-amylase was 0.28 mg/mL. Based on the fluorescence quenching results, we presumed that MPPs could alter the natural structure of α-amylase, resulting in inhibitory activity on α-amylase. In addition, MPPs significantly reduced the blood glucose peak and AUC of glucose responses in rats after ingestion of the starch solution. Taken together, MPPs may have the potential as a functional supplement for blood glucose control and diabetes prevention.
Collapse
Affiliation(s)
- Xiaofang Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (H.C.)
| | - Haoze Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (H.C.)
| | - Yan Jia
- Beijing Key Lab of Plant Resource Research and Development, School of Science, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.J.); (C.L.)
| | - Jinming Peng
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (H.C.)
- Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Y.J.); (C.L.)
| |
Collapse
|
17
|
Sirichai P, Kittibunchakul S, Thangsiri S, On-Nom N, Chupeerach C, Temviriyanukul P, Inthachat W, Nuchuchua O, Aursalung A, Sahasakul Y, Charoenkiatkul S, Suttisansanee U. Impact of Drying Processes on Phenolics and In Vitro Health-Related Activities of Indigenous Plants in Thailand. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030294. [PMID: 35161275 PMCID: PMC8838347 DOI: 10.3390/plants11030294] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 06/01/2023]
Abstract
Thailand has vast areas of tropical forests with many indigenous plants, but limited information is available on their phytochemical profile and in vitro inhibitions of enzymatic and nonenzymatic reactions. This study investigated phenolic profiles using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), antioxidant activities, and in vitro inhibitory activities of 10 indigenous plants on key enzymes related to obesity (lipase), diabetes (α-amylase and α-glucosidase), and Alzheimer's disease (cholinesterases and β-secretase). The nonenzymatic anti-glycation reaction was also investigated. The 10 indigenous plants were Albizia lebbeck (L.) Benth, Alpinia malaccensis (Burm.) Roscoe, Careya arborea Roxb., Diplazium esculentum (Retz.) Swartz, Kaempferia roscoeana Wall., Millettia brandisiana Kurz., Momordica charantia, Phyllanthusemblica L., Zingiber cassumunar Roxb, and Zingiber citriodorum J. Mood & T. Theleide. Preparations were made by either freeze-drying or oven-drying processes. Results suggested that the drying processes had a minor impact on in vitro inhibitions of enzymatic and nonenzymatic reactions (<4-fold difference). P. emblica was the most potent antioxidant provider with high anti-glycation activity (>80% inhibition using the extract concentration of ≤6 mg/mL), while D. esculentum effectively inhibited β-secretase activity (>80% inhibition using the extract concentration of 10 mg/mL). C. arborea exhibited the highest inhibitory activities against lipase (47-51% inhibition using the extract concentration of 1 mg/mL) and cholinesterases (>60% inhibition using the extract concentration of 2 mg/mL), while Mi. brandisiana dominantly provided α-amylase and α-glucosidase inhibitors (>80% inhibition using the extract concentration of ≤2 mg/mL). Information obtained from this research may support usage of the oven-drying method due to its lower cost and easier preparation step for these studied plant species and plant parts. Furthermore, the information on in vitro inhibitions of enzymatic and nonenzymatic reactions could be used as fundamental knowledge for further investigations into other biological activities such as cell culture or in vivo experiments of these health-beneficial plants.
Collapse
Affiliation(s)
- Pandaree Sirichai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Suwapat Kittibunchakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Sirinapa Thangsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Nattira On-Nom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand;
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| |
Collapse
|
18
|
Sarmah S, Roy AS. A review on prevention of glycation of proteins: Potential therapeutic substances to mitigate the severity of diabetes complications. Int J Biol Macromol 2022; 195:565-588. [DOI: 10.1016/j.ijbiomac.2021.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
|
19
|
Dozio E, Massaccesi L, Corsi Romanelli MM. Glycation and Glycosylation in Cardiovascular Remodeling: Focus on Advanced Glycation End Products and O-Linked Glycosylations as Glucose-Related Pathogenetic Factors and Disease Markers. J Clin Med 2021; 10:jcm10204792. [PMID: 34682915 PMCID: PMC8539574 DOI: 10.3390/jcm10204792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glycation and glycosylation are non-enzymatic and enzymatic reactions, respectively, of glucose, glucose metabolites, and other reducing sugars with different substrates, such as proteins, lipids, and nucleic acids. Increased availability of glucose is a recognized risk factor for the onset and progression of diabetes-mellitus-associated disorders, among which cardiovascular diseases have a great impact on patient mortality. Both advanced glycation end products, the result of non-enzymatic glycation of substrates, and O-linked-N-Acetylglucosaminylation, a glycosylation reaction that is controlled by O-N-AcetylGlucosamine (GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), have been shown to play a role in cardiovascular remodeling. In this review, we aim (1) to summarize the most recent data regarding the role of glycation and O-linked-N-Acetylglucosaminylation as glucose-related pathogenetic factors and disease markers in cardiovascular remodeling, and (2) to discuss potential common mechanisms linking these pathways to the dysregulation and/or loss of function of different biomolecules involved in this field.
Collapse
Affiliation(s)
- Elena Dozio
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-02-50-315-342
| | - Luca Massaccesi
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
| | - Massimiliano Marco Corsi Romanelli
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
20
|
Diet-Derived Advanced Glycation End Products (dAGEs) Induce Proinflammatory Cytokine Expression in Cardiac and Renal Tissues of Experimental Mice: Protective Effect of Curcumin. Cardiovasc Toxicol 2021; 22:35-51. [PMID: 34655413 DOI: 10.1007/s12012-021-09697-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The beneficial effect of curcumin (CU) on dietary AGEs (dAGEs) involves blocking the overexpression of proinflammatory cytokine genes in the heart and kidney tissues of experimental mice. The animals were divided into six groups (n = 6/group) and were fed a heat-exposed diet (dAGEs) with or without CU for 6 months. Their blood pressure (BP) was monitored by a computerized tail-cuff BP-monitoring system. The mRNA and protein expression levels of proinflammatory genes were analyzed by RT-PCR and western blot, respectively. A marked increase in BP (108 ± 12 mmHg vs 149 ± 15 mmHg) accompanied by a marked increase in the heart and kidney weight ratio was noted in the dAGE-fed mice. Furthermore, the plasma levels of proinflammatory molecules (C5a, ICAM-1, IL-6, MCP-1, IL-1β and TNF-α) were found to be elevated (3-fold) in dAGE-fed mice. mRNA expression analysis revealed a significant increase in the expression levels of inflammatory markers (Cox-2, iNOS, and NF-κB) (3-fold) in cardiac and renal tissues of dAGE-fed mice. Moreover, increased expression of RAGE and downregulation of AGER-1 (p < 0.001) were noticed in the heart and kidney tissues of dAGE-fed mice. Interestingly, the dAGE-induced proinflammatory genes and inflammatory responses were neutralized upon cotreatment with CU. The present study demonstrates that dietary supplementation with CU has the ability to neutralize dAGE-induced adverse effects and alleviate proinflammatory gene expression in the heart and kidney tissues of experimental mice.
Collapse
|
21
|
Chen J, Sridhar K, Tsai P. Anti‐glycation and inhibition of starch hydrolyzing enzymes by enzymatically hydrolysed djulis (
Chenopodium formosanum
Koidz.) hull, leaf and seedling. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jing‐Yu Chen
- Department of Food Science National Pingtung University of Science and Technology 1 Shuefu Road Neipu, Pingtung 91201 Taiwan
| | - Kandi Sridhar
- Department of Food Science Fu Jen Catholic University New Taipei City, Taipei 24205 Taiwan
| | - Pi‐Jen Tsai
- Department of Food Science National Pingtung University of Science and Technology 1 Shuefu Road Neipu, Pingtung 91201 Taiwan
| |
Collapse
|
22
|
Majeed I, Rizwan K, Ashar A, Rasheed T, Amarowicz R, Kausar H, Zia-Ul-Haq M, Marceanu LG. A Comprehensive Review of the Ethnotraditional Uses and Biological and Pharmacological Potential of the Genus Mimosa. Int J Mol Sci 2021; 22:ijms22147463. [PMID: 34299082 PMCID: PMC8307580 DOI: 10.3390/ijms22147463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/01/2023] Open
Abstract
The Mimosa genus belongs to the Fabaceae family of legumes and consists of about 400 species distributed all over the world. The growth forms of plants belonging to the Mimosa genus range from herbs to trees. Several species of this genus play important roles in folk medicine. In this review, we aimed to present the current knowledge of the ethnogeographical distribution, ethnotraditional uses, nutritional values, pharmaceutical potential, and toxicity of the genus Mimosa to facilitate the exploitation of its therapeutic potential for the treatment of human ailments. The present paper consists of a systematic overview of the scientific literature relating to the genus Mimosa published between 1931 and 2020, which was achieved by consulting various databases (Science Direct, Francis and Taylor, Scopus, Google Scholar, PubMed, SciELO, Web of Science, SciFinder, Wiley, Springer, Google, The Plant Database). More than 160 research articles were included in this review regarding the Mimosa genus. Mimosa species are nutritionally very important and several species are used as feed for different varieties of chickens. Studies regarding their biological potential have shown that species of the Mimosa genus have promising pharmacological properties, including antimicrobial, antioxidant, anticancer, antidiabetic, wound-healing, hypolipidemic, anti-inflammatory, hepatoprotective, antinociceptive, antiepileptic, neuropharmacological, toxicological, antiallergic, antihyperurisemic, larvicidal, antiparasitic, molluscicidal, antimutagenic, genotoxic, teratogenic, antispasmolytic, antiviral, and antivenom activities. The findings regarding the genus Mimosa suggest that this genus could be the future of the medicinal industry for the treatment of various diseases, although in the future more research should be carried out to explore its ethnopharmacological, toxicological, and nutritional attributes.
Collapse
Affiliation(s)
- Ismat Majeed
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan; (I.M.); (A.A.)
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Ambreen Ashar
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan; (I.M.); (A.A.)
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Ryszard Amarowicz
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-523-4627
| | - Humaira Kausar
- Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan;
| | - Muhammad Zia-Ul-Haq
- Office of Research, Innovation & Commercialization, Lahore College for Women University, Lahore 54000, Pakistan;
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| |
Collapse
|
23
|
Du Y, Luan J, Jiang RP, Liu J, Ma Y. Myrcene exerts anti-asthmatic activity in neonatal rats via modulating the matrix remodeling. Int J Immunopathol Pharmacol 2021; 34:2058738420954948. [PMID: 32962470 PMCID: PMC7517990 DOI: 10.1177/2058738420954948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myrcene (MC), an organic hydrocarbon, was found to exert anti-inflammatory, analgesic, antimutagenic and antioxidant properties. However, the protective role of MC has not been reported against neonatal asthma. Wistar rats induced with asthma were administered with MC; while asthma control and vehicle control were maintained without MC administration. At the end of the experimental period, lung histology, inflammatory cell counts, cytokine analysis, matrix protein expressions were elucidated. Rats administered with MC exerted significant (P < 0.05) defense in protecting the lung tissue with the evidenced restoration of alveolar thickening of the lung tissues. Also, the present study elicited the anti-asthmatic activity of MC, especially via modulating the extracellular matrix protein expression in the asthma-induced animals, while a significant reduction (P < 0.05) in the fibrotic markers were found in MC treated animals. Moreover, the protective effect of MC was evidenced with reduced leukocyte infiltration in BALF, hypersensitive specific IgE levels with a profound decrease in the inflammatory cytokines such as IL-2, IL-4, IL-18, and IL-21 in MC administered animals compared to the asthma-induced group. To an extent, the markers of asthmatic inflammation such as CD14, MCP-1, and TARC were also found to be attenuated in MC exposed animals. The possible application of MC is a promising drug for the treatment of asthma-mediated complications.
Collapse
Affiliation(s)
- Yanhui Du
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Luan
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ren Peng Jiang
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Liu
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Ma
- Department of Pediatrics, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Gao Y, Liang X, Tian Z, Ma Y, Sun C. Betalain exerts cardioprotective and anti-inflammatory effects against the experimental model of heart failure. Hum Exp Toxicol 2021; 40:S16-S28. [PMID: 34189972 DOI: 10.1177/09603271211027933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Betalain is a natural plant pigment known to elicit various biological activities. However, studies on the protective effect of betalain against heart failure have not reported yet. The experimental model of heart failure was created in Wistar rats using isoproterenol (ISO). The animals were randomly assigned into four groups such as sham-control, ISO-induced heart failure, betalain pretreated before ISO induction (50 mg/kg/day), and betalain drug control group were maintained for 6 weeks. At the end of the experimental period, anti-oxidant enzymes, inflammatory markers, matrix proteins, cardiac-specific markers, and micro RNAs were elucidated using RT-PCR, and ELISA analysis. The results demonstrated that the rats induced with ISO displayed an abnormality in cardiac functions, increased oxidative stress markers (p < 0.01), inflammatory cytokines (p < 0.01) while abrogated the expression of miR-18a, and increased miR-199a. While betalain pre-treated rats prevented the cardiac failure significantly (p < 0.01) with improved anti-oxidant enzymes, abrogated the inflammatory signals with restored matrix proteins, cardiac biomarker genes, and attenuated miR-423 and miR-27 compared to heart failure rats. The results of the study suggest that the betalain treatment protected the hearts from failing via microRNA mediated activation the anti-inflammatory signaling and restoring the matrix protein modulation.
Collapse
Affiliation(s)
- Y Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - X Liang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Z Tian
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Y Ma
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - C Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Rap1a Regulates Cardiac Fibroblast Contraction of 3D Diabetic Collagen Matrices by Increased Activation of the AGE/RAGE Cascade. Cells 2021; 10:cells10061286. [PMID: 34067282 PMCID: PMC8224555 DOI: 10.3390/cells10061286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is a common diabetic complication that can arise when cardiac fibroblasts transition into myofibroblasts. Myofibroblast transition can be induced by advanced glycated end products (AGEs) present in the extracellular matrix (ECM) activating RAGE (receptor for advanced glycated end products) to elicit intracellular signaling. The levels of AGEs are higher under diabetic conditions due to the hyperglycemic conditions present in diabetics. AGE/RAGE signaling has been shown to alter protein expression and ROS production in cardiac fibroblasts, resulting in changes in cellular function, such as migration and contraction. Recently, a small GTPase, Rap1a, has been identified to overlap the AGE/RAGE signaling cascade and mediate changes in protein expression. While Rap1a has been shown to impact AGE/RAGE-induced protein expression, there are currently no data examining the impact Rap1a has on AGE/RAGE-induced cardiac fibroblast function. Therefore, we aimed to determine the impact of Rap1a on AGE/RAGE-mediated cardiac fibroblast contraction, as well as the influence isolated diabetic ECM has on facilitating these effects. In order to address this idea, genetically different cardiac fibroblasts were embedded in 3D collagen matrices consisting of collagen isolated from either non-diabetic of diabetic mice. Fibroblasts were treated with EPAC and/or exogenous AGEs, which was followed by assessment of matrix contraction, protein expression (α-SMA, SOD-1, and SOD-2), and hydrogen peroxide production. The results showed Rap1a overlaps the AGE/RAGE cascade to increase the myofibroblast population and generation of ROS production. The increase in myofibroblasts and oxidative stress appeared to contribute to increased matrix contraction, which was further exacerbated by diabetic conditions. Based off these results, we determined that Rap1a was essential in mediating the response of cardiac fibroblasts to AGEs within diabetic collagen.
Collapse
|
26
|
Cao T, Wang J, Wu Y, Wang L, Zhang H. Antiglaucoma Potential of β-Glucogallin Is Mediated by Modulating Mitochondrial Responses in Experimentally Induced Glaucoma. Neuroimmunomodulation 2021; 27:142-151. [PMID: 33571990 DOI: 10.1159/000512992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The use of phytochemicals for the treatment of various bodily ailments has been in practice since ancient days. Even though in practice, scientific studies on the protective effect of β-glucogallin (BG) against glaucoma is limited. OBJECTIVES In the present study, the in vitro glaucoma model (hydrostatic pressure) using PC12 neuronal cells exposed to BG were used to elucidate its protective effects. METHOD The cultured cells were analyzed for the mitochondrial responses, oxidant-antioxidant status, and expression of caveolin-1, ANGPTL7, the glaucoma markers, and cytokines. RESULTS We demonstrated a significant increase in the expression of glial fibrillary acidic protein, ANGPTL7, with altered mitochondrial enzymes in glaucoma cells compared to the control. Moreover, cells predisposed to hydrostatic pressure demonstrated an increase in oxidative stress with augmented (p < 0.01) inflammatory cytokines such as IL-2, CXCR4, IL-6, IL-8, MCP-1, and TNF-α. On the other hand, cells pretreated with BG attenuated the reactive oxygen species levels with improved antioxidant enzymes. Simultaneously, the levels of inflammatory cytokines and ANGPTL7 proteins were found attenuated with restored mitochondrial responses in BG pretreated cells. CONCLUSION Thus, the results of the present study demonstrate that the use of BG on retinal cells against relieving the intraocular pressure may be a promising therapeutic for controlling the disease progression.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China,
| | - Jun Wang
- Department of Orthopedic, Cangzhou Central Hospital, Cangzhou, China
| | - Yuanyuan Wu
- Department of Tumour, Cangzhou Central Hospital, Cangzhou, China
| | - Lianfeng Wang
- Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China
| | - Huiqin Zhang
- Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
27
|
Mojadami S, Ahangarpour A, Mard SA, Khorsandi L. Diabetic nephropathy induced by methylglyoxal: gallic acid regulates kidney microRNAs and glyoxalase1-Nrf2 in male mice. Arch Physiol Biochem 2021; 129:655-662. [PMID: 33460343 DOI: 10.1080/13813455.2020.1857775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Methylglyoxal (MG) has been reported to be a toxic by-product of glycolysis and intracellular stressor compound. This study investigated the effects of gallic acid (GA) against diabetic nephropathy (DN) induced by MG in male mice. METHODS DN was induced by methylglyoxal (600 mg/kg/day, p.o.) treated for 28 consecutive days. The animals received GA (30 mg/kg/day, p.o.) and metformin (MT) (150 mg/kg/day, p.o.) for 7 consecutive days after diabetes induction. Biochemical assays, antioxidant evaluation, microRNAs associated with fibrosis, endoplasmic reticulum stress, and histopathological analysis were examined. RESULTS MG increased malondialdehyde, albuminuria, Nrf2, miR-192 and miR-204 expression in diabetic groups and GA decreased them. Superoxide dismutase, catalase, glyoxalase1, and miR-29a expression decreased in diabetic groups and increased in treatment with GA. CONCLUSION Our results revealed that GA has improved DN induced by MG via amelioration of biochemical indices, histopathological aspects, oxidative stress and microRNAs associated with endoplasmic reticulum stress and fibrosis.
Collapse
Affiliation(s)
- Shahnaz Mojadami
- Student Research Committee, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Department of Physiology, School of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Alimentary Tract Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Sánchez-Rodríguez C, Peiró C, Rodríguez-Mañas L, Nevado J. Polyphenols Attenuate Highly-Glycosylated Haemoglobin-Induced Damage in Human Peritoneal Mesothelial Cells. Antioxidants (Basel) 2020; 9:antiox9070572. [PMID: 32630324 PMCID: PMC7402166 DOI: 10.3390/antiox9070572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023] Open
Abstract
We investigated the cytoprotective role of the dietary polyphenols on putative damage induced by Amadori adducts in Human Peritoneal Mesothelial Cells (HPMCs). Increased accumulation of early products of non-enzymatic protein glycation-Amadori adducts-in the peritoneal dialysis fluid due to their high glucose, induces severe damage in mesothelial cells during peritoneal dialysis. Dietary polyphenols reportedly have numerous health benefits in various diseases and have been used as an efficient antioxidant in the context of several oxidative stress-related pathologies. HPMCs isolated from different patients were exposed to Amadori adducts (highly glycated haemoglobin, at physiological concentrations), and subsequently treated with several polyphenols, mostly presented in our Mediterranean diet. We studied several Amadori-induced effects in pro-apoptotic and oxidative stress markers, as well as the expression of several pro-inflammatory genes (nuclear factor-kappaB, NF-kB; inducible Nitric Oxide synthetase, iNOS), different caspase-activities, level of P53 protein or production of different reactive oxygen species in the presence of different polyphenols. In fact, cytoprotective agents such as dietary polyphenols may represent an alternate approach to protect mesothelial cells from the cytotoxicity of Amadori adducts. The interference with the Amadori adducts-triggered mechanisms could represent a therapeutic tool to reduce complications associated with peritoneal dialysis in the peritoneum, helping to maintain peritoneal membrane function longer in patients undergoing peritoneal dialysis.
Collapse
Affiliation(s)
- Carolina Sánchez-Rodríguez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
- Correspondence: ; Tel.: +34-912-115-176
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Instituto de Investigaciones Sanitarias IdiPAZ, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Leocadio Rodríguez-Mañas
- CIBER of Frailty and Healthy Aging (CIBERFES), Department of Geriatrics, Hospital Universitario de Getafe, 28905 Madrid, Spain;
| | - Julián Nevado
- Genomic and Molecular Nephropathy Sections, Instituto de Genética Médica y Molecular (INGEMM), IdiPaz-Hospital Universitario La Paz, y Centro de Investigación Básica en Red de Enfermedades Raras (CIBERER), 28046 Madrid, Spain;
| |
Collapse
|
29
|
Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res Int 2020; 130:108933. [DOI: 10.1016/j.foodres.2019.108933] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
|
30
|
González I, Morales MA, Rojas A. Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res Int 2020; 129:108843. [PMID: 32036875 DOI: 10.1016/j.foodres.2019.108843] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The formation of advanced glycation end-products (AGEs) is a key pathophysiological event linked not only to the onset and progression of diabetic complications, but also to neurodegeneration, cardiovascular diseases, cancer, and others important human diseases. AGEs contributions to pathophysiology are mainly through the formation of cross-links and by engaging the receptor for advanced glycation end-products (RAGE). Polyphenols are secondary metabolites found largely in fruits, vegetables, cereals, and beverages, and during many years, important efforts have been made to elucidate their beneficial effects on human health, mainly ascribed to their antioxidant activities. In the present review, we highlighted the beneficial actions of polyphenols aimed to diminish the harmful consequences of advanced glycation, mainly by the inhibition of ROS formation during glycation, the inhibition of Schiff base, Amadori products, and subsequent dicarbonyls group formation, the activation of the glyoxalase system, as well as by blocking either AGEs-RAGE interaction or cell signaling.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chil
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
31
|
Zhou P, Hua F, Wang X, Huang JL. Therapeutic potential of IKK-β inhibitors from natural phenolics for inflammation in cardiovascular diseases. Inflammopharmacology 2020; 28:19-37. [PMID: 31894515 DOI: 10.1007/s10787-019-00680-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVDs) is a chronic disease with the highest morbidity and mortality in the world. Previous studies have suggested that preventing inflammation serves an efficient role in protection against cardiovascular diseases. Modulation of IKK-β activity can be used to treat and control CVDs associated with chronic inflammation, which targets the phosphorylation of IκB following the release of the RelA complex, and then translocates to the nucleus, eventually triggering the transcription of several genes that induce chemokines, cytokines, and adhesion molecules. Most importantly, the IκB kinase (IKK) complex is involved in transcriptional activation by phosphorylating the inhibitory molecule IkBα, enabling activation of NF-κB. Phenolic compounds possess cardioprotective potential that may be related to modulating inflammatory responses involved in CVDs. The SystemsDock analysis was used to explore whether 38 active compounds inhibit IKK-β activity based on literature. Docking results showed that the top docking score of three chemical compounds were icariin, salvianolic acid B, and plantainoside D in all compounds. Icariin, salvianolic acid B, and plantainoside D are the most promising IKKβ inhibitors. These phytochemicals could be helpful to find the lead compounds on designing and developing novel cardioprotective agents.
Collapse
Affiliation(s)
- Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.
| | - Fang Hua
- Pharmacy School, Anhui Xinhua University, Hefei, 230088, People's Republic of China.,Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xiang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China
| | - Jin-Ling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.
| |
Collapse
|
32
|
Gao J, Hu J, Hu D, Yang X. A Role of Gallic Acid in Oxidative Damage Diseases: A Comprehensive Review. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19874174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gallic acid is a trihydroxybenzoic acid of plant metabolites widely spread throughout the plant kingdom. It has characteristics of the strong antioxidant and free radical scavenging activities, and can protect biological cells, tissues, and organs from damages caused by oxidative stress. This review aims to summarize the protective roles of gallic acid and the underlying pharmacological mechanisms in the pathophysiological process of the oxidative damage diseases, such as cancer, cardiovascular, degenerative, and metabolic diseases. The studies reviewed herein showed that the main therapeutic effects of gallic acid were attributed to its antioxidant properties. It modulated various signaling pathways through a wide range of inflammatory cytokines, and enzymic and nonenzymic antioxidants. However, the available data were limited to few studies assessing the treatment effects of gallic acid in human subjects to confirm its therapeutic outcomes. Therefore, the clinical trials were urgently needed to investigate the safety and efficacy of gallic acid treatment on human beings. The scientific data summarized in this review highlighted the therapeutic potentials of gallic acid for oxidative damage diseases. It could be developed as versatile adjuvant or therapeutically lead compound in future.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Jiangxia Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Xiao Yang
- School of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
33
|
Di Sotto A, Locatelli M, Macone A, Toniolo C, Cesa S, Carradori S, Eufemi M, Mazzanti G, Di Giacomo S. Hypoglycemic, Antiglycation, and Cytoprotective Properties of a Phenol-Rich Extract From Waste Peel of Punica granatum L. var. Dente di Cavallo DC2. Molecules 2019; 24:E3103. [PMID: 31461832 PMCID: PMC6749322 DOI: 10.3390/molecules24173103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Pomegranate peel is a natural source of phenolics, claimed to possess healing properties, among which are antioxidant and antidiabetic. In the present study, an ethyl acetate extract, obtained by Soxhlet from the peel of Dente di Cavallo DC2 pomegranate (PGE) and characterized to contain 4% w/w of ellagic acid, has been evaluated for its hypoglycemic, antiglycation, and antioxidative cytoprotective properties, in order to provide possible evidence for future nutraceutical applications. The α-amylase and α-glucosidase enzyme inhibition, interference with advanced glycation end-products (AGE) formation, and metal chelating abilities were studied. Moreover, the possible antioxidant cytoprotective properties of PGE under hyperglycemic conditions were assayed. Phenolic profile of the extract was characterized by integrated chromatographic and spectrophotometric methods. PGE resulted able to strongly inhibit the tested enzymes, especially α-glucosidase, and exerted chelating and antiglycation properties. Also, it counteracted the intracellular oxidative stress under hyperglycemic conditions, by reducing the levels of reactive oxygen species and total glutathione. Among the identified phenolics, rutin was the most abundant flavonoid (about 4 % w/w). Present results suggest PGE to be a possible remedy for hyperglycemia management and encourage further studies to exploit its promising properties.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marcello Locatelli
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Alberto Macone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
| | - Chiara Toniolo
- Department of Environmental Biology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Stefania Cesa
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, P.le A. Moro 5, 00185 Rome, Italy
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
34
|
Hu PF, Sun FF, Qian J. Leonurine Exerts Anti-Catabolic and Anti-Apoptotic Effects via Nuclear Factor kappa B (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways in Chondrocytes. Med Sci Monit 2019; 25:6271-6280. [PMID: 31431607 PMCID: PMC6714594 DOI: 10.12659/msm.916039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Leonurine confers neuroprotection, inhibits myocardial apoptosis, ameliorates endothelial dysfunction, and shows anti-inflammatory effects, and may be beneficial for clinical applications. However, the effects of leonurine on chondrocytes remain unknown. Here, we investigated the protective role of leonurine in rat chondrocytes. Material/Methods To explore the potential therapeutic effect of leonurine against osteoarthritis (OA), rat chondrocytes were treated with IL-1β along with different concentrations of leonurine in vitro. The levels of matrix metalloproteinases (MMPs), ADAMTS, Bax, and Bcl-2 were measured by PCR, ELISA, and Western blotting. Caspase-3 activity in chondrocytes was determined using a caspase-3 activity assay. Western blotting was also performed to examine activation of the NF-κB and mitogen-activated protein kinase (MAPK) pathways to elucidate the likely regulatory mechanisms. Results Leonurine counteracted IL-1β-induced production of MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. Leonurine treatment reduced both the mRNA and protein levels of Bax and increased the level of Bcl-2. Leonurine also inhibited the activity of caspase-3 in IL-1β-induced chondrocytes. Furthermore, the activation of MAPK and phosphorylation of p65 were suppressed by leonurine. Conclusions The results of this study indicate that leonurine exerts anti-catabolic and anti-apoptotic effects in chondrocytes in vitro via suppression of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fang-Fang Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
35
|
Li H, Wu CJ, Tang XY, Yu SJ. Insights into the Regulation Effects of Certain Phenolic Acids on 2,3-Dihydro-3,5-dihydroxy-6-methyl-4( H)-pyran-4-one Formation in a Microaqueous Glucose-Proline System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9050-9059. [PMID: 31339697 DOI: 10.1021/acs.jafc.9b01182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The control of 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (DDMP) formation in the Maillard reaction is important to improve the thermally treated food quality as a result of its intense bitterness and potential toxicity. In this work, phenolic acids, such as gallic, protocatechuic, caffeic, and ferulic acids, were applied to modulate DDMP formation in a microaqueous glucose-proline model. The formation of DDMP was inhibited at low concentrations (from 0.1 to 5.0 mM) while enhanced at 10.0 mM gallic, protocatechuic, and caffeic acids. Ferulic acid always inhibited DDMP formation as a result of the absence of catechol groups on its benzene ring. The result indicated that the control of DDMP formation depended upon the concentration and chemical structures of phenolic acids, such as the number of hydroxyl groups. Further studies indicated that the hydroxyl distribution of phenolic acids regulated the peroxide formation in the model reaction system and further changed the development of the oxidation reaction, which affected the degradation of glucose via caramel or Maillard reaction, Amadori rearrangement product oxidation, and 1-deoxyglucosone degradation to form the intermediates.
Collapse
Affiliation(s)
- He Li
- College of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Chun-Jian Wu
- College of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Xiang-Yi Tang
- College of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Shu-Juan Yu
- College of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou , Guangdong 510640 , People's Republic of China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
36
|
Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:225-237. [PMID: 31156781 PMCID: PMC6528712 DOI: 10.22038/ijbms.2019.32806.7897] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/01/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Gallic acid is a natural phenolic compound found in several fruits and medicinal plants. It is reported to have several health-promoting effects. This review aims to summarize the pharmacological and biological activities of gallic acid in vitro and animal models to depict the pharmacological status of this compound for future studies. MATERIALS AND METHODS All relevant papers in the English language were collected up to June 2018. The keywords of gallic acid, antioxidant, anticancer, antimicrobial, gastrointestinal-, cardiovascular-, metabolic-, neuropsychological-, and miscellaneous- diseases were searched in Google Scholar, PubMed, and Scopus. RESULTS Several beneficial effects are reported for gallic acid, including antioxidant, anti-inflammatory, and antineoplastic properties. This compound has been reported to have therapeutic activities in gastrointestinal, neuropsychological, metabolic, and cardiovascular disorders. CONCLUSION Current evidence confirms the pharmacological and therapeutic interventions of gallic acid in multiple health complications; however, available data are limited to just cellular and animal studies. Future investigations are essential to further define the safety and therapeutic efficacy of gallic acid in humans.
Collapse
Affiliation(s)
- Niloofar Kahkeshani
- Department of Pharmacognosy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- PhytoPharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Fotouhi
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Shaghayegh Alavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
37
|
Phang SCW, Palanisamy UD, Kadir KA. Effects of geraniin (rambutan rind extract) on blood pressure and metabolic parameters in rats fed high-fat diet. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:100-106. [DOI: 10.1016/j.joim.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
|
38
|
Ramezani Ali Akbari F, Badavi M, Dianat M, Mard SA, Ahangarpour A. GALLIC ACID IMPROVES OXIDATIVE STRESS AND INFLAMMATION THROUGH REGULATING MICRORNAS EXPRESSIONS IN THE BLOOD OF DIABETIC RATS. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; 15:187-194. [PMID: 31508175 DOI: 10.4183/aeb.2019.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context Endothelial dysfunction and diabetic cardiomyopathy are critical complications of diabetes. Gallic acid (GA) plays a significant role in cardiovascular disorders resulted from diabetes. In addition, increased plasma miR-24, miR-126 associated with endothelial dysfunction. Aim The current study was designed to assess the effects of GA on plasma miR-24, miR-126 levels in the diabetic rats. Animals and Methods Adult male Sprague-Dawley rats were divided into three groups (n=8): control (C), diabetic (D) and diabetic group treated with GA (D+G, 25 mg/kg, by gavage) for eight weeks. The blood glucose level, body weight, lipid profile, blood pressure, plasma miR-24 and miR-126 levels, antioxidant and inflammatory biomarkers were measured. Results The plasma levels of miR-24, miR-126, body weight, high-density lipoprotein cholesterol (HDL-c), total anti-oxidant capacity (TAC) and the systolic blood pressure significantly reduced and blood glucose, total cholesterol (TC), triglycerides (TG), very low-density lipoprotein cholesterol (VLDL-c), malondialdehyde (MDA), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and low-density lipoprotein cholesterol (LDL-c) significantly elevated among the diabetic rats compared with the control group. However, GA restored body weight, blood pressure, TC, TG, VLDL-c, TNF-α, miR-126, blood glucose, HDL-c, MDA, TAC, miR-24 and IL-6 among the GA treated rats compared with the diabetic group. Conclusion GA improves inflammation, oxidative stress and hypotension result from diabetes. These protective effects are probably mediated via increasing plasma miR-24 and miR-126 levels.
Collapse
Affiliation(s)
- F Ramezani Ali Akbari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - M Badavi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| | - M Dianat
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - S A Mard
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - A Ahangarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, Diabetes Research Center, Ahvaz, Iran
| |
Collapse
|
39
|
Protective Role of Polyphenols against Vascular Inflammation, Aging and Cardiovascular Disease. Nutrients 2018; 11:nu11010053. [PMID: 30597847 PMCID: PMC6357531 DOI: 10.3390/nu11010053] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
Aging is a major risk factor in the development of chronic diseases affecting various tissues including the cardiovascular system, muscle and bones. Age-related diseases are a consequence of the accumulation of cellular damage and reduced activity of protective stress response pathways leading to low-grade systemic inflammation and oxidative stress. Both inflammation and oxidative stress are major contributors to cellular senescence, a process in which cells stop proliferating and become dysfunctional by secreting inflammatory molecules, reactive oxygen species (ROS) and extracellular matrix components that cause inflammation and senescence in the surrounding tissue. This process is known as the senescence associated secretory phenotype (SASP). Thus, accumulation of senescent cells over time promotes the development of age-related diseases, in part through the SASP. Polyphenols, rich in fruits and vegetables, possess antioxidant and anti-inflammatory activities associated with protective effects against major chronic diseases, such as cardiovascular disease (CVD). In this review, we discuss molecular mechanisms by which polyphenols improve anti-oxidant capacity, mitochondrial function and autophagy, while reducing oxidative stress, inflammation and cellular senescence in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). We also discuss the therapeutic potential of polyphenols in reducing the effects of the SASP and the incidence of CVD.
Collapse
|
40
|
Song Y, Li S, Geng W, Luo R, Liu W, Tu J, Wang K, Kang L, Yin H, Wu X, Gao Y, Zhang Y, Yang C. Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration. Redox Biol 2018; 19:339-353. [PMID: 30216853 PMCID: PMC6139007 DOI: 10.1016/j.redox.2018.09.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc (IVD) degeneration contributes largely to pathoanatomical and degenerative changes of spinal structure that increase the risk of low back pain. Apoptosis in nucleus pulposus (NP) can aggravate IVD degeneration, and increasing studies have shown that interventions targeting NP cell apoptosis can ameliorate IVD degeneration, exhibiting their potential for use as therapeutic strategies. Recent data have shown that advanced glycation end products (AGEs) accumulate in NP tissues in parallel with the progression of IVD degeneration and form a microenvironment of oxidative stress. This study examined whether AGEs accumulation aggravates NP cell apoptosis and IVD degeneration, and explored the mechanisms underlying these effects. We observed that the viability and proliferation of human NP cells were significantly suppressed by AGEs treatment, mainly due to apoptosis. Furthermore, activation of the mitochondrial apoptosis pathway was detected after AGEs treatment. In addition, the molecular data showed that AGEs could significantly aggravate the generation of mitochondrial reactive oxygen species and prolonged activation of the mitochondrial permeability transition pore, as well as the increased level of Bax protein and decreased level of Bcl-2 protein in mitochondria. These effects could be reduced by antioxidant (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) and Visomitin (SKQ1). Importantly, we identified that impairment of Sirtuin3 (SIRT3) function and the mitochondrial antioxidant network were vital mechanisms in AGEs-induced oxidative stress and secondary human NP cell apoptosis. Finally, based on findings that nicotinamide mononucleotide (NMN) could restore SIRT3 function and rescue human NP cell apoptosis through adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor-γ coactivator 1α (AMPK-PGC-1α) pathway in vitro, we confirmed its protective effect on AGEs-induced IVD degeneration in vivo. In conclusion, our data demonstrate that SIRT3 protects against AGEs-induced human NP cell apoptosis and IVD degeneration. Targeting SIRT3 to improve mitochondrial redox homeostasis may represent a potential therapeutic strategy for attenuating AGEs-associated IVD degeneration.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Geng
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan 430022, China
| | - Ji Tu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Kang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
41
|
Mahomoodally MF, Atalay A, Nancy Picot MC, Bender O, Celebi E, Mollica A, Zengin G. Chemical, biological and molecular modelling analyses to probe into the pharmacological potential of Antidesma madagascariense Lam.: A multifunctional agent for developing novel therapeutic formulations. J Pharm Biomed Anal 2018; 161:425-435. [PMID: 30216791 DOI: 10.1016/j.jpba.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 12/01/2022]
Abstract
Antidesma madagascariense Lam. (AM), an indigenous medicinal plant to the Mascarene Islands, is used for the treatment of several diseases. We endeavoured to validate its use via evaluating the kinetics of inhibition of crude aqueous extract (CAE) and crude methanol extract (CME) of AM against key metabolic enzymes (pancreatic lipase, cholesterol esterase [CEase], acetylcholinesterase [AChE], and urease). In vitro antiglycation, antioxidant, cytotoxicity using iCELLigence real time cell analysis system and WST-1 methods, were used. LC-ESI-MS/MS was employed to determine the phenolic composition of the extracts and interaction of selected compounds to the studied enzymes was determined using in silico docking. AChE was inhibited by the CME of AM and CEase by the CAE. Both extracts were active inhibitors of urease and pancreatic lipase. Hyperoside (271.97 μg/g extract), present in large amount in the CME, docked to the enzymatic pocket of urease and CEase. The extracts showed competitive and mixed inhibition of urease and pancreatic lipase, respectively. The antioxidant capacity of the CME (6.61 μg GAE/mg crude extract) was higher compared to CAE (2.20 μg GAE/mg crude extract). AM extracts were significantly (p < 0.05) less potent than aminoguanidine in preventing advanced glycation end products formation. Toxicological screening revealed that both extracts were non-toxic on HEK-293 cells. AM crude extracts at concentrations ranging from 78 to 312 μg/ml did not cause a visible change in cell morphology compared to control. This study supports the safe use of AM as a biomedicine for the management and/or treatment of common non-communicable diseases.
Collapse
Affiliation(s)
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, 06100, Ankara, Turkey
| | - Marie Carene Nancy Picot
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - Onur Bender
- Biotechnology Institute, Ankara University, 06100, Ankara, Turkey
| | - Evrim Celebi
- Biotechnology Institute, Ankara University, 06100, Ankara, Turkey
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42250, Konya, Turkey.
| |
Collapse
|
42
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
43
|
Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Sci Rep 2018; 8:9302. [PMID: 29915390 PMCID: PMC6006337 DOI: 10.1038/s41598-018-27599-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Gallic acid is a trihydroxybenzoic acid found in tea leaves and some plants. Here, we report the effect of gallic acid on cardiac dysfunction and fibrosis in a mouse model of pressure overload-induced heart failure and in primary rat cardiac fibroblasts, and compare the effects of gallic acid with those of drugs used in clinics. Gallic acid reduces cardiac hypertrophy, dysfunction, and fibrosis induced by transverse aortic constriction (TAC) stimuli in vivo and transforming growth factor β1 (TGF-β1) in vitro. It decreases left ventricular end-diastolic and end-systolic diameter, and recovers the reduced fractional shortening in TAC. In addition, it suppresses the expression of atrial natriuretic peptide, brain natriuretic peptide, skeletal α-actin, and β-myosin heavy chain. Administration of gallic acid decreases perivascular fibrosis, as determined by Trichrome II Blue staining, and reduces the expression of collagen type I and connective tissue growth factor. However, administration of losartan, carvedilol, and furosemide does not reduce cardiac dysfunction and fibrosis in TAC. Moreover, treatment with gallic acid inhibits fibrosis-related genes and deposition of collagen type I in TGF-β1-treated cardiac fibroblasts. These results suggest that gallic acid is a therapeutic agent for cardiac dysfunction and fibrosis in chronic heart failure.
Collapse
|
44
|
Schlickmann F, Boeing T, Mariano LNB, da Silva RDCMVDAF, da Silva LM, de Andrade SF, de Souza P, Cechinel-Filho V. Gallic acid, a phenolic compound isolated from Mimosa bimucronata (DC.) Kuntze leaves, induces diuresis and saluresis in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:649-655. [PMID: 29663016 DOI: 10.1007/s00210-018-1502-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/06/2018] [Indexed: 11/28/2022]
Abstract
Although present in the leaves of Mimosa bimucronata (DC.) and many other medicinal plants commonly used to augment urinary volume excretion, the effects of gallic acid as a diuretic agent remain to be studied. Wistar rats were orally treated with vehicle, hydrochlorothiazide, or gallic acid. The effects of gallic acid in the presence of hydrochlorothiazide, furosemide, amiloride, L-NAME, atropine, and indomethacin were also investigated. Diuretic index, pH, conductivity, and electrolyte excretion were evaluated at the end of the experiment (after 8 or 24 h). Gallic acid induced diuretic and saluretic (Na+ and Cl-) effects, without interfering with K+ excretion, when orally given to female and male rats at a dose of 3 mg/kg. These effects were associated with increased creatinine and conductivity values while pH was unaffected by any of the treatments. Plasma Na+, K+, and Cl- levels were not affected by any of the acute treatments. The combination with hydrochlorothiazide or furosemide was unable to intensify the effects of gallic acid when compared with the response obtained with each drug alone. On the other hand, the treatment with amiloride plus gallic acid amplified both diuresis and saluresis, besides to a marked potassium-sparing effect. Its diuretic action was significantly prevented in the presence of indomethacin, a cyclooxygenase inhibitor, but not with the pretreatments with L-NAME or atropine. Although several biological activities have already been described for gallic acid, this is the first study demonstrating its potential as a diuretic agent.
Collapse
Affiliation(s)
- Fabile Schlickmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | - Luisa Nathália Bolda Mariano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | | | - Luisa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil.
| | - Valdir Cechinel-Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| |
Collapse
|
45
|
Liu H, Chen X, Zhang D, Wang J, Wang S, Sun B. Effects of Highland Barley Bran Extract Rich in Phenolic Acids on the Formation of N ε-Carboxymethyllysine in a Biscuit Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1916-1922. [PMID: 29414239 DOI: 10.1021/acs.jafc.7b04957] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Highland barley, a staple food in northwest China, is a well-known source of bioactive phytochemicals, including phenolic compounds. This study evaluated the inhibitory effects of highland barley bran extract (HBBE) on the advanced glycation end product (AGE) levels in a biscuit model, as measured by Nε-carboxymethyllysine (CML) content. CML was detected in all inhibition models using HBBE extracted with different solvents. Under optimal conditions, CML formation in the heated model system composed of glucose/lysine/linoleic acid was effectively inhibited by HBBE. This inhibition effect using extracts from 60% acetone solution was 45.58%. Five major phenolic acids from HBBE (ferulic, syringic, sinapic, p-coumaric, and caffeic acids) were further tested for their trapping and scavenging abilities of glyoxal, a reactive carbonyl species and a key intermediate compound for forming CML. This study has demonstrated that HBBE can potentially control CML formation during food processing, therefore effectively reducing glycation in foods and benefiting those with chronic diseases.
Collapse
Affiliation(s)
- Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xiaomo Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Dianwei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, People's Republic of China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Shuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
- School of Medicine, Nankai University , Tianjin 300071, People's Republic of China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
46
|
Garud MS, Kulkarni YA. Gallic acid attenuates type I diabetic nephropathy in rats. Chem Biol Interact 2018; 282:69-76. [DOI: 10.1016/j.cbi.2018.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 10/25/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
|
47
|
Gallic Acid Alleviates Hypertriglyceridemia and Fat Accumulation via Modulating Glycolysis and Lipolysis Pathways in Perirenal Adipose Tissues of Rats Fed a High-Fructose Diet. Int J Mol Sci 2018; 19:ijms19010254. [PMID: 29342975 PMCID: PMC5796201 DOI: 10.3390/ijms19010254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 11/16/2022] Open
Abstract
This study investigated the ameliorative effect of gallic acid (GA) on hypertriglyceridemia and fat accumulation in perirenal adipose tissues of high-fructose diet (HFD)-induced diabetic rats. The previous results showed that orally administered GA (30 mg/kg body weight) for four weeks significantly reduced the levels of plasma glucose and triglyceride (TG) in HFD rats. GA also markedly decreased the perirenal adipose tissues weight of HFD rats in present study (p < 0.05). Western blot assay indicated that GA restored expression of insulin signaling-related proteins, such as insulin receptor (IR), protein kinase C-zeta (PKC-ζ), and glucose transporter-4 (GLUT4) in the perirenal adipose tissues of HFD rats. Moreover, GA enhanced expression of glycolysis-related proteins, such as phosphofructokinase (PFK) and pyruvate kinase (PK), and increased the expression of lipolysis-related proteins, such as adipose triglyceride lipase (ATGL), which is involved in lipolysis in the perirenal adipose tissues of HFD rats. This study revealed that GA may alleviate hypertriglyceridemia and fat accumulation through enhancing glycolysis and lipolysis pathways in perirenal adipose tissues of HFD rats. These findings also suggest the potential of GA in preventing the progression of diabetes mellitus (DM) complications.
Collapse
|
48
|
A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3920195. [PMID: 28751931 PMCID: PMC5511646 DOI: 10.1155/2017/3920195] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling.
Collapse
|
49
|
Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with N G-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2. J Hypertens 2017; 35:1502-1512. [DOI: 10.1097/hjh.0000000000001327] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Crascì L, Lauro MR, Puglisi G, Panico A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit Rev Food Sci Nutr 2017; 58:893-904. [PMID: 27646710 DOI: 10.1080/10408398.2016.1229657] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diet polyphenols are a secondary metabolites of plants able to act on inflammation process. Their anti-inflammatory activity is articulated through several mechanisms that are related to their antioxidative and radical scavengers properties. Our work is focused on a novel approach to inflammatory disease management, based on anti-glycative and matrix metalloproteinases (MMPs) inhibition effects, as a connected phenomena. To better understand these correlation, polyphenols Structure-Activity Relationship (SAR) studies were also reported. The antioxidant polyphenols inhibit the AGEs at different levels of the glycation process in the following ways: (1) prevention of Amadori adduct oxidation; (2) trapping reactive dycarbonyl compounds; (3) attenuation of receptor for AGEs (RAGE) expression. Moreover, several flavonoids with radical scavenging property showed also MMPs inhibition interact directly with MMPs or indirectly via radical scavengers and AGEs reduction. The essential polyphenols features involved in these mechanisms are C2-C3 double bond and number and position of hydroxyl, glycosyl and O-methyl groups. These factors induce a change in molecular planarity interfering with the hydrogen bond formation, electron delocalization and metal ion chelation. In particular, C2-C3 double bond improve the antioxidant and MMPs inhibition, while the hydroxylation, glycosylation and methylation induce a positive and negative correlation, respectively.
Collapse
Affiliation(s)
- Lucia Crascì
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| | - Maria Rosaria Lauro
- b Department of Pharmacy , University of Salerno , Via Giovanni Paolo II, Fisciano ( SA ), Italy
| | - Giovanni Puglisi
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| | - Annamaria Panico
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| |
Collapse
|