1
|
Xu M, Yang X, Zhang J, Liu D, Zhang C, Wu M, Musazade E, Maser E, Xiong G, Guo L. The mechanism of anthracene degradation by tryptophan -2,3-dioxygenase (T23D) in Comamonas testosteroni. Chem Biol Interact 2024; 393:110950. [PMID: 38479715 DOI: 10.1016/j.cbi.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
It is well known that anthracene is a persistent organic pollutant. Among the four natural polycyclic aromatic hydrocarbons (PAHs) degrading strains, Comamonas testosterone (CT1) was selected as the strain with the highest degradation efficiency. In the present study, prokaryotic transcriptome analysis of CT1 revealed an increase in a gene that encodes tryptophane-2,3-dioxygenase (T23D) in the anthracene and erythromycin groups compared to CK. Compared to the wild-type CT1 strain, anthracene degradation by the CtT23D knockout mutant (CT-M1) was significantly reduced. Compared to Escherichia coli (DH5α), CtT23D transformed DH5α (EC-M1) had a higher degradation efficiency for anthracene. The recombinant protein rT23D oxidized tryptophan at pH 7.0 and 37 °C with an enzyme activity of 2.42 ± 0.06 μmol min-1·mg-1 protein. In addition, gas chromatography-mass (GC-MS) analysis of anthracene degradation by EC-M1 and the purified rT23D revealed that 2-methyl-1-benzofuran-3-carbaldehyde is an anthracene metabolite, suggesting that it is a new pathway.
Collapse
Affiliation(s)
- Miao Xu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xiao Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Jinyuan Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Dong Liu
- School of Grain Science and Technology, Jilin Busyness and Technology College, Changchun, 130118, PR China
| | - Chuanzhi Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China; School of Grain Science and Technology, Jilin Busyness and Technology College, Changchun, 130118, PR China
| | - Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Edmund Maser
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, 24105, Germany
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, 24105, Germany
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
2
|
Xie W, Xia Q, Chen L, Xiong G, Gao Y, Yu Y, He X. Cloning and identification of a new repressor of 3,17β-Hydroxysteroid dehydrogenase of Comamonas testosteroni. Mol Biol Rep 2021; 48:7067-7075. [PMID: 34677711 DOI: 10.1007/s11033-021-06566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND 3,17β-hydroxysteroid dehydrogenase (3,17β-HSD) is a key enzyme in the metabolic pathway for steroid compounds catabolism in Comamonas testosteroni. Tetracycline repressor (TetR) family, repressors existing in most microorganisms, may play key roles in regulating the expression of 3,17β-HSD. Previous reports showed that three tetR genes are located in the contig58 of C. testosteroni ATCC 11996 (GenBank: AHIL01000049.1), among which the first tetR gene encoded a potential repressor of 3,17β-HSD by sensing environmental signals. However, whether the other proposed tetR genes act as repressors of 3,17β-HSD are still unknown. METHODS AND RESULTS In the present study, we cloned the second tetR gene and analyzed the regulatory mechanism of the protein on 3,17β-HSD using electrophoretic mobility shift assay (EMSA), gold nanoparticles (AuNPs)-based assay, and loss-of-function analysis. The results showed that the second tetR gene was 660-bp, encoding a 26 kD protein, which could regulate the expression of 3,17β-HSD gene via binding to the conserved consensus sequences located 1100-bp upstream of the 3,17β-HSD gene. Furthermore, the mutant strain of C. testosteroni with the second tetR gene knocked-out mutant expresses good biological genetic stability, and the expression of 3,17β-HSD in the mutant strain is slightly higher than that in the wild type under testosterone induction. CONCLUSIONS The second tetR gene acts as a negative regulator in 3,17β-HSD expression, and the mutant has potential application in bioremediation of steroids contaminated environment.
Collapse
Affiliation(s)
- Weiqi Xie
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Qin Xia
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ling Chen
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, 24103, Kiel, Germany
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yuanhua Yu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
3
|
Characterization of a LuxR repressor for 3,17β-HSD in Comamonas testosteroni ATCC11996. Chem Biol Interact 2020; 336:109271. [PMID: 33002461 DOI: 10.1016/j.cbi.2020.109271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 08/19/2019] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
3,17β-Hydroxysteroid dehydrogenase in Comamonas testosteroni (C. testosteroni) is a key enzyme involved in the degradation of steroid compounds. Recently, we found that LuxR is a negative regulator in the expression of the 3,17β-HSD gene. In the present work, we cultured wild-type and LuxR knock-out mutants of C. testosteroni with inducers such as testosterone, estradiol, progesterone or estrone. HPLC analysis showed that the degradation activities towards testosterone, estradiol, progesterone, and estrone by C.T.-LuxR-KO1 were increased by 7.1%, 9.7%, 11.9% and 3.1%, respectively compared to the wild-type strain. Protein conformation of LuxR was predicted by Phyre 2 Server software, where the N-terminal 86(Ile), 116(Ile), 118(Met) and 149(Phe) residues form a testosterone binding hydrophobic pore, while the C-terminus forms the DNA binding site (HTH). Further, luxr point mutant plasmids were prepared by PCR and co-transformed with pUC3.2-4 into E. coli HB101. ELISA was used to determine 3,17β-HSD expression after testosterone induction. Compared to wild-type luxr, 3,17β-HSD expression in mutants of I86T, I116T, M118T and F149S were decreased. The result indicates that testosterone lost its capability to bind to LuxR after the four amino acid residues had been exchanged. No significant changes of 3,17β-HSD expression were found in K354I and Y356 N mutants compared to wild-type luxr, which indicates that these two amino acid residues in LuxR might relate to DNA binding. Native LuxR protein was prepared from inclusion bodies using sodium lauroylsarcosinate. Molecular interaction experiments showed that LuxR protein binds to a nucleotide sequence which locates 87 bp upstream of the βhsd promoter. Our results revealed that steroid induction of 3,17β-HSD in C. testosteroni in fact appears to be a de-repression, where testosterone prevents the LuxR regulator protein binding to the 3,17β-HSD promoter domain.
Collapse
|
4
|
Du B, Zhang J, Dong Y, Wang J, Lei L, Shi R. Determination of testosterone/epitestosterone concentration ratio in human urine by capillary electrophoresis. Steroids 2020; 161:108691. [PMID: 32603755 DOI: 10.1016/j.steroids.2020.108691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
A novel method for determining the testosterone/epitestosterone concentration ratio in human urine was established by capillary electrophoresis with diode-array detector. The urine samples were firstly purified by the solid extraction. The optimal experimental conditions were: running buffer pH = 4.74, 15.0 mmol L-1 HAc-NaAc, separation voltage 25 kV, temperature 25 °C, sample injection pressure 3.43 × 103 Pa, and duration 10 s. The testosterone and epitestosterone linear range were determined as 8.0-960.0 ng mL-1, respectively. The testosterone and epitestosterone detection limits were determined as 4.6 and 4.5 ng mL-1, respectively. The relative standard deviation was less than 0.36%.
Collapse
Affiliation(s)
- Bairen Du
- College of Sport, Anqing Normal University, Anqing 246011, Anhui, China
| | - Jingjing Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yanjie Dong
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing City 246011, Anhui, China
| | - Junwei Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing City 246011, Anhui, China
| | - Longwen Lei
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing City 246011, Anhui, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Liu C, Liu K, Zhao C, Gong P, Yu Y. The characterization of a short chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni. Toxicol Rep 2020; 7:460-467. [PMID: 32215256 PMCID: PMC7090274 DOI: 10.1016/j.toxrep.2020.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
C. testosteroni is a research topic that can degrade steroid hormones into water and carbon dioxide through a series of enzymes in the body. Short-chain dehydrogenase (SDR) are a class of NAD (P) H-dependent oxidoreductases in C. testosteroni. Its main function is catalyzing the redox of the hydroxyl/ketone group of the hormone. In this paper, a SDR gene(SDRx) is cloned from C. testosteroni ATCC11996 and expressed. The polyclonal antibody was prepared and the SDRx gene knocked out by homologous recombination. Wild type and mutant C. testosteroni induced by testosterone, estradiol, estrone and estriol. The growth curves of the bacteria were measured by spectrophotometer. ELISA established the expression of SDRx protein, and high-performance liquid chromatography(HPLC) detected the contents of various hormones. The results show that the growth of wild type was faster than mutant type induced by testosterone. The concentration of SDRx is 0.318 mg/ml under testosterone induction. It has a great change in steroid hormones residue in culture medium measured by HPLC: Testosterone residue in the mutant type group was 42.4 % more than the wild type in culture medium. The same thing happens with induced by estrone. In summary, this SDRx gene involved in the degradation of testosterone and estradiol, and effects the growth of C. testosteroni.
Collapse
Affiliation(s)
- Chuanzhi Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| | - Kai Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| | - Chunru Zhao
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| | - Ping Gong
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| | - Yuanhua Yu
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| |
Collapse
|
6
|
Wang P, Zheng D, Peng W, Wang Y, Wang X, Xiong W, Liang R. Characterization of 17β-hydroxysteroid dehydrogenase and regulators involved in estrogen degradation in Pseudomonas putida SJTE-1. Appl Microbiol Biotechnol 2019; 103:2413-2425. [DOI: 10.1007/s00253-018-9543-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 11/24/2022]
|
7
|
Tang Q, Lu T, Liu SJ. Developing a Synthetic Biology Toolkit for Comamonas testosteroni, an Emerging Cellular Chassis for Bioremediation. ACS Synth Biol 2018; 7:1753-1762. [PMID: 29860823 DOI: 10.1021/acssynbio.7b00430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic biology is rapidly evolving into a new phase that emphasizes real-world applications such as environmental remediation. Recently, Comamonas testosteroni has become a promising chassis for bioremediation due to its natural pollutant-degrading capacity; however, its application is hindered by the lack of fundamental gene expression tools. Here, we present a synthetic biology toolkit that enables rapid creation of functional gene circuits in C. testosteroni. We first built a shuttle system that allows efficient circuit construction in E. coli and necessary phenotypic testing in C. testosteroni. Then, we tested a set of wildtype inducible promoters, and further used a hybrid strategy to create engineered promoters to expand expression strength and dynamics. Additionally, we tested the T7 RNA Polymerase-PT7 promoter system and reduced its leaky expression through promoter mutation for gene expression. By coupling random library construction with FACS screening, we further developed a synthetic T7 promoter library to confer a wider range of expression strength and dynamic characteristics. This study provides a set of valuable tools to engineer gene circuits in C. testosteroni, facilitating the establishment of the organism as a useful microbial chassis for bioremediation purposes.
Collapse
Affiliation(s)
- Qiang Tang
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Environmental Microbiology Research Center, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Tang Q, Lu T, Liu SJ. Engineering the bacterium Comamonas testosteroni CNB-1: Plasmid curing and genetic manipulation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ji Y, Pan T, Zhang Y, Xiong G, Yu Y. Functional analysis of a novel repressor LuxR in Comamonas testosteroni. Chem Biol Interact 2017; 276:113-120. [PMID: 28274720 DOI: 10.1016/j.cbi.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/24/2022]
Abstract
Comamonas testosteroni (C. testosteroni) ATCC11996 is a gram negative bacterium which can use steroid as a carbon and energy source. 3,17β-hydroxysteroid dehydrogenase (3,17β-HSD) is a key enzyme for the degradation of steroid hormones in C. testosteroni. The LuxR regulation family is a group of regulatory proteins which play important role in gram negative bacterium. The luxr gene is located on 58 kb upstream of 3,17β-HSD gene with the opposite transcription orientation in the chromosomal DNA of C. testosteroni. An open reading frame of this putative luxr gene consists of 1125 bp and is translated into a protein containing 374 amino acids. The luxr gene was cloned into plasmid pK18 and plasmid pK-LuxR1 was obtained. E. coli HB101 was co-transformed by pK-LuxR1 and pUC912-10, pUC1128-5 or pUC3.2-4 (which contain βhsd gene and different length promoter, repeat sequences). The result of ELISA showed that LuxR protein is a negative regulator for 3,17β-HSD expression. The luxr gene in C. testosteroni was knock-out by homologous integration. 3,17β-HSD expression was increased in the mutant (C.T.-L-KO1) comparing to that in wild-type C. testosteroni (C.T.) after 0.5 mM testosterone induction. The mutant C.T.-L-KO1 and wild-type C. testosteroni were cultured at 27 °C and 37 °C. The result of growth curve proved that LuxR has also effect on the bacterial growth.
Collapse
Affiliation(s)
- Ye Ji
- Changchun University of Science and Technology, 7989 Weixing Road, 130022 Changchun, China
| | - Tianyuan Pan
- Department of Family Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310000 Hangzhou, China; Institute of Toxicology and Pharmacology for Natural Scientists, Medical School Schleswig-Holstein, 24103 Kiel, Germany
| | - Yang Zhang
- Changchun University of Science and Technology, 7989 Weixing Road, 130022 Changchun, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, Medical School Schleswig-Holstein, 24103 Kiel, Germany
| | - Yuanhua Yu
- Changchun University of Science and Technology, 7989 Weixing Road, 130022 Changchun, China.
| |
Collapse
|
10
|
Wu Y, Huang P, Xiong G, Maser E. Identification and isolation of a regulator protein for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 2015; 234:197-204. [PMID: 25446854 DOI: 10.1016/j.cbi.2014.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022]
Abstract
Comamonas testosteroni (C. testosteroni) is able to catabolize a variety of steroids and polycyclic aromatic hydrocarbons. 3,17β-Hydroxysteroid dehydrogenase (3,17β-HSD) from C. testosteroni is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. It is an inducible and key enzyme in steroid degradation. Elucidating the mechanism of 3,17β-HSD gene (βhsd) regulation may help us to generate prospective C. testosteroni mutants for bioremediation. The genome of C. testosteroni ATCC11996 was sequenced in our previous work. Upon examining the genome with bioinformatics tools, a gene (brp) coding for a regulator protein (BRP) for 3,17β-HSD expression was found upstream of the βhsd gene. A Blast search revealed high identities to a nucleotide binding protein with unknown function in other bacteria. Two potential promoters and two repeat sequences (RS, 16 bp), spaced to each other by 1661 bp, were also found upstream of the βhsd gene C. testosteroni. The brp gene was cloned into plasmid pK18 and pET-15b, expressed in Escherichia coli, and the recombinant BRP protein was purified on a Ni-column. In addition, a brp gene knock-out mutant of C. testosteroni was prepared. These knock-out mutants showed an enhanced expression of both the βhsd gene and the hsdA gene (the latter coding for 3α-HSD/CR) in the presence of testosterone. To characterize the BRP functional DNA domain, different fragments of the βhsd upstream regulatory region were tested in a cotransformation system. Our data reveal that the βhsd gene undergoes complex regulation involving the two promoters, a loop structure via the two repeat sequences, and the steroid testosterone. Furthermore, a proximal repressor gene for βhsd expression, phaR, had been identified in our previous investigations. The exact interplay between all these factors will be determined in future experiments.
Collapse
Affiliation(s)
- Yin Wu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Kiel, Germany
| | - Pu Huang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|