1
|
Sun W, Xu Y, Liu Z, Liu W, Wang H, Chang G, Yang Z, Dong Z, Zeng J. Studies on pharmacokinetic properties and intestinal absorption mechanism of sanguinarine chloride: in vivo and in situ. Toxicol Mech Methods 2025; 35:43-52. [PMID: 39087424 DOI: 10.1080/15376516.2024.2383366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Sanguinarine (SAN) is an alkaloid with multiple biological activities, mainly extracted from Sanguinaria canadensis or Macleaya cordata. The low bioavailability of SAN limits its utilization. At present, the nature and mechanism of SAN intestinal absorption are still unclear. The pharmacokinetics, single-pass intestinal perfusion test (SPIP), and equilibrium solubility test of SAN in rats were studied. The absorption of SAN at 20, 40, and 80 mg/L in different intestinal segments was investigated, and verapamil hydrochloride (P-gp inhibitor), celecoxib (MPR2 inhibitor), and ko143 (BCRP inhibitor) were further used to determine the effect of efflux transporter proteins on SAN absorption. The equilibrium solubility of SAN in three buffer solutions (pH 1.2, 4.5 and 6.8) was investigated. The oral pharmacokinetic results in rats showed that SAN was rapidly absorbed (Tmax=0.5 h), widely distributed (Vz/F = 134 L/kg), rapidly metabolized (CL = 30 L/h/kg), and had bimodal phenomena. SPIP experiments showed that P-gp protein could significantly affect the effective permeability coefficient (Peff) and apparent absorption rate constant (Ka) of SAN. Equilibrium solubility test results show that SAN has the best solubility at pH 4.5. In conclusion, SAN is a substrate of P-gp, and its transport modes include efflux protein transport, passive transport and active transport.
Collapse
Affiliation(s)
- Wenqing Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yufeng Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhiqin Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Hongting Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Guanyu Chang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Zihui Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Huang LJ, Lan JX, Wang JH, Huang H, Lu K, Zhou ZN, Xin SY, Zhang ZY, Wang JY, Dai P, Chen XM, Hou W. Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomed Pharmacother 2024; 173:116406. [PMID: 38460366 DOI: 10.1016/j.biopha.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Sanguinarine is a quaternary ammonium benzophenanthine alkaloid found in traditional herbs such as Chelidonium, Corydalis, Sanguinarum, and Borovula. It has been proven to possess broad-spectrum biological activities, such as antitumor, anti-inflammatory, antiosteoporosis, neuroprotective, and antipathogenic microorganism activities. In this paper, recent progress on the biological activity and mechanism of action of sanguinarine and its derivatives over the past ten years is reviewed. The results showed that the biological activities of hematarginine and its derivatives are related mainly to the JAK/STAT, PI3K/Akt/mTOR, NF-κB, TGF-β, MAPK and Wnt/β-catenin signaling pathways. The limitations of using sanguinarine in clinical application are also discussed, and the research prospects of this subject are outlined. In general, sanguinarine, a natural medicine, has many pharmacological effects, but its toxicity and safety in clinical application still need to be further studied. This review provides useful information for the development of sanguinarine-based bioactive agents.
Collapse
Affiliation(s)
- Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Hua Wang
- Ji'an Central People's Hospital (Shanghai East Hospital Ji'an Hospital), Ji'an, Jiangxi 343100, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Kuo Lu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan 450018, PR China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jing-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Ping Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Xiao-Mei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
3
|
Sjödin B, Mannervik B. Role of human glutathione transferases in biotransformation of the nitric oxide prodrug JS-K. Sci Rep 2021; 11:20765. [PMID: 34675290 PMCID: PMC8531399 DOI: 10.1038/s41598-021-00327-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023] Open
Abstract
Nitric oxide (NO) plays a prominent physiological role as a low-molecular-mass signal molecule involved in diverse biological functions. Great attention has been directed to pharmacologically modulating the release of NO for various therapeutic applications. We have focused on O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) as an example of diazeniumdiolate prodrugs with potential for cancer chemotherapy. JS-K is reportedly activated by glutathione conjugation by glutathione transferase (GST), but the scope of activities among the numerous members of the GSTome is unknown. We demonstrate that all human GSTs tested except GST T1-1 are active with JS-K as a substrate, but their specific activities are notably spanning a > 100-fold range. The most effective enzyme was the mu class member GST M2-2 with a specific activity of 273 ± 5 µmol min-1 mg-1 and the kinetic parameters Km 63 µM, kcat 353 s-1, kcat/Km 6 × 106 M-1 s-1. The abundance of the GSTs as an ensemble and their high catalytic efficiency indicate that release of NO occurs rapidly in normal tissues such that this influence must be considered in clarification of the tumor-killing effect of JS-K.
Collapse
Affiliation(s)
- Birgitta Sjödin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691, Stockholm, Sweden.
| |
Collapse
|
4
|
Zheng X, Zhang B, Zhang Y, Zhong H, Nie R, Li J, Zhang H, Wu C. Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens. Sci Rep 2020; 10:12088. [PMID: 32694523 PMCID: PMC7374586 DOI: 10.1038/s41598-020-68931-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/03/2020] [Indexed: 11/20/2022] Open
Abstract
Yellow plumage is common in chickens, especially in breeds such as the Huiyang Bearded chicken, which is indigenous to China. We evaluated plumage colour distribution in F1, F2, and F3 populations of an Huiyang Bearded chicken × White Leghorn chicken cross, the heredity of the yellow plumage trait was distinguished from that of the gold plumage and other known plumage colours. Microscopic analysis of the feather follicles indicated that pheomelanin particles were formed in yellow but not in white feathers. To screen genes related to formation of the pheomelanin particles, we generated transcriptome data from yellow and white feather follicles from 7- and 11-week-old F3 chickens using RNA-seq. We identified 27 differentially expressed genes (DEGs) when comparing the yellow and white feather follicles. These DEGs were enriched in the Gene Ontology classes ‘melanosome’ and ‘melanosome organization’ related to the pigmentation process. Down-regulation of TYRP1, DCT, PMEL, MLANA, and HPGDS, verified using quantitative reverse transcription PCR, may lead to reduced eumelanin and increased pheomelanin synthesis in yellow plumage. Owing to the presence of the Dominant white locus, both white and yellow plumage lack eumelanin, and white feathers showed no pigments. Our results provide an understanding of yellow plumage formation in chickens.
Collapse
Affiliation(s)
- Xiaotong Zheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yawen Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haian Zhong
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruixue Nie
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Pakharukova MY, Zaparina OG, Kovner AV, Mordvinov VA. Inhibition of Opisthorchis felineus glutathione-dependent prostaglandin synthase by resveratrol correlates with attenuation of cholangiocyte neoplasia in a hamster model of opisthorchiasis. Int J Parasitol 2019; 49:963-973. [PMID: 31628937 DOI: 10.1016/j.ijpara.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
Food-borne trematodiases represent major neglected parasitic diseases. Trematodes of the family Opisthorchiidae including Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis are ranked eight on the global list of the 24 most prevalent food-borne parasites. Chronic O. felineus infection symptoms include precancerous lesions with the potential for malignancy. In recent decades, liver flukes of the family Opisthorchiidae have been extensively scientifically explored, however despite this the molecular mechanisms of O. felineus pathogenicity and its carcinogenic potential have not been studied. Opisthorchis felineus glutathione-dependent prostaglandin synthase (GST σ) is the major component of the excretory-secretory product of this liver fluke. We hypothesised that the activity of this enzyme is involved in the infection pathogenesis, including the formation of precancerous lesions. To test this hypothesis and to gain insights into the mechanisms of precancerous lesion formation, we (i) investigated whether excretory parasitic GST σ retains its enzymatic activity, (ii) tested resveratrol (RSV) as a possible inhibitor of this enzyme, and (iii) assessed biliary neoplasia and oxidative DNA damage as well as the expression of neoplasia and fibrogenesis marker genes after prolonged administration of RSV in a hamster model. RSV was found to inhibit GST σ enzymatic activity in a dose-dependent manner (R = 0.85, P < 0.001; half-maximal effective dose (ED50) = 48.6 μM). Prolonged administration of RSV significantly suppressed high-grade biliary neoplasia (P = 0.008), attenuated upregulation of hyperplasia and fibrogenesis-related genes (Tgfb, α-SMA and CK7), and decreased the elevated oxidative DNA damage. Taking into account that RSV can influence a wide range of pathways, further research is needed to confirm the role of GST σ in O. felineus pathogenicity. Nevertheless, the chemopreventive effect of RSV targeting biliary neoplasia formation might be useful for improving the outcomes in infected populations and represents a compelling rationale for RSV testing in combination chemotherapy of opisthorchiasis.
Collapse
Affiliation(s)
- Maria Y Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.
| | - Oxana G Zaparina
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Anna V Kovner
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Viatcheslav A Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Lindström H, Mazari AMA, Musdal Y, Mannervik B. Potent inhibitors of equine steroid isomerase EcaGST A3-3. PLoS One 2019; 14:e0214160. [PMID: 30897163 PMCID: PMC6428247 DOI: 10.1371/journal.pone.0214160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
Equine glutathione transferase A3-3 (EcaGST A3-3) belongs to the superfamily of detoxication enzymes found in all higher organisms. However, it is also the most efficient steroid double-bond isomerase known in mammals. Equus ferus caballus shares the steroidogenic pathway with Homo sapiens, which makes the horse a suitable animal model for investigations of human steroidogenesis. Inhibition of the enzyme has potential for treatment of steroid-hormone-dependent disorders. Screening of a library of FDA-approved drugs identified 16 out of 1040 compounds, which at 10 μM concentration afforded at least 50% inhibition of EcaGST A3-3. The most potent inhibitors, anthralin, sennoside A, tannic acid, and ethacrynic acid, were characterized by IC50 values in the submicromolar range when assayed with the natural substrate Δ5-androstene-3,17-dione.
Collapse
Affiliation(s)
- Helena Lindström
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Aslam M. A. Mazari
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Yaman Musdal
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
8
|
Hernandez-Carretero A, Weber N, La Frano MR, Ying W, Rodriguez JL, Sears DD, Wallenius V, Börgeson E, Newman JW, Osborn O. Obesity-induced changes in lipid mediators persist after weight loss. Int J Obes (Lond) 2018; 42:728-736. [PMID: 29089614 PMCID: PMC6055936 DOI: 10.1038/ijo.2017.266] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Obesity induces significant changes in lipid mediators, however, the extent to which these changes persist after weight loss has not been investigated. SUBJECTS/METHODS We fed C57BL6 mice a high-fat diet to generate obesity and then switched the diet to a lower-fat diet to induce weight loss. We performed a comprehensive metabolic profiling of lipid mediators including oxylipins, endocannabinoids, sphingosines and ceramides in key metabolic tissues (including adipose, liver, muscle and hypothalamus) and plasma. RESULTS We found that changes induced by obesity were largely reversible in most metabolic tissues but the adipose tissue retained a persistent obese metabolic signature. Prostaglandin signaling was perturbed in the obese state and lasting increases in PGD2, and downstream metabolites 15-deoxy PGJ2 and delta-12-PGJ2 were observed after weight loss. Furthermore expression of the enzyme responsible for PGD2 synthesis (hematopoietic prostaglandin D synthase, HPGDS) was increased in obese adipose tissues and remained high after weight loss. We found that inhibition of HPGDS over the course of 5 days resulted in decreased food intake in mice. Increased HPGDS expression was also observed in human adipose tissues obtained from obese compared with lean individuals. We then measured circulating levels of PGD2 in obese patients before and after weight loss and found that while elevated relative to lean subjects, levels of this metabolite did not decrease after significant weight loss. CONCLUSIONS These results suggest that lasting changes in lipid mediators induced by obesity, still present after weight loss, may play a role in the biological drive to regain weight.
Collapse
Affiliation(s)
| | - Natalie Weber
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael R. La Frano
- Department of Nutrition, University of California, Davis, CA, USA
- NIH West Coast Metabolomics Center, Davis, CA, USA
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Juan Lantero Rodriguez
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dorothy D. Sears
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emma Börgeson
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John W. Newman
- Department of Nutrition, University of California, Davis, CA, USA
- NIH West Coast Metabolomics Center, Davis, CA, USA
- Obesity and Metabolism Research Unit, USDA-ARS-Western Human Nutrition Research Center, Davis, CA, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Feketea G, Tsabouri S. Common food colorants and allergic reactions in children: Myth or reality? Food Chem 2017; 230:578-588. [DOI: 10.1016/j.foodchem.2017.03.043] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/15/2023]
|
10
|
Peinhaupt M, Sturm EM, Heinemann A. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:104. [PMID: 28770200 PMCID: PMC5515835 DOI: 10.3389/fmed.2017.00104] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Arthur G, Bradding P. New Developments in Mast Cell Biology: Clinical Implications. Chest 2016; 150:680-93. [PMID: 27316557 DOI: 10.1016/j.chest.2016.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.
Collapse
Affiliation(s)
- Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, England
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, England.
| |
Collapse
|
12
|
Amchova P, Kotolova H, Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regul Toxicol Pharmacol 2015; 73:914-22. [DOI: 10.1016/j.yrtph.2015.09.026] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 10/23/2022]
|