1
|
Arandhara A, Bhuyan P, Das BK. Exploring lung cancer microenvironment: pathways and nanoparticle-based therapies. Discov Oncol 2025; 16:159. [PMID: 39934547 DOI: 10.1007/s12672-025-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer stands out as a significant global health burden, with staggering incidence and mortality rates primarily linked to smoking and environmental carcinogens. The tumor microenvironment (TME) emerges as a critical determinant of cancer progression and treatment outcomes, comprising a complex interplay of cells, signaling molecules, and extracellular matrix. Through a comprehensive literature review, we elucidate current research trends and therapeutic prospects, aiming to advance our understanding of TME modulation strategies and their clinical implications for lung cancer treatment. Dysregulated immune responses within the TME can facilitate tumor evasion, limiting the efficacy of immune checkpoint inhibitors (ICI). Consequently, TME modulation strategies have become potential avenues to enhance therapeutic responses. However, conventional TME-targeted therapies often face challenges. In contrast, nanoparticle (NP)-based therapies offer promising prospects for improved drug delivery and reduced toxicity, leveraging the enhanced permeability and retention (EPR) effect. Despite NP design and delivery advancements, obstacles like poor tumor cell uptake and off-target effects persist, necessitating further optimization. This review underscores the pivotal role of TME in lung cancer management, emphasizing the synergistic potential of immunotherapy and nano-therapy.
Collapse
Affiliation(s)
- Arunabh Arandhara
- Assam Pharmacy Institute, Titabar, Amgurikhat, Jorhat, Assam, 785632, India
| | - Pallabi Bhuyan
- School of Pharmacy, The Assam Kaziranga University, Koraikhowa, Jorhat, Assam, 785006, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India.
| |
Collapse
|
2
|
Köse SG, Güleç Taşkıran AE. Mechanisms of drug resistance in nutrient-depleted colorectal cancer cells: insights into lysosomal and mitochondrial drug sequestration. Biol Open 2024; 13:bio060448. [PMID: 39445740 PMCID: PMC11554266 DOI: 10.1242/bio.060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
This Review delves into the mechanisms behind drug resistance in colorectal cancer (CRC), particularly examining the role of nutrient depletion and its contribution to multidrug resistance (MDR). The study highlights metabolic adaptations of cancer cells as well as metabolic adaptations of cancer cells under low nutrient availability, including shifts in glycolysis and lipid metabolism. It emphasizes the significance of MDR1 and its encoded efflux transporter, P-glycoprotein (P-gp/B1), in mediating drug resistance and how pathways such as HIF1α, AKT, and mTOR influence the expression of P-gp/B1 under limited nutrient availability. Additionally, the Review explores the dual roles of autophagy in drug sensitivity and resistance under nutrient limited conditions. It further investigates the involvement of lysosomes and mitochondria, focusing on their roles in drug sequestration and the challenges posed by lysosomal entrapment facilitated by non-enzymatic processes and ABC transporters like P-gp/B1. Finally, the Review underscores the importance of understanding the interplay between drug sequestration, lysosomal functions, nutrient depletion, and MDR1 gene modulation. It suggests innovative strategies, including structural modifications and nanotechnology, as promising approaches to overcoming drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Serra Gülse Köse
- Molecular Biology and Genetics Department, Baskent University, Ankara 06790, Turkey
| | | |
Collapse
|
3
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
4
|
Ma X, Tang W, Yang R. Bioinspired nanomaterials for the treatment of bacterial infections. NANO RESEARCH 2024; 17:691-714. [DOI: 10.1007/s12274-023-6283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/04/2025]
|
5
|
Korupalli C, Kuo CC, Getachew G, Dirersa WB, Wibrianto A, Rasal AS, Chang JY. Multifunctional manganese oxide-based nanocomposite theranostic agent with glucose/light-responsive singlet oxygen generation and dual-modal imaging for cancer treatment. J Colloid Interface Sci 2023; 643:373-384. [PMID: 37080044 DOI: 10.1016/j.jcis.2023.04.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Development of tumor microenvironment (TME) modifying nanomedicine with cooperative effect between multiple stimuli responsive therapeutic modalities is necessary to achieve lower dosage induced tumor specific therapy. Accordingly, herein, a multifunctional MnOx NSs@BSA-IR780-GOx nanocomposite (MBIG NCs) is developed to modulate the oxidative stress in TME, and thus attain higher therapeutic efficacy. In the presence of glucose, the as-synthesized MBIG NCs are served as a chemodynamic agents and generated reactive oxygen species (ROS) by self-activation through a cascade of reactions from glucose oxidase (GOx) and manganese oxide nanosheets (MnOx NSs). Also, the MBIG NCs demonstrated excellent photodynamic properties upon irradiation with 808 nm laser owing to the presence of IR780. The combination of glucose-mediated chemodynamic and light-mediated photodynamic properties generated higher ROS than that obtained with individual stimuli. Further, the MBIG NCs exhibited photothermal effect with conversion efficiency of 33.8 %, which helped to enhance the enzymatic activities. In in vitro studies, the MBIG NCs exhibited good biocompatibility to cancerous and non-cancerous cells under non-stimulus conditions. Nevertheless, in the presence of glucose and light stimuli, they triggered more than 90 % cell toxicity at 200 ppm concentration via the cooperative effect between starvation therapy, chemodynamic therapy, and phototherapy. Furthermore, the MBIG NCs demonstrated magnetic resonance and fluorescence imaging properties. These results are suggesting that MBIG NCs would be potential theranostic agents to for cancer diagnosis and target specific therapy. More importantly, the fabrication process is paving a way to improve the aqueous dispersibility, stability, and bio-applicability of MnOx NSs and IR780.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Chia-Cheng Kuo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China.
| |
Collapse
|
6
|
A novel synthesis of graphene oxide-titanium dioxide (GO-TiO 2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The current study focuses on graphene oxide (GO) and its composite with zinc oxide and titanium dioxide nanoparticles to develop a simple nano chemistry-based clean and efficient process for the effective degradation of methylene blue (MB) dye. Graphene oxide composite with zinc oxide and titanium dioxide nanoparticles were fabricated via a thermal coupling process that demonstrates exclusive physiochemical properties. A detailed comparison of the structure, morphology, and surface analysis of synthesized GO and nanocomposites, as well as their electrochemical properties, has been accomplished. By using the degradation of methylene blue (MB) dye the photocatalytic function of nanocomposites was studied. Results reveal that the rate constants of GO, GO-TiO2, and GO-ZnO photocatalysts are 1.06 × 10−3 min−1, 2.56 × 10−3 min−1, and 1.63 × 10−3 min−1 respectively which discloses GO-TiO2 nanocomposite shows maximum degradation of MB dye among both catalysts. The reuse of photocatalyst even after five cycles retained the degradation efficiency of 80, 77, and 49% respectively for GO-TiO2, GO-ZnO, and GO when tested against MB. Hence, as a result, it was determined that these photocatalysts are ideal for the remediation of dye-contaminated wastewater.
Collapse
|
7
|
Mohajer F, Ziarani GM, Badiei A, Iravani S, Varma RS. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. MICROMACHINES 2022; 13:1773. [PMID: 36296126 PMCID: PMC9606889 DOI: 10.3390/mi13101773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/04/2023]
Abstract
MXenes with unique mechanical, optical, electronic, and thermal properties along with a specific large surface area for surface functionalization/modification, high electrical conductivity, magnetic properties, biocompatibility, and low toxicity have been explored as attractive candidates for the targeted delivery of drugs in cancer therapy. These two-dimensional materials have garnered much attention in the field of cancer therapy since they have shown suitable photothermal effects, biocompatibility, and luminescence properties. However, outstanding challenging issues regarding their pharmacokinetics, biosafety, targeting properties, optimized functionalization, synthesis/reaction conditions, and clinical translational studies still need to be addressed. Herein, recent advances and upcoming challenges in the design of advanced targeted drug delivery micro- and nanosystems in cancer therapy using MXenes have been discussed to motivate researchers to further investigate this field of science.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14176-14411, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
da Silva RS, Ballester MY. Radiative lifetimes of the doublet states of 107Ag16O: A configuration interaction study. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Yin X, Li Z, Lyu C, Wang Y, Ding S, Ma C, Wang J, Cui S, Wang J, Guo D, Xu R. Induced Effect of Zinc oxide nanoparticles on human acute myeloid leukemia cell apoptosis by regulating mitochondrial division. IUBMB Life 2022; 74:519-531. [PMID: 35383422 DOI: 10.1002/iub.2615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have exhibited excellent anti-tumor, the present study aimed to elucidate the underlying mechanism of ZnO NPs induced apoptosis in acute myeloid leukemia (AML) cells by regulating mitochondrial division. THP-1 cells, an AML cell line, were first incubated with different concentrations ZnO NPs for 24 h. Next, the expression of Drp-1, Bcl-2, Bax mRNA and protein was detected, and the effects of ZnO NPs on the levels of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), apoptosis and ATP generation in THP-1 cells were measured. Moreover, the effect of Drp-1 inhibitor Mdivi-1 and ZnO NPs on THP-1 cells was also detected. The results showed that the THP-1 cells survival rate decreased with the increment of ZnO NPs concentration and incubation time in a dose- and time-dependent manner. ZnO NPs can reduce the cell Δψm and ATP levels, induce the ROS production, and increase the levels of mitochondrial division and apoptosis. In contrast, the apoptotic level was significantly reduced after intervention of Drp-1 inhibitor, suggesting that ZnO NPs can induce the apoptosis of THP-1 cells by regulating mitochondrial division. Overall, ZnO NPs may provide a new basis and idea in treating human acute myeloid leukemia in clinical practice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Shumin Ding
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Chenchen Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jingyi Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Siyuan Cui
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jinxin Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
10
|
Efficacy and Safety of Nanoadministration in the Treatment of Non-Small-Cell Lung Cancer Is Good to Some Extent: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2022; 2022:9017198. [PMID: 35300346 PMCID: PMC8923769 DOI: 10.1155/2022/9017198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
Abstract
Purpose. The purpose of this study was to evaluate the efficacy and safety of a nanodrug delivery regimen compared with conventional drug administration for the treatment of lung cancer. Materials and Methods. Studies were retrieved through PubMed, Web of Science, and ScienceDirect. Primary and secondary outcome measures, including overall response rate (ORR), progression-free survival (PFS), overall survival (OS), and adverse events, were extracted from the retrieved literature and systematically evaluated. Results. Six trials, including 4806 advanced non-small-cell lung cancer patients, were included in this study. Compared with conventional drug administration in the treatment of lung cancer, the nanodrug delivery regimen improved the ORR (risk ratio = 1.43, 95% confidence interval (CI) = 1.25–1.63,
), prolonged PFS (hazard ratio (HR) = 0.83, 95% CI = 0.76–0.92,
), and obtained superior OS (HR = 0.91, 95% CI = 0.83–0.99,
). Regarding safety, the incidence of neutropenia, alopecia, sensory neuropathy, myalgia, and arthralgia was lower in the nanoadministration group, but the risk of thrombocytopenia, anaemia, and nausea was increased. Conclusion. Nanodrug administration is safe and effective in patients with non-small-cell lung cancer to some extent.
Collapse
|
11
|
Korupalli C, You KL, Getachew G, Rasal AS, Dirersa WB, Zakki Fahmi M, Chang JY. Engineering the Surface of Ti3C2 MXene Nanosheets for High Stability and Multimodal Anticancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14020304. [PMID: 35214033 PMCID: PMC8879045 DOI: 10.3390/pharmaceutics14020304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
The surface of Ti3C2 MXene nanosheets (TC NSs) was first modified with the antioxidants sodium ascorbate (SA) and dopamine (DA) (DSTC NS) to improve their stability in oxidative and hydration environments and thereby improve their bioapplications. This novel approach not only improved MXene stability by arresting oxidation but also increased the available functional groups for further functionalization with various biomolecules. The DSTC NSs were then sequentially conjugated with enzyme glucose oxidase (GOx) and photosensitizer Ce6 to render the obtained CGDSTC NSs with glucose starvation and photodynamic therapeutic properties and thus attain high efficiency in killing cancer cells through the cooperative effect. The as-synthesized CGDSTC NSs demonstrated tremendous photothermal effect with conversion efficiency of 45.1% and photodynamic (ROS generation) properties upon irradiation with 808 and 671 nm lasers. Furthermore, it was observed that the enzymatic activity of CGDSTC NSs increased upon laser irradiation due to enhanced solution temperature. During in vitro studies, the CGDSTC NSs exhibited cytocompatability to HePG2 and HeLa cells under nonstimulus conditions. However, they elicited more than 90% cell-killing efficiency in the presence of glucose and laser irradiation via the cooperative effect between starvation therapy and phototherapy. These results indicate that CGDSTC NSs could be used as potential therapeutic agents to eradicate cancers with no or few adverse effects. This surface modification approach is also simple and facile to adopt in MXene-based research.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Kai-Long You
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Akash S. Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | | | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
- Correspondence: ; Tel.: +886-2-27303636
| |
Collapse
|
12
|
Wang J, Li T, Yue C, Zhong S, Yang X, Li J, Li Y. Preparation of nanoparticles of β-cyclodextrin-loaded scutellarein anti-tumor activity research by targeting integrin αvβ3. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The problems associated with the poor water solubility of anticancer drugs are one of the most important challenges in achieving effective cancer therapy. The present study was designed to evaluate the effect of scutellarein on human colon cancer cells in vitro by using a target αvβ3 novel scutellarein (Scu)-loaded niosome nanoparticle (β-CD-CL-Scu-cRGD).
Results
β-CD-CL-Scu-cRGD has a diameter of 140.2 nm and zeta potential of − 11.3 mV with constant physicochemical stability. The MTT assay showed both Scu and β-CD-CL-Scu-cRGD caused a decrease in cell proliferation and viability of LoVo, but β-CD-CL-Scu-cRGD showed better activity in vitro. Colony formation assay and flow cytometry assay showed that β-CD-CL-Scu-cRGD has a better effect on cell proliferation and apoptosis. In vivo, animal experimental results showed that β-CD-CL-Scu-cRGD can significantly inhibit tumor growth, and the bodyweight of mice decreases during the treatment of scutellarein and its derivatives. β-CD-CL-Scu-cRGD could inhibit the protein levels of Ki67 and αvβ3, thereby inhibiting tumor growth.
Conclusions
Although further in vitro and in vivo studies are necessary, our results suggested that β-CD-CL-Scu-cRGD could be an outstanding carrier to deliver Scu for potential therapeutic approaches into colon cancer.
Collapse
|
13
|
Haque S, Tripathy S, Patra CR. Manganese-based advanced nanoparticles for biomedical applications: future opportunity and challenges. NANOSCALE 2021; 13:16405-16426. [PMID: 34586121 DOI: 10.1039/d1nr04964j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is the most promising technology to evolve in the last decade. Recent research has shown that transition metal nanoparticles especially manganese (Mn)-based nanoparticles have great potential for various biomedical applications due to their unique fundamental properties. Therefore, globally, scientists are concentrating on the development of various new manganese-based nanoparticles (size and shape dependent) due to their indispensable utilities. Although numerous reports are available regarding the use of manganese nanoparticles, there is no comprehensive review highlighting the recent development of manganese-based nanomaterials and their potential applications in the area of biomedical sciences. The present review article provides an overall survey on the recent advancement of manganese nanomaterials in biomedical nanotechnology and other fields. Further, the future perspectives and challenges are also discussed to explore the wider application of manganese nanoparticles in the near future. Overall, this review presents a fundamental understanding and the role of manganese in various fields, which will attract a wider spectrum of the scientific community.
Collapse
Affiliation(s)
- Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| |
Collapse
|
14
|
Zhan H, Chang X, Wang X, Yang M, Gao Q, Liu H, Li C, Li S, Sun Y. LncRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF-β1 expression and epithelial-mesenchymal transition process. ENVIRONMENTAL TOXICOLOGY 2021; 36:1099-1110. [PMID: 33547861 DOI: 10.1002/tox.23109] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nickel oxide nanoparticles (NiO NPs) causes pulmonary fibrosis via activating transforming growth factor-β1 (TGF-β1) in rats, but its upstream regulatory mechanisms are unknown. This study aimed to explore the role of long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in NiO NPs-induced collagen deposition. Male Wistar rats were intratracheally instilled with NiO NPs (0.015, 0.06, and 0.24 mg/kg b.w.) twice a week for 9 weeks. Human lung adenocarcinoma epithelial cells (A549 cells) were cultured with NiO NPs (25, 50, and 100 μg/ml) to establish collagen deposition model. We discovered that NiO NPs-induced rat pulmonary fibrosis was accompanied by the epithelial-mesenchymal transition (EMT) occurrence and MEG3 down-regulation in rat lung tissues. In cell collagen deposition model, NiO NPs also evoked EMT and decreased MEG3 expression in a dose-dependent manner in A549 cells. By overexpressing MEG3 in A549 cells, we found that MEG3 inhibited the level of TGF-β1, EMT process and collagen formation. Moreover, our data showed that SB431542 (TGF-β1 inhibitor) had an inhibitory effect on NiO NPs-induced EMT and collagen formation. Our results indicated that MEG3 inhibited NiO NPs-induced collagen deposition by regulating TGF-β1-mediated EMT process, which may provide some clues for insighting into the mechanisms of NiO NPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
16
|
Rodriguez-Torres MDP, Díaz-Torres LA, Millán-Chiu BE, García-Contreras R, Hernández-Padrón G, Acosta-Torres LS. Antifungal and Cytotoxic Evaluation of Photochemically Synthesized Heparin-Coated Gold and Silver Nanoparticles. Molecules 2020; 25:E2849. [PMID: 32575630 PMCID: PMC7356581 DOI: 10.3390/molecules25122849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Heparin-based silver nanoparticles (AgHep-NPs) and gold nanoparticles (AuHep-NPs) were produced by a photochemical method using silver nitrate and chloroauric acid as metal precursors and UV light at 254 nm. UV-Vis spectroscopy graphs showed absorption for AgHep-NPs and AuHep-NPs at 420 nm and 530 nm, respectively. TEM revealed a pseudospherical morphology and a small size, corresponding to 10-25 nm for AgHep-NPs and 1.5-7.5 nm for AuHep-NPs. Their antifungal activity against Candida albicans, Issatchenkia orientalis (Candida krusei), and Candida parapsilosis was assessed by the microdilution method. We show that AgHep-NPs were effective in decreasing fungus density, whereas AuHep-NPs were not. Additionally, the viability of human gingival fibroblasts was preserved by both nanoparticle types at a level above 80%, indicating a slight cytotoxicity. These results are potentially useful for applications of the described NPs mainly in dentistry and, to a lesser extent, in other biomedical areas.
Collapse
Affiliation(s)
- María del Pilar Rodriguez-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad León de la Universidad Nacional Autónoma de México (UNAM), Boulevard UNAM No. 2011, Predio el Saucillo y el Potrero, 37684 León, Guanajuato, Mexico;
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | | | - Blanca E. Millán-Chiu
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - René García-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad León de la Universidad Nacional Autónoma de México (UNAM), Boulevard UNAM No. 2011, Predio el Saucillo y el Potrero, 37684 León, Guanajuato, Mexico;
| | - Genoveva Hernández-Padrón
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico;
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad León de la Universidad Nacional Autónoma de México (UNAM), Boulevard UNAM No. 2011, Predio el Saucillo y el Potrero, 37684 León, Guanajuato, Mexico;
| |
Collapse
|
17
|
Sharma M, Sharma A, Majumder S. Synthesis, microbial susceptibility and anti-cancerous properties of copper oxide nanoparticles- review. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Use of Nanoparticles in the diagnosis of cancer and treatment of Cancer is being rapidly studied and developed. The present cancer chemotherapy agents are not much selective in differentiating between cancer cells and normal cells and often lead to development of drug resistance and severe side effects. This has prompted the need to study other potential anticancer agents like metallic oxide nanoparticles, with emphasis on their synthesis and application s in the treatment of cancer by designing targeted delivery system to tumour and cancer cells [Vinardell and Mitjans 2015. Nanomaterials, 5, 1004–1021, Valodkar et al 2011. Mater Chem Phys, 128, 83–89]. In this review paper an attempt has been made to study various methods of preparation of Copper Oxide Nanoparticles, their characteristics and the detailed microbial activities and anti-cancerous properties of these differently synthesized Copper Oxide Nanoparticles.
Collapse
|
18
|
Anticancerous Activity of Transition Metal Oxide Nanoparticles. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Guo F, Fu Q, Jin C, Ji X, Yan Q, Yang Q, Wu D, Gao Y, Hong W, Li A, Yang G. Dual functional matrix metalloproteinase-responsive curcumin-loaded nanoparticles for tumor-targeted treatment. Drug Deliv 2019; 26:1027-1038. [PMID: 31691601 PMCID: PMC6844435 DOI: 10.1080/10717544.2019.1676843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The limitations of anticancer drugs, including poor tumor targeting and weak uptake efficiency, are important factors affecting tumor therapy. According to characteristics of the tumor microenvironment, in this study, we aimed to synthesize matrix metalloproteinase (MMP)-responsive curcumin (Cur)-loaded nanoparticles (Cur-P-NPs) based on amphiphilic block copolymer (MePEG-peptide-PET-PCL) with MMP-cleavable peptide (GPLGIAGQ) and penetrating peptide (r9), modified to improve tumor targeting and cellular uptake. The average size of Cur-P-NPs was 176.9 nm, with a zeta potential of 8.1 mV, and they showed drug entrapment efficiency and a loading capacity of 87.07% ± 0.63% and 7.44% ± 0.16%, respectively. Furthermore, Cur release from Cur-P-NPs was sustained for 144 h at pH 7.4, and the release rate was accelerated under enzyme reaction condition. The MTT assay demonstrated that free P-NPs had favorable biosafety, and the anti-proliferative activity of Cur-P-NPs was positively correlated with Cur concentration in MCF-7 cells. Additionally, the results of cellular uptake, in vivo pharmacokinetics, and biodistribution showed that Cur-P-NPs had a good effect on cellular uptake and tumor targeting, resulting in the best bioavailability in tumor therapy. Therefore, Cur-P-NPs, as a promising drug delivery system, might lead to a new and efficient route for targeted therapy in clinical practice.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiafan Fu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chenhao Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xugang Ji
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Danjun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Weiyong Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.,Taizhou Municipal Hospital of Zhejiang Province, Taizhou, China
| | - Aiqin Li
- Zhejiang Share Bio-pharm Co. Ltd, Hangzhou, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
20
|
Guo F, Wu J, Wu W, Huang D, Yan Q, Yang Q, Gao Y, Yang G. PEGylated self-assembled enzyme-responsive nanoparticles for effective targeted therapy against lung tumors. J Nanobiotechnology 2018; 16:57. [PMID: 30012166 PMCID: PMC6048871 DOI: 10.1186/s12951-018-0384-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 01/17/2023] Open
Abstract
Background Matrix-metalloproteinases, which are overexpressed in many types of cancer, can be applied to improve the bioavailability of chemotherapeutic drugs and guide therapeutic targeting. Thus, we aimed to develop enzyme-responsive nanoparticles based on a functionalized copolymer (mPEG-Peptide-PCL), which was sensitive to matrix metalloproteinase, as smart drug vesicles for enhanced biological specificity and reduced side effects. Results The rate of in vitro curcumin (Cur) release from Cur-P-NPs was not markedly accelerated in weakly acidic tumor microenvironment, indicating a stable intracellular concentration and a consistent therapeutic effect. Meanwhile, P-NPs and Cur-P-NPs displayed prominent biocompatibility, biostability, and inhibition efficiency in tumor cells. In addition, Cur-P-NPs showed higher fluorescence intensity than Cur-NPs in tumor cells, implying enhanced cell permeability and targeting ability. Moreover, the internalization and intracellular transport of Cur-P-NPs were mainly via macropinocytosis. Studies of pharmacodynamics and cellular uptake in vitro and biodistribution in vivo demonstrated that Cur-P-NPs had stronger target efficiency and therapeutic effect than Cur-DMSO and Cur-NPs in tumor tissue. Conclusion Results indicate that Cur-P-NPs can be employed for active targeted drug delivery in cancer treatment and other biomedical applications. Electronic supplementary material The online version of this article (10.1186/s12951-018-0384-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Jiangqing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Wenchao Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Dongxue Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
21
|
|
22
|
Martin A, Sarkar A. Overview on biological implications of metal oxide nanoparticle exposure to human alveolar A549 cell line. Nanotoxicology 2017; 11:713-724. [PMID: 28830283 DOI: 10.1080/17435390.2017.1366574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal oxides (MeOx) are exponentially being used in a wide range of applications and are the largest class of commercially produced nanomaterials. This presents unprecedented human exposure. Thus, understanding nanoparticle induced cellular stress can greatly help design strategies to combat them. Scores of studies have been carried out to understand the effects of MeOx nanoparticle exposure on human alveolar cells, which are highly susceptible to aerosolized matter. There is a huge redundancy of information generated, also, a lack of a comprehensive conglomeration of this information. We have built here in a sincere summary of the cellular responses reported till date as a direct consequence of MeOx nanoparticle exposure on human alveolar (A549) cells. Detailed accounts of cellular morphology modulation, generation of reactive oxygen species (ROS) and oxidative stress, inflammation and cytokine release, genotoxic and epi-genotoxic insults, toxicological trend, nanoparticle internalization, modes of cell death, protein synthesis, and membrane damage among others are discussed. Finally, to aid predictability of the highly dynamic and multifactorial nature of this toxicity, we have hypothesized models that describe the ensuing mechanisms based on common patterns discovered throughout our literature survey.
Collapse
Affiliation(s)
- Ansie Martin
- a Department of Biological Sciences , CMBL, BITS Pilani K K Birla Goa Campus , Zuarinagar , India
| | - Angshuman Sarkar
- a Department of Biological Sciences , CMBL, BITS Pilani K K Birla Goa Campus , Zuarinagar , India
| |
Collapse
|
23
|
Morrison RA, Rybak-Smith MJ, Thompson JM, Thiebaut B, Hill MA, Townley HE. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle. Int J Nanomedicine 2017; 12:3851-3863. [PMID: 28572729 PMCID: PMC5441663 DOI: 10.2147/ijn.s127341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs) to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP) to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%). It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization microparticles. The NPs were sintered to the surface of the microparticles by heating at 230°C for 15 minutes. This resulted in a good coverage of the surface and to generate embolization particles that were shown to be radiosensitizing. Such multimodal particles could therefore result in occlusion of the tumor blood vessels in conjunction with localized reactive oxygen species generation, even under hypoxic conditions such as those found in the center of tumors.
Collapse
Affiliation(s)
| | | | - James M Thompson
- Gray Laboratories, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford
| | | | - Mark A Hill
- Gray Laboratories, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford
| | - Helen E Townley
- Department of Engineering Science.,Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Madni A, Batool A, Noreen S, Maqbool I, Rehman F, Kashif PM, Tahir N, Raza A. Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target 2017; 25:499-512. [PMID: 28151021 DOI: 10.1080/1061186x.2017.1289540] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Conventional therapy for lung cancer is associated with lack of specificity and access to the normal cells resulting in cytotoxicity, reduced cellular uptake, drug resistance and rapid drug clearance from the body. The emergence of nanotechnology has revolutionized the treatment of lung cancer. The focus of nanotechnology is to target tumor cells with improved bioavailability and reduced toxicity. In the recent years, nanoparticulate systems have extensively been exploited in order to overcome the obstacles in treatment of lung cancer. Nanoparticulate systems have shown much potential for lung cancer therapy by gaining selective access to the tumor cells due to surface modifiability and smaller size. In this review, various novel nanoparticles (NPs) based formulations have been discussed in the treatment of lung cancer. Nanotechnology is expected to grow fast in future, and it will provide new avenues for the improved treatment of lung cancer. This review article also highlights the characteristics, recent advances in the designing of NPs and therapeutic outcomes.
Collapse
Affiliation(s)
- Asadullah Madni
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Amna Batool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Sobia Noreen
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Irsah Maqbool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Faizza Rehman
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Prince Muhammad Kashif
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Nayab Tahir
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ahmad Raza
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| |
Collapse
|
25
|
Cytotoxicity study of Piper nigrum seed mediated synthesized SnO 2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:158-168. [PMID: 27915029 DOI: 10.1016/j.jphotobiol.2016.11.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/21/2016] [Indexed: 11/21/2022]
Abstract
Different sized tetragonal tin oxide nanoparticles (SnO2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO2 NPs were toxic against cancer cell lines depending on their size and dose. IC50 values of SnO2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL-1 against HCT116, while these values are 135, 157 and 187μgL-1 against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines.
Collapse
|