1
|
Li B, Wang G, Zheng X, Liu M, Yang Y, Ren Y, Zhang Y, Liu Y, He Z, Ren J, Wan H, Cao W, Wang Y, Zhang X, Hou J. Exposure to deltamethrin leads to gill liver damage, oxidative stress, inflammation, and metabolic disorders of Japanese flounder ( Paralichthys olivaceus). FRONTIERS IN TOXICOLOGY 2025; 7:1560192. [PMID: 40309513 PMCID: PMC12041085 DOI: 10.3389/ftox.2025.1560192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Deltamethrin is a pyrethroid insecticide commonly used to kill animal parasites in aquaculture. However, increasing evidence suggests that deltamethrin affects the health of aquatic animals by causing tissue damage and even death. Methods In this study, the damage caused by deltamethrin to the gill and liver tissues, as well as its effects on oxidative stress and immune metabolism, were studied in Paralichthys olivaceus. Results We observed a positive correlation between the residual levels of deltamethrin (Del) and the exposure concentrations, with the highest residue detected in the 0.28 μg/L concentration group (0.0684 mg/kg at 7 days). Then, we observed different degrees of damage to the gill and liver tissues of the Paralichthys olivaceus, including swelling, apical fusion, shedding of gill secondary lamellae, liver cell necrosis, and nuclear vacuolization, by observing tissue sections. Lysozyme enzyme activity increased, whereas catalase and alkaline phosphatase enzyme activities decreased. The liver transcriptome results of the control and high-concentration (0.28 μg/L) groups showed that there were 697 differentially expressed genes, including 390 upregulated and 307 downregulated genes. These differentially expressed genes were significantly enriched in oxidation-reduction, ferroptosis, steroid biosynthesis, and apoptosis pathways. Discussion In summary, we found that deltamethrin induces oxidative stress and metabolic disorders in P. olivaceus and leads to inflammation. However, the fish body resists such damage through a complex regulatory network. These experimental results provide a theoretical reference for the safe use of deltamethrin in P. olivaceus.
Collapse
Affiliation(s)
- Bingbu Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Guixing Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Xinyu Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Mingyang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yucong Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yuqin Ren
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yitong Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yufeng Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Zhongwei He
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Jiangong Ren
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Hailong Wan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Wei Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yufen Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Xiaoyan Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Jilun Hou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| |
Collapse
|
2
|
Alzahrani FM, Alzahrani KJ, Alsharif KF, Hayat MF, Al-Emam A. Afzelechin alleviates deltamethrin induced hepatic dysfunction via regulating TLR4/MyD88, HMGB1/RAGE and NF-κB pathway. Toxicol Appl Pharmacol 2025; 497:117275. [PMID: 39971138 DOI: 10.1016/j.taap.2025.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Deltamethrin (DMN) is a type-II pyrethroid that has been documented to instigate numerous organ toxicities. Afzelechin (ALN) is a plant based polyphenolic compound that exhibits marvelous biological properties. The present research was conducted to assess the alleviative potential of ALN against DMN induced hepatic dysregulations. Thirty-six male albino (Sprague Dawley) rats were apportioned into four random groups including the control, DMN (5mgkg-1), DMN (5mgkg-1) + ALN (2mgkg-1), and ALN (2mgkg-1) alone administrated group. ALN protected hepatic tissues against DMN induced oxidative stress, inflammation and apoptosis. ALN supplementation donwregulated the gene expression of receptor for advanced glycation end products (RAGE), high mobility group box1 (HMGB1), tumor necrosis factor- α (TNF-α), Myeloid differentiation primary response 88 (MyD88), nuclear factor- kappa B (NF-κB), interleukin-6 (IL-6), toll-like receptor 4 (TLR4), cyclooxygenase-2 (COX-2), and interleukin-1β (IL-1β). Besides, ALN administration reduced the levels of reactive oxygen species (ROS) and malondialdehyde while increasing the activities of glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GSR), heme oxygenase-1 (HO-1), superoxide dismutase (SOD) and glutathione (GSH). The levels of hepatic function markers including GGT, ALT, ALP, and AST were lowered while the concentrations of albumin and total proteins were promoted following the ALN treatment. The levels of Bax, Caspase-9 and Caspase-3 were suppressed while the levels of Bcl-2 were escalated after ALN therapy. Moreover, ALN treatment remarkably mitigated DMN induced histological impairments. These findings highlight the hepatoprotective efficacy of ALN against DMN induced liver toxicity.
Collapse
Affiliation(s)
- Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Rodrigues LTP, Qualhato AF, Sprícigo CVM, Arantes KCA, da Silva RHS, Barros ACM, Vicente MC, Souza MR, de Paula LGF, Roman-Campos D, Miranda AS, Martins DB, Botelho AFM. Evaluation of Scalibor® deltamethrin collar chronic exposure in dogs. Res Vet Sci 2025; 183:105502. [PMID: 39662115 DOI: 10.1016/j.rvsc.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Deltamethrin is a pesticide used worldwide with several applications in the control of nuisance arthropods in homes, agriculture, against ectoparasites in dogs and livestock. Recent studies indicate that deltamethrin can induce cardiotoxicity. Therefore, this study aimed to evaluate the toxicity of deltamethrin in dogs through exposure to commercial collars over 8 months. Twenty healthy dogs were selected, 9 males and 11 females, weighing between 10 and 15 kg and aged between 1 and 8 years, with no history of intentional exposure to pyrethroids. Clinical, cardiological, and laboratory evaluations were performed monthly. The results demonstrate that exposure to deltamethrin 4 % via the dermal route, through a commercial collar, was safe for 8 months, with preserved cardiac electrocontractile function, assessed by electrocardiogram and echocardiogram. In addition, tracking of plasma biochemical markers did not indicate signs of cardiac, renal, or hepatic injury. Although deltamethrin 4 % collars demonstrated an acceptable safety profile regarding cardiovascular and laboratory evaluations, the occurrence of dermatological reactions in 25 % of the animals, which is a significant proportion, highlights the need for careful monitoring of dermatological reactions. Future investigations with different concentrations and longer periods are recommended to achieve a more comprehensive understanding of the long-term effects of deltamethrin, improving its safe application in veterinary medicine and promoting animal and human health.
Collapse
Affiliation(s)
- Larissa T P Rodrigues
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Andriele F Qualhato
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Carolle V M Sprícigo
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Kelly C A Arantes
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Rayanne H S da Silva
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Alexandre C M Barros
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Monica C Vicente
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Murilo R Souza
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Luiza G F de Paula
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Artur S Miranda
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danieli B Martins
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil
| | - Ana F M Botelho
- Department of Veterinary Medicine, Federal University of Goiás, School of Veterinary and Animal Science, Goiânia, Goiás, Brazil.
| |
Collapse
|
4
|
Rasouli H, Sohrabi N, Mohammadi R. Design and synthesis of a new recyclable nanohydrogel based on chitosan for Deltamethrin removal from aqueous solutions: Optimization and modeling by RSM-ANN. Int J Biol Macromol 2024; 283:137921. [PMID: 39577533 DOI: 10.1016/j.ijbiomac.2024.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/23/2023] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
In this study, a new magnetic biocompatible hydrogel was synthesized as an adsorbent for Deltamethrin pesticide removal. The optimal conditions and adsorption process of Deltamethrin by chitosan/polyacrylic acid/Fe3O4 nanocomposite hydrogel was studied by Response Surface Methodology by Central Composite Design (RSM-CCD) and Artificial Neural Network (ANN). This adsorbents were synthesized, and then characterized and investigated using FT-IR, XRD, FE-SEM, EDX, Map, VSM, and TGA methods. The results of these analyses showed that the nanocomposite hydrogel was well synthesized and has the ability to adsorb the Deltamethrin pesticide. The results obtained through analysis using response surface methodology showed that the maximum amount of adsorption was 99.79 % at 26 °C, while pH, initial concentration, contact time, and adsorbent dose were 7, 22 ppm, 90 min, and 1.3 g/L respectively. Comparison between results obtained from CCD modeling and artificial neural network proved that both methods had high ability to predict the adsorption process but the CCD method had higher coefficient of determination and lower error. The equilibrium and kinetic study of the process showed that the Toth isotherm model, pseudo-second-order is all suitable for expressing the adsorption process. In addition, the adsorption mechanism followed double-exponential model that combines external and internal diffusions. Results of Thermodynamic study suggested that the Deltamethrin adsorption on CS/PAA/Fe3O4 was a spontaneous and exothermic process. The results of the equilibrium process study revealed that the adsorption process was physical and desirable, therefore, the adsorption-desorption process was performed which showed that the composite was reusable up to 10 cycles.
Collapse
Affiliation(s)
- Hossien Rasouli
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Negin Sohrabi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Department of Biosystem Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
5
|
Hafsi D, Sbartai I, Sbartai H. Stress biomarker response in Aporrectodea caliginosa earthworms exposed to single and combined pesticide treatments (Prosaro and Decis). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1180-1192. [PMID: 39379771 DOI: 10.1007/s10646-024-02811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
This study aims to assess the impact of two pesticides commonly used in Algeria (Prosaro XRT and Decis 25 EC), as well as their combinations at recommended doses, on a non-target species bioindicator of soil pollution, the earthworm Aporrectodea caliginosa, using physiological (mortality and growth) and biochemical parameters (proteins, glutathione, catalase activity and glutathione S-transferase, acetylcholine esterase, lipoxygenase). The recommended dose and its double were tested individually and in combination for this. It should be noted that the protocol used and the initial concentrations selected are the same as those used in the field. After 7 and 14 days (7D/14D) of exposure, all dosages were administered. Our findings show that the pesticides tested had no effect on earthworm survival. However, a significant decrease in their growth rates depending on the different concentrations was observed for the different treatments over the entire exposure period of 7 or 14 D. The greatest reductions (31.62%, 35.04%) are reported after 14D for the high concentrations of Decis alone (D2) as well as for the combined treatment Prosaro/Decis (P2/D2). At the same time, an increase in total protein contents (more than 50% after 14D) as well as a decrease in acetylcholine esterase activity were reported for all treatments. We were also able to identify the induction of oxidative stress after xenobiotic exposure, which is more pronounced at the end of the treatment (14D), resulting in the stimulation of the antioxidant system (gluthione, glutathione S-transférase, catalase) as well as the induction of lipoxygenase, which is responsible for the oxidation of polyunsaturated fatty acids as well as the generation of reactive oxygen species (ROS) involved in the inflammatory phenomenon. Finally, it turns out that the species Aporrectodea caliginosa is sensitive to the different concentrations applied, even those used in the open field, and that Decis (deltamethrin) seems to be more toxic than Prosaro and that the combinaison P2/D2 is as toxic as Decis alone (D2).
Collapse
Affiliation(s)
- Djamila Hafsi
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria
| | - Ibtissem Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria.
| | - Hana Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria
| |
Collapse
|
6
|
Elbanna R, Osman KA, Salama MS. Biomarkers of oral subacute toxicity of deltamethrin in exposed male Albino rats. Toxicol Ind Health 2023; 39:735-753. [PMID: 37877786 DOI: 10.1177/07482337231209360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Deltamethrin is one of the most effective pyrethroid compounds, widely employed in veterinary medicine, public health, and farming. Deltamethrin-triggered oxidative stress largely causes serious harm to an organism. Acute toxicity of this compound was extensively investigated, while less information is available on its oral sub-acute effects. This study assessed, in the male Albino rats, the effects of oral gavage of either 0.874 mg/kg (0.01 LD50) or 8.740 mg/kg (0.10 LD50) of deltamethrin for successive 14 days to investigate its effects on biomarkers and to detect the tissue injury in rats following subacute deltamethrin treatment. It was found that levels of glutathione peroxidase, superoxide dismutase, and catalase in the brain, kidney, and liver, alkaline phosphatase (ALP), and uric acid in serum, hematocrit, mean corpuscular volume (MCV), white blood cells (WBC)s, eosinophils, and basophils were significantly reduced compared with untreated rats. However, when rats were treated with deltamethrin for successive 14 days, alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities in serum and the levels of thiobarbituric acid reactive substances (TBARs) in brain, kidney, and liver, red blood cell distribution width (RDW-CV), total protein, monocytes, and basophils and the ratios of neutrophils to lymphocytes, an aggregated marker of systemic inflammation and systemic immune inflammation indexes, significantly increased compared with the control group. Histologic lesions were observed in the liver, kidney, brain, testis, and epidemies in rats exposed to subacute deltamethrin for 14 days, and most tissues of rats treated with 0.10 LD50 of deltamethrin were more affected than those treated with 0.01 LD50. These findings strongly suggest that subacute exposure to deltamethrin caused significant systemic toxicity through oxidative stress resulting in biochemical and histological changes in the studied tissues. These findings highlight the potential harmful effects of deltamethrin and emphasize the importance of understanding the subacute effects of this compound, particularly in the context of veterinary medicine, public health, and farming.
Collapse
Affiliation(s)
- Rania Elbanna
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Maher S Salama
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Ma R, Sun T, Wang X, Ren K, Min T, Xie X, Wang D, Li K, Zhang Y, Zhu K, Mo C, Dang C, Yang Y, Zhang H. Chronic exposure to low-dose deltamethrin can lead to colon tissue injury through PRDX1 inactivation-induced mitochondrial oxidative stress injury and gut microbial dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115475. [PMID: 37714033 DOI: 10.1016/j.ecoenv.2023.115475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE To date, it is unclear whether deltamethrin (DLM) intake causes damage to colon tissue. Hence, in this study, we aimed to clarify the effect of long-term exposure to low-dose DLM on colon tissues, and its potential mechanisms. METHODS Mice were treated with DLM (0.2 mg/kg/day) or DLM combined with N-acetyl-l-cysteine (NAC) (50 mg/kg/day) for 8 weeks. Human colon cancer cells (HCT-116) were treated with DLM (0, 25, 50, or 100 µM), NAC (2 mM), or overexpression plasmids targeting peroxiredoxin 1 (PRDX1) for 48 h. DLM was detected using a DLM rapid detection card. Colon injury was evaluated using haematoxylin and eosin staining and transmission electron microscopy. Apoptosis was determined using immunofluorescence staining (IF), western blotting (WB) and flow cytometry (FC) assays. MitoTracker, JC-1, and glutathione (GSH) detection were used to detect mitochondrial oxidative stress. Intestinal flora were identified by 16 S rDNA sequencing. RESULTS DLM accumulation was detected in the colon tissue and faeces of mice following long-term intragastric administration. Interestingly, our results showed that, even at a low dose, long-term intake of DLM resulted in severe weight loss and decreased the disease activity index scores and colon length. The results of IF, WB, and FC showed that DLM induced apoptosis in the colon tissue and cells. MitoTracker, JC-1, and GSH assays showed that DLM increased mitochondrial stress in colonic epithelial cells. Mechanistic studies have shown that increased mitochondrial stress and apoptosis are mediated by PRDX1 inhibition. Further experiments showed that PRDX1 overexpression significantly reduced DLM-induced oxidative stress injury and apoptosis. In addition, we observed that chronic exposure to DLM altered the composition of the intestinal flora in mice, including an increase in Odoribacter and Bacteroides and a decrease in Lactobacillus. The gut microbial richness decreased after DLM exposure in mice. Supplementation with NAC both in vivo and in vitro alleviated DLM-induced oxidative stress injury, colonic epithelial cell apoptosis, and gut microbial dysbiosis. CONCLUSION Chronic exposure to DLM, even at small doses, can cause damage to the colon tissue, which cannot be ignored. The production and use of pesticides such as DLM should be strictly regulated during agricultural production.
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dangdang Wang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Caijing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yong Yang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China.
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
8
|
Tsakiridis EE, Morrow MR, Desjardins EM, Wang D, Llanos A, Wang B, Wade MG, Morrison KM, Holloway AC, Steinberg GR. Effects of the pesticide deltamethrin on high fat diet-induced obesity and insulin resistance in male mice. Food Chem Toxicol 2023; 176:113763. [PMID: 37030334 DOI: 10.1016/j.fct.2023.113763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Worldwide, rates of metabolic diseases are rapidly increasing and environmental exposure to pesticides, pollutants and/or other chemicals may play a role. Reductions in Brown Adipose Tissue (BAT) thermogenesis, mediated in part by uncoupling protein 1 (Ucp1), are associated with metabolic diseases. In the current study, we investigated whether the pesticide deltamethrin (0.01-1 mg/kg bw/day) incorporated into a high-fat diet and fed to mice housed at either room temperature (21 °C) or thermoneutrality (29 °C) would suppress BAT activity and accelerate the development of metabolic disease. Importantly, thermoneutrality allows for more accurate modeling of human metabolic disease. We found that, 0.01mg/kg bw/day of deltamethrin induced weight loss, improved insulin sensitivity and increased energy expenditure, effects that were associated with increases in physical activity. In contrast, exposure to 0.1 and 1 mg/kg bw/day deltamethrin had no effect on any of the parameters examined. Deltamethrin treatment in mice did not alter molecular markers of BAT thermogenesis, despite observing suppression of UCP1 expression in cultured brown adipocytes. These data indicate that while deltamethrin inhibits UCP1 expression in vitro, 16wks exposure does not alter BAT thermogenesis markers nor exacerbates the development of obesity and insulin resistance in mice.
Collapse
Affiliation(s)
- Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Marisa R Morrow
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrea Llanos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bo Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
9
|
Hao F, Bu Y, Huang S, Li W, Feng H, Wang Y. Effects of pyrethroids on the cerebellum and related mechanisms: a narrative review. Crit Rev Toxicol 2023; 53:229-243. [PMID: 37417402 DOI: 10.1080/10408444.2023.2229384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Pyrethroids (PYRs) are a group of synthetic organic chemicals that mimic natural pyrethrins. Due to their low toxicity and persistence in mammals, they are widely used today. PYRs exhibit higher lipophilicity than other insecticides, which allows them to easily penetrate the blood-brain barrier and directly induce toxic effects on the central nervous system. Several studies have shown that the cerebellum appears to be one of the regions with the largest changes in biomarkers. The cerebellum, which is extremely responsive to PYRs, functions as a crucial region for storing motor learning memories. Exposure to low doses of various types of PYRs during rat development resulted in diverse long-term effects on motor activity and coordination functions. Reduced motor activity may result from developmental exposure to PYRs in rats, as indicated by delayed cerebellar morphogenesis and maturation. PYRs also caused adverse histopathological and biochemical changes in the cerebellum of mothers and their offspring. By some studies, PYRs may affect granule cells and Purkinje cells, causing damage to cerebellar structures. Destruction of cerebellar structures and morphological defects in Purkinje cells are known to be directly related to functional impairment of motor coordination. Although numerous data support that PYRs cause damage to cerebellar structures, function and development, the mechanisms are not completely understood and require further in-depth studies. This paper reviews the available evidence on the relationship between the use of PYRs and cerebellar damage and discusses the mechanisms of PYRs.
Collapse
Affiliation(s)
- Fei Hao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Ye Bu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Shasha Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Wanqi Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Huiwen Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Yuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| |
Collapse
|
10
|
Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022; 12:cells12010088. [PMID: 36611880 PMCID: PMC9818928 DOI: 10.3390/cells12010088] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The kidney contains many mitochondria that generate ATP to provide energy for cellular processes. Oxidative stress injury can be caused by impaired mitochondria with excessive levels of reactive oxygen species. Accumulating evidence has indicated a relationship between oxidative stress and kidney diseases, and revealed new insights into mitochondria-targeted therapeutics for renal injury. Improving mitochondrial homeostasis, increasing mitochondrial biogenesis, and balancing mitochondrial turnover has the potential to protect renal function against oxidative stress. Although there are some reviews that addressed this issue, the articles summarizing the relationship between mitochondria-targeted effects and the risk factors of renal failure are still few. In this review, we integrate recent studies on oxidative stress and mitochondrial function in kidney diseases, especially chronic kidney disease. We organized the causes and risk factors of oxidative stress in the kidneys based in their mitochondria-targeted effects. This review also listed the possible candidates for clinical therapeutics of kidney diseases by modulating mitochondrial function.
Collapse
|
11
|
Cardiotoxicity of pyrethroids: molecular mechanisms and therapeutic options for acute and long-term toxicity. Biochem Soc Trans 2022; 50:1737-1751. [PMID: 36383062 DOI: 10.1042/bst20220593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
Pyrethroids (PY) are synthetic pesticides used in many applications ranging from large-scale agriculture to household maintenance. Their classical mechanisms of action are associated with binding to the sodium channel of insect neurons, disrupting its inactivation, ensuring their use as insecticides. However, PY can also lead to toxicity in vertebrates, including humans. In most toxicological studies, the impact of PY on heart function is neglected. Acute exposure to a high dose of PY causes enhancement of the late sodium current (INaL), which impairs the action potential waveform and can cause severe cardiac arrhythmias. Moreover, long-term, low-dose exposure to PY displays oxidative stress in the heart, which could induce tissue remodeling and impairment. Isolated and preliminary evidence supports that, for acute exposure to PY, an antiarrhythmic therapy with ranolazine (an INaL blocker), can be a promising therapeutic approach. Besides, heart tissue remodeling associated with low doses and long-term exposure to PY seems to benefit from antioxidant therapy. Despite significant leaps in understanding the mechanical details of PY intoxication, currently, few studies are focusing on the heart. In this review, we present what is known and what are the gaps in the field of cardiotoxicity induced by PY.
Collapse
|
12
|
Vineetha VP, Tejaswi HN, Suresh K, Lekshmi H, Sneha KG, Rakesh CG, Devika P. Asparagus racemosus improves immune-related parameters in Nile tilapia (Oreochromis niloticus) and mitigates deltamethrin-induced toxicity. FISH & SHELLFISH IMMUNOLOGY 2022; 130:283-293. [PMID: 36122635 DOI: 10.1016/j.fsi.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Deltamethrin (DM) is one of the most toxic but widely used pyrethroid insecticides. Even though a non-target animal, fish are at high risk as they are deficient in the enzyme system that hydrolyses pyrethroids. Enhancing the immune system is a potential method in preventing fish diseases. The present investigation aims to study the modulations in the immune response-related parameters in Oreochromis niloticus that were exposed to DM, by dietary supplementation of aqueous root extract of Asparagus racemosus (ARE). The experiment compared fish in control, DM (1 μg/L) exposed (added to water), ARE (10 g, 20 g, and 30 g ARE/kg of feed) supplemented, and DM-ARE cotreated groups. After 21 days of experimental period, serological, histopathological, and immune response related-gene and protein analysis were carried out. The DM-ARE cotreated group showed significant increase in weight gain, specific growth rate, and decreased feed conversion ratio compared to the DM exposed group. The ARE cotreatment could significantly revert the alteration induced by DM in lysozyme, respiratory burst, myeloperoxidase, C-reactive protein, glucose, cortisol, total protein, albumin, and triglyceride levels. The liver histopathology showed membrane breakage, severe necrosis, infiltration of inflammatory cells, melano-macrophages, and nuclear atrophy, and the kidney showed tubular necrosis, hematopoietic necrosis, Bowman's capsule edema, and glomerulus degeneration in DM exposed group. In ARE cotreated group, the liver showed regenerative cellular changes and only mild to moderate cellular damages, and the kidney tubules and glomerulus had intact structure. ARE discernibly regulated the expression of immune-related genes and proteins (IgM, TNFα, IFN-γ, IL-1β, and IL-8) in fish. The DM-ARE cotreated groups showed reduced cumulative mortality and higher relative percent survival on experimental challenge with Aeromonas hydrophila compared to the DM group. Thus, ARE possess protective potential against DM-induced toxicity, and can be used as a cost-effective technique in aquafarming.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Hemla Naik Tejaswi
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Kummari Suresh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Haridas Lekshmi
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Kalasseril Girijan Sneha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Chakkalaparambil Gokulan Rakesh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Pillai Devika
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India.
| |
Collapse
|
13
|
Oliveira JM, Condessa SS, Destro ALF, Lima GDA, do Carmo Cupertino M, Cardoso SA, Freitas MB, de Oliveira LL. Morphophysiological alterations in fruit-eating bats after oral exposure to deltamethrin. Int J Exp Pathol 2022; 103:219-230. [PMID: 36059214 PMCID: PMC9482353 DOI: 10.1111/iep.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
Deltamethrin (DTM) is a synthetic pyrethroid widely used in the cultivation and management of several crops due to its insecticidal action. Application to crops of pyrethroids such as DTM can result in the exposure of water and fruit consumed by fruit bats having a high pyrethroid content which may be harmful. Therefore the objective of this study was to evaluate the effects of short-term oral exposure of the fruit-eating bats (Artibeus lituratus) to two concentrations of DTM (0.02 and 0.04 mg/kg of papaya) on histopathology of the intestine, liver and kidney. The intestine of the animals exposed to both concentrations showed inflammatory infiltrate, degeneration, necrosis and goblet cell hyperplasia as the most frequent pathologies. Besides, the acid mucins showed an increase in the frequency of non-viable cells. The liver showed hepatocyte vacuolizatio and nuclear enlargement, as well as inflammatory infiltrate and steatosis. The kidneys of the exposed animals showed and inflammatory infiltrate, benign nephrosclerosis, vacuolization and necrosis. Also, DTM reduced nitric oxide synthesis, decreased glomerular diameter and increased glycogen percentage in the proximal tubules. Our results suggest that acute exposure to DTM at low concentrations has the potential to induce pronounced histopathological changes in vital organs, such as intestine, liver and kidney of fruit-eating bats.
Collapse
|
14
|
Yang X, Fang Y, Hou J, Wang X, Li J, Li S, Zheng X, Liu Y, Zhang Z. The heart as a target for deltamethrin toxicity: Inhibition of Nrf2/HO-1 pathway induces oxidative stress and results in inflammation and apoptosis. CHEMOSPHERE 2022; 300:134479. [PMID: 35367492 DOI: 10.1016/j.chemosphere.2022.134479] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
As a synthetic pyrethroid pesticide, deltamethrin (DLM) is widely employed in veterinary medicine and farming, and DLM-triggered oxidative stress largely causes serious harm to the organism. It is well-known that nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1), a pivotal endogenous anti-oxidative pathway, acts on inhibiting oxidative stress-induced cell injury under the activated state. The purpose of this research was to observe the impact and molecular mechanism of DLM on inflammation and apoptosis in quail cardiomyocytes based on the Nrf2/HO-1 signaling route. In this research, quails were established as a cardiac injury model through gastric infusion of various doses of DLM (0, 15, 30, and 45 mg/kg b. w.) for 12 weeks. Our results showed that DLM could induced cardiomyocyte injury in a dose-dependent manner though weakening antioxidant defense via down-regulating Nrf2 and its downstream protein HO-1. Furthermore, DLM stimulation induced apoptosis in quail heart by decreasing the protein expressions of B-cell lymphoma-extra large and B-cell lymphoma gene 2 (Bcl-2), as well as increasing P53, caspase 3, and Bcl-2-associated X protein levels. Meanwhile, relative levels of nuclear factor-kappa B and interleukin-1β in quail hearts were up-regulated under DLM intervention progressively. Collectively, our study demonstrates that chronic exposure to DLM can induce quail cardiomyocyte inflammation and apoptosis by mediating Nrf2/HO-1 signaling pathway-related oxidative stress.
Collapse
Affiliation(s)
- Xue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yi Fang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jianbo Hou
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xuejiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
15
|
The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 2022; 92:131-155. [PMID: 35914637 DOI: 10.1016/j.neuro.2022.07.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022]
Abstract
Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266TM) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.
Collapse
|
16
|
Li J, Jiang H, Wu P, Li S, Han B, Yang Q, Wang X, Han B, Deng N, Qu B, Zhang Z. Toxicological effects of deltamethrin on quail cerebrum: Weakened antioxidant defense and enhanced apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117319. [PMID: 33990053 DOI: 10.1016/j.envpol.2021.117319] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Deltamethrin is the most common type II synthetic pyrethroid insecticide, and has posed widespread residues to environment. However, whether deltamethrin has potential toxic effects on quail cerebrum remains greatly obscure. Accordingly, we investigated the impact of chronic exposure to deltamethrin on oxidative stress and apoptosis in quail cerebrum. Quails upon 12-week exposure of deltamethrin (0, 15, 30, or 45 mg/kg body weight intragastric administration) were used as a cerebrum injury model. The results showed that deltamethrin treatment led to cerebral injury dose-dependently through the weakened antioxidant defense by downregulating nuclear factor erythroid-2-related factor 2 (Nrf2) and its downstream proteins levels and mRNA expression. Furthermore, deltamethrin treatment induced apoptosis in cerebrum by decreasing B-cell lymphoma gene 2 (Bcl-2) level, as well as increasing Jun N-terminal kinase3, caspase-3, and Bcl-2-associated X protein levels. Simultaneously, toll-like receptor 4 (TLR4) downstream inflammation-related genes or proteins were significantly up-regulated by deltamethrin dose-dependently. Altogether, our study demonstrated that chronic exposure to deltamethrin induces inflammation and apoptosis in quail cerebrums by promoting oxidative stress linked to inhibition of the Nrf2/TLR4 signaling pathway. These results provide a novel knowledge on the chronic toxic effect of deltamethrin, and establish a theoretical foundation for the evaluation of pesticide-induced health risk.
Collapse
Affiliation(s)
- Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
17
|
Lower p66Shc promoter methylation in subjects with chronic renal failure. PLoS One 2021; 16:e0257176. [PMID: 34529688 PMCID: PMC8445414 DOI: 10.1371/journal.pone.0257176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Objective To determine the correlation between DNA methylation of p66Shc promoter and some markers of inflammatory and oxidative stress in chronic renal failure (CRF) patients compared with healthy subjects. Methods An observational cross-sectional study was conducted in the nephrology department at Sidi Bouzid Regional Hospital (Tunisia). In total, 39 patients with CRF and 37 healthy subjects were included. Several biochemical parameters were measured. Furthermore, markers of the oxidative and inflammatory status (MDA, TAS, SOD, and CRP) were evaluated. The p66Shc methylation status was determined using the methylation-specific PCR. Results Our results showed that levels of blood glucose, urea, creatinine, uric acid, ChT, TG, albuminuria, CRP and MDA were significantly elevated in CRF patients compared to controls. Furthermore, p66Shc promoter region was highly demethylated in CRF patients compared to healthy controls (84% vs 4%). Our data showed a positive correlation between p66Shc hypomethylation and levels of MDA (r = 0.93; p<0, 05) and CRP (r = 0.89; P <0, 05), as well as a significant negative correlation between p66Shc hypomethylation, TAS (r = -0.76; P <0, 05) and SOD (r = -0.77; p<0, 05) levels. Similarly, there was a positive correlation between p66Shc hypomethylation and the disease stages. Importantly, multiple regression analysis showed that p66shc DNA hypomethylation remains strongly correlated with MDA, CRP and stages of CRF. Conclusion This study indicates that the DNA hypomethylation of p66shc promoter was correlated with oxidative and inflammatory stress and the disease stages in CRF patients.
Collapse
|
18
|
Chrustek A, Hołyńska-Iwan I, Olszewska-Słonina D. The influence of pyrethroides: permethrin, deltamethrin
and alpha-cypermetrin on oxidative damage. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyrethroids, synthetic derivatives of natural pyrethrins derived from Chrysanthemum cinerariaefolim,
are commonly used for plant protection in the forestry, agricultural, pharmaceutical industry
as well as in medicine and veterinary medicine. They can enter the body by inhalation,
ingestion and skin contact. It was assumed that they are characterized by low toxicity to humans,
are quickly metabolized and do not accumulate in tissues, and are excreted in the urine. Despite
the existing restrictions, their use carries a great risk, because these compounds and their metabolites
can get into the natural environment, contaminating water, soil and food. The consequences
of using pyrethroids as a direct threat to animal and human health have been described
for many years. They are published on an ongoing basis informing about poisoning with these
compounds in humans and animals, and about fatalities after their taking. Children are most at
risk because pyrethroids can be found in breast milk. These compounds have nephrotoxic, hepatotoxic,
immunotoxic, neurotoxic effects and have a negative effect on the reproductive system
and the fetus. Pyrethroids such as permethrin, deltamethrin, alpha-cypermethrin are approved
by the World Health Organization for daily use; however, numerous scientific studies indicate
that they can cause oxidative stress. They lead to DNA, protein, lipid damage and induction of
apoptosis. The purpose of the work was to collect and systematize the available knowledge regarding
the induction of oxidative stress by selected pyrethroids.
Collapse
Affiliation(s)
- Agnieszka Chrustek
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Iga Hołyńska-Iwan
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Dorota Olszewska-Słonina
- Katedra Patobiochemii i Chemii Klinicznej, Wydział Farmaceutyczny, Collegium Medicum im. L. Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| |
Collapse
|
19
|
Abu Zeid EH, El Sharkawy NI, Moustafa GG, Anwer AM, Al Nady AG. The palliative effect of camel milk on hepatic CYP1A1 gene expression and DNA damage induced by fenpropathrin oral intoxication in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111296. [PMID: 32949931 DOI: 10.1016/j.ecoenv.2020.111296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the alleviating role of camel milk (CM) in the mitigation of fenpropathrin (FNP) type II pyrethroid induced oxidative stress, alterations of hepatic (CYP1A1) mRNA expression pattern, and DNA damage using the alkaline comet assay (SCGE) in male rats. Sixty male Sprague-Dawley rats were separated into six groups (n = 10): 1st control (C), 2nd corn oil (CO), 3rd (CM): gavaged CM 2ml/rat, 4th (FNP): gavaged FNP 7.09 mg/kg body weight (BW), 5th (FNP pro/co-treated): gavaged CM firstly for 15 days, then CM + FNP by the same mentioned doses and route, 6th (FNP + CM co-treated): gavaged FNP firstly followed by CM by the same mentioned doses and route. Rats were orally gavaged three times per week, day after day for 60 days. FNP exposure significantly reduced serum glutathione (GSH) levels, but significantly increased serum levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), protein carbonyl (PCO), and 8hydroxy2deoxyguanosine (8OH2dG). Additionally, FNP exposure significantly up-regulated the mRNA expression levels of hepatic CYP1A1 and increased the SCGE indices in whole blood, liver, and spleen tissues of exposed male rats. Administration of CM significantly regulated the FNP induced oxidative stress, reduced hepatic CYP1A1 mRNA expression levels and values of comet assay indices particularly in the (CM + FNP pro/co-treated) group compared to the (FNP + CM co-treated) group. In conclusion, our results indicate, for the first time, that FNP retains an in vivo genotoxic potential at a dose of (1/10 LD50) and up-regulated hepatic CYP1A1 mRNA expression in male rats. Additionally, CM supplements may improve the genotoxic outcomes, oxidative stress, and altered CYP1A1 mRNA expression induced by FNP particularly in the pro/concurrent-treatment compared to the concurrent treatment alone.
Collapse
Affiliation(s)
- Ehsan H Abu Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Abeer M Anwer
- Head Researcher of Immunity in Animal Reproduction Research Institute. Egypt
| | - Ahmed G Al Nady
- Veterinarian at the Central Administration of Veterinary Quarantine and Examinations, Egypt
| |
Collapse
|
20
|
Mir HA, Ali R, Mushtaq U, Khanday FA. Structure-functional implications of longevity protein p66Shc in health and disease. Ageing Res Rev 2020; 63:101139. [PMID: 32795504 DOI: 10.1016/j.arr.2020.101139] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
ShcA (Src homologous- collagen homologue), family of adapter proteins, consists of three isoforms which integrate and transduce external stimuli to different signaling networks. ShcA family consists of p46Shc, p52Shc and p66Shc isoforms, characterized by having multiple protein-lipid and protein-protein interaction domains implying their functional diversity. Among the three isoforms p66Shc is structurally different containing an additional CH2 domain which attributes to its dual functionality in cell growth, mediating both cell proliferation and apoptosis. Besides, p66Shc is also involved in different biological processes including reactive oxygen species (ROS) production, cell migration, ageing, cytoskeletal reorganization and cell adhesion. Moreover, the interplay between p66Shc and ROS is implicated in the pathology of various dreadful diseases. Accordingly, here we discuss the recent structural aspects of all ShcA adaptor proteins but are highlighting the case of p66Shc as model isoform. Furthermore, this review insights the role of p66Shc in progression of chronic age-related diseases like neuro diseases, metabolic disorders (non-alcoholic fatty liver, obesity, diabetes, cardiovascular diseases, vascular endothelial dysfunction) and cancer in relation to ROS. We finally conclude that p66Shc might act as a valuable biomarker for the prognosis of these diseases and could be used as a potential therapeutic target.
Collapse
|
21
|
Zhu Q, Yang Y, Zhong Y, Lao Z, O'Neill P, Hong D, Zhang K, Zhao S. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). CHEMOSPHERE 2020; 254:126779. [PMID: 32957265 DOI: 10.1016/j.chemosphere.2020.126779] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Pyrethroids are a class of highly effective, broad-spectrum, less toxic, biodegradable synthetic pesticides. However, despite the extremely wide application of pyrethroids, there are many problems, such as insecticide resistance, lethal/sub-lethal toxicity to mammals, aquatic organisms or other beneficial organisms. The objectives of this review were to cover the main structures, synthesis, steroisomers, mechanisms of action, anti-mosquito activities, resistance, photodegradation and toxicities of pyrethroids. That was to provide a reference for synthesizing or screening novel pyrethroids with low insecticide resistance and low toxicity to beneficial organisms, evaluating the environmental pollution of pyrethroids and its metabolites. Besides, pyrethroids are mainly used for the control of vectors such as insects, and the non-target organisms are mammals, aquatic organisms etc. While maintaining the insecticidal activity is important, its toxic effects on non-target organisms should be also considered. Pyrethroid resistance is present not only in insect mosquitoes but also in environmental microorganisms, which results in anti-pyrethroids resistance (APR) strains. Besides, photodegradation product dibenzofurans is harmful to mammals and environment. Additionally, pyrethroid metabolites may have higher hormonal interference than the parents. Particularly, delivery of pyrethroids in nanoform can reduce the discharge of more toxic substances (such as organic solvents, etc.) to the environment.
Collapse
Affiliation(s)
- Qiuyan Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Yang Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Yingying Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Zhiting Lao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Paul O'Neill
- Department of Chemistry, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, United Kingdom.
| | - David Hong
- Department of Chemistry, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, United Kingdom.
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China; Faculty of Biotechnology and Health, Wuyi University, Jiangmen, 529020, People's Republic of China.
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
22
|
Salako AF, Amaeze NH, Shobajo HM, Osuala FI. Comparative acute toxicity of three pyrethroids (Deltamethrin, cypermethrin and lambda-cyhalothrin) on guppy fish (Poecilia reticulata peters, 1859). SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
23
|
Impact of pesticide exposure on adipose tissue development and function. Biochem J 2020; 477:2639-2653. [DOI: 10.1042/bcj20200324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a leading cause of morbidity, mortality and health care expenditure whose incidence is rapidly rising across the globe. Although the cause of the obesity epidemic is typically viewed as a product of an increased availability of high calorie foods and/or a reduction in physical activity, there is mounting evidence that exposure to synthetic chemicals in our environment may play an important role. Pesticides, are a class of chemicals whose widespread use has coincided with the global rise of obesity over the past two decades. Importantly, given their lipophilic nature many pesticides have been shown to accumulate with adipose tissue depots, suggesting they may be disrupting the function of white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue to promote obesity and metabolic diseases such as type 2 diabetes. In this review, we discuss epidemiological evidence linking pesticide exposure with body mass index (BMI) and the incidence of diabetes. We then review preclinical studies in rodent models which have directly evaluated the effects of different classes of insecticides and herbicides on obesity and metabolic dysfunction. Lastly, we review studies conducted in adipose tissue cells lines and the purported mechanisms by which pesticides may induce alterations in adipose tissue function. The review of the literature reveals major gaps in our knowledge regarding human exposure to pesticides and our understanding of whether physiologically relevant concentrations promote obesity and elicit alterations in key signaling pathways vital for maintaining adipose tissue metabolism.
Collapse
|
24
|
Zaki SM, Algaleel WAA, Imam RA, Soliman GF, Ghoneim FM. Nano-curcumin versus curcumin in amelioration of deltamethrin-induced hippocampal damage. Histochem Cell Biol 2020; 154:157-175. [PMID: 32227291 DOI: 10.1007/s00418-020-01871-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
We aimed to prove that oxidative stress is the main mechanism responsible for hippocampal neurotoxicity induced by deltamethrin (DLM). The protective role of curcumin (CMN) and nano-curcumin (NCMN) over this toxicity was studied. The rats were categorized into four groups: control, DLM, CMN and NCMN. The study continued for 30 days. Hippocampus was processed for histological, biochemical and immunohistochemical studies. Caspase-3, glial fibrillar acidic protein (GFAP), acetylcholinesterase (AChE), malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were measured for DLM-induced oxidative stress (increased MDA by 354%/decreased GSH by 61%, SOD by 61%, CAT 57%). Oxidative stress induced apoptosis of hippocampal neurons through increasing Nrf2, gamma-glutamyl cysteine synthetase heavy subunit (GCS-HS) and light subunit (GCS-LS) and decreasing AChE. It increases the activity of astrocytes through increasing GFAP. Finally, oxidative stress has a bad impaction on cognitive function. Improvement of oxidative stress was observed with use of CMN and NCMN (decrease of MDA/increase of GSH, SOD, CAT). The level of Nrf2, GCS-HS and GCS-LS decreased, while AChE, GFAP increased. Improvement of cognitive function was observed in both groups. In conclusion, oxidative stress is the common mechanism responsible for DLM-induced hippocampal neurotoxicity. It exerts apoptosis of hippocampal neurons through increasing Nrf2, HS-GCS, LS-GCS and decreasing AChE. In addition, it activates astrocytes through increasing expression of GFAP. The protective role of CMN and CMMN is related to their potent antioxidant effect. Much improvement has been detected with NCMN as compared to CMN.
Collapse
Affiliation(s)
- Sherif Mohamed Zaki
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt. .,Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.
| | - Waleed Ahmed Abd Algaleel
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt.,Faculty of Medicine, Cairo University, Giza, Egypt
| | - Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt.,Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ghada F Soliman
- Department of Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt.,Faculty of Medicine, Cairo University, Giza, Egypt
| | - Fatma M Ghoneim
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Wang T, Zhang R, Gong Z, Su P, Yang Y. Poly (Ionic Liquids) Functionalized Magnetic Nanoparticles as Efficient Adsorbent for Determination of Pyrethroids from Environmental Water Samples by GC‐MS. ChemistrySelect 2020. [DOI: 10.1002/slct.201904231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tiefeng Wang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical AnalysisBeijing University of Chemical Technology No. 15 North Third Ring Road, Chaoyang District Beijing China
| | - Ruiqi Zhang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical AnalysisBeijing University of Chemical Technology No. 15 North Third Ring Road, Chaoyang District Beijing China
| | - Zhen Gong
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical AnalysisBeijing University of Chemical Technology No. 15 North Third Ring Road, Chaoyang District Beijing China
| | - Ping Su
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical AnalysisBeijing University of Chemical Technology No. 15 North Third Ring Road, Chaoyang District Beijing China
| | - Yi Yang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical AnalysisBeijing University of Chemical Technology No. 15 North Third Ring Road, Chaoyang District Beijing China
| |
Collapse
|
26
|
Kang MJ, Lee MY. Toxicoproteomic analysis of deltamethrin exposure in neuroblastoma cell lines. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-019-00064-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
El Golli-Bennour E, Timoumi R, Annaibi E, Mokni M, Omezzine A, Bacha H, Abid-Essefi S. Protective effects of kefir against deltamethrin-induced hepatotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18856-18865. [PMID: 31062243 DOI: 10.1007/s11356-019-05253-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Deltamethrine (DLM) is a synthetic pyrethroid with broad spectrum activities against acaricides and insects. Widely used for agricultural and veterinary purposes, its human and animal exposure occurs by ingestion of contaminated water and food and leads to serious health problems. Kefir is fermented milk with numerous health favors counting restorative properties of bacterial flora, immune system stimulation, cholesterol reduction, as well as anti-mutagenic and anti-tumor properties. The present study was undertaken to examine the hepatoprotective and antioxidant potential of kefir against DLM toxicity in male Wistar albino rats. DLM-treated animals revealed a significant increase in serum biochemical parameters as well as hepatic protein and lipid oxidations but caused an inhibition in antioxidant enzymes. Additionally, we have observed an increase in hepatocyte DNA damages. This toxic effect was confirmed by histological study. Kefir administration normalized the elevated serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T bilirubin), and cholesterol. It also reduced DLM-induced protein carbonyl (PC) and malondialdehyde (MDA) formations. Furthermore, Kefir treatment restored catalase (CAT) and superoxide dismutase (SOD) activities. The co-treatment as well as the pre-treatment by kefir showed an improvement of oxidative status as well as suppressed inflammation and DNA damages. However, the pre-treatment seems to be the most efficient. Therefore, it could be concluded that kefir is a natural product able to protect against the hepatotoxic effects of DLM by its free radical-scavenging and potent antioxidant activity.
Collapse
Affiliation(s)
- Emna El Golli-Bennour
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia
| | - Emna Annaibi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia
| | - Moncef Mokni
- Department of Anatomic Pathology and Histology, University Hospital Farhat Hached, Sousse, Tunisia
| | - Asma Omezzine
- LR12SP11, Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia.
| |
Collapse
|
28
|
Jia ZZ, Zhang JW, Zhou D, Xu DQ, Feng XZ. Deltamethrin exposure induces oxidative stress and affects meiotic maturation in mouse oocyte. CHEMOSPHERE 2019; 223:704-713. [PMID: 30802836 DOI: 10.1016/j.chemosphere.2019.02.092] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Pyrethroid insecticides are commonly used as insecticides and considered to be less toxic to mammals, but may still impair the reproduction of animals and humans. The aim of this research was to evaluate the tendency of deltamethrin induced oxidative stress and its effects on meiosis, apoptosis and autophagy of mouse oocytes in vitro maturation after deltamethrin exposure. Especially, the maturation rate of oocytes decreased significantly after 14 h exposure of deltamethrin in concentration-dependent manners, which was manifested as abnormal spindle morphology and DNA double strand breaks. Oxidative stress was found in mouse oocytes exposed to deltamethrin, as shown by changes in the expression of CAT and SOD2. Our results also show that deltamethrin affects the quality of oocytes by causing abnormal mitochondrial distribution and by decreasing mitochondrial membrane potential. The apoptosis of oocyte regulated by the expression of Bax and Bcl-2 protein was obviously affected by deltamethrin. Compared with the control group, the expression of key regulatory factors in the autophagy pathway, LC3, Atg12, Atg14, and Beclin, increased in the experimental group. In summary, these results revealed that deltamethrin might inhibit the maturation of mouse oocytes and adversely affect the survival of oocytes.
Collapse
Affiliation(s)
- Zhen-Zhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Jing-Wen Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Di Zhou
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ding-Qi Xu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China.
| |
Collapse
|
29
|
Lu Q, Sun Y, Ares I, Anadón A, Martínez M, Martínez-Larrañaga MR, Yuan Z, Wang X, Martínez MA. Deltamethrin toxicity: A review of oxidative stress and metabolism. ENVIRONMENTAL RESEARCH 2019; 170:260-281. [PMID: 30599291 DOI: 10.1016/j.envres.2018.12.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Deltamethrin is widely used worldwide due to its valuable insecticidal activity against pests and parasites. Increasing evidence has shown that deltamethrin causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. For the first time, this review systematically summarizes the deltamethrin toxicity mechanism from the perspective of oxidative stress, including deltamethrin-mediated oxidative damage, antioxidant status, oxidative signaling pathways and modulatory effects of antagonists, synergists and placebos on oxidative stress. Further, deltamethrin metabolism, including metabolites, metabolic enzymes and pathways and deltamethrin metabolite toxicity are discussed. This review will shed new light on deltamethrin toxicity mechanisms and provide effective strategies to ensure pest control and prevention of human and animal poisoning.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaqi Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
30
|
Chrustek A, Hołyńska-Iwan I, Dziembowska I, Bogusiewicz J, Wróblewski M, Cwynar A, Olszewska-Słonina D. Current Research on the Safety of Pyrethroids Used as Insecticides. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E61. [PMID: 30344292 PMCID: PMC6174339 DOI: 10.3390/medicina54040061] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022]
Abstract
Pyrethroids are synthetic derivatives of natural pyrethrins extracted from Chrysanthemum cinerariaefolium. They are 2250 times more toxic to insects than to vertebrates due to insects' smaller size, lower body temperature and more sensitive sodium channels. In particular, three pyrethroid compounds, namely deltamethrin, permethrin, and alpha-cypermethrin, are commonly used as insecticides and are recommended for in-home insect control because they are considered to be relatively non-toxic to humans in all stages of life. However, recent data show that they are not completely harmless to human health as they may enter the body through skin contact, by inhalation and food or water, and absorption level depending on the type of food. Permethrin seems to have an adverse effect on fertility, the immune system, cardiovascular and hepatic metabolism as well as enzymatic activity. Deltamethrin induces inflammation, nephro- and hepatotoxicity and influences the activity of antioxidant enzymes in tissues. Alpha-cypermethrin may impair immunity and act to increase glucose and lipid levels in blood. The aim of the review is to provide comprehensive information on potential hazards associated to human exposure to deltamethrin, permethrin and alpha-cypermethrin. The results of presented studies prove that the insecticides must be used with great caution.
Collapse
Affiliation(s)
- Agnieszka Chrustek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Inga Dziembowska
- Department of Pathophysiology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-089 Torun, Poland.
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, L. Rydygier Collegium Medicum of Nicolaus Copernicus University, 85-092 Torun, Poland.
| | - Anna Cwynar
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| |
Collapse
|