1
|
Sun Y, Dong J, Li J, Zhang Y, Han Y. Overexpression of MFAP5 inhibits the progression of papillary thyroid cancer and aerobic glycolysis by regulating the EFEMP2/Wnt/β-catenin pathway. Pathol Res Pract 2025; 268:155846. [PMID: 40020327 DOI: 10.1016/j.prp.2025.155846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
This study aimed to investigate the mechanism and role of MFAP5 in papillary thyroid carcinoma (PTC), laying the foundation for future clinical treatment of PTC. Using WB and RT-qPCR to determine MFAP5 expression in PTC tissues and paracancerous tissues, as well as human normal thyroid cell lines and human PTC cell lines. Viral infection of PTC cells by overexpressing MFAP5 and knocking down EFEMP2. CCK8 and a colony formation assay were used to assess PTC cell proliferation. Kits detect glucose uptake, lactate production, and WB analyses of GLUT1, HK-II, and LDHA expression to evaluate aerobic glycolysis. Nude mice were used as xenograft models for tumor growth assessment. MFAP5. WB detects the expression of EFEMP2, Myc, cyclin D1 and β-catenin. MFAP5 expression is significantly reduced in PTC tissues and cells. MFAP5 overexpression inhibits PTC cell proliferation and aerobic glycolysis. MFAP5 overexpression activates EFEMP2 and suppresses the Wnt/β-catenin pathway. Knockdown of EFEMP2 reverses PTC cell proliferation and aerobic glycolysis. Tumor growth can be inhibited in vivo by MFAP5 overexpression, which regulates the EFEMP2/Wnt/β-catenin pathway. Overexpression of MFAP5 inhibits PTC progression and aerobic glycolysis by regulating the EFEMP2/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yihan Sun
- Department of Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University/The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Wenzhou, Zhejiang 325000, China
| | - Jianda Dong
- Department of Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University/The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Wenzhou, Zhejiang 325000, China
| | - Jiante Li
- Department of AnoRectal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University/The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Wenzhou, Zhejiang 325000, China
| | - Yi Zhang
- Department of Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University/The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Wenzhou, Zhejiang 325000, China
| | - Yifan Han
- Department of Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University/The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Abulsoud AI, Aly SH, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, El Tabaa MM, Rashed M, El-Shiekh RA, Doghish AS. Natural compounds as modulators of miRNAs: a new frontier in bladder cancer treatment. Med Oncol 2025; 42:56. [PMID: 39883227 DOI: 10.1007/s12032-025-02613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Bladder cancer (BC) is a major global health issue with a high recurrence rate and limited effective treatments. Over the past few years, it has become evident that miRNAs play a role in the carcinogenesis process, particularly in regulating genes that promote cancer cell proliferation and invasion. This review focuses on the extent to which natural products can act as potential miRNA modulators for the management of bladder cancer. Polyphenols, flavonoids, and other phytochemicals are natural compounds found to have inherent potential to modulate miRNAs and reform the oncogenic properties of bladder cancer cells regulating cell growth and death. In integration with the current cancer treatment regimes, such natural agents may safely substitute for the traditional chemical chemotherapeutic agents of the conventional approaches. To this end, this review presents the existing knowledge of natural compounds as regulators of miRNA, their mechanisms for the management of BC, the role of their nanoparticles, and future novel therapies. The use of these compounds is not only a therapeutic practice for the conditions of bladder cancer, but it also upholds new avenues for creativity.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
3
|
Cui Y, Wen H, Tang J, Chen J, Zhou J, Hou M, Rong X, Lan Y, Wu Q. ELAVL1 regulates glycolysis in nasopharyngeal carcinoma cells through the HMGB3/β-catenin axis. Mol Med 2024; 30:172. [PMID: 39390359 PMCID: PMC11468264 DOI: 10.1186/s10020-024-00941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The role of ELAVL1 in the progression of various tumors has been demonstrated. Our research aims to investigate how ELAVL1 controls the glycolytic process in nasopharyngeal carcinoma cells through the HMGB3/β-catenin pathway. METHODS The expression of ELAVL1 was detected in clinical tumor samples and nasopharyngeal carcinoma cell lines. A subcutaneous tumor model was established in nude mice to investigate the role of ELAVL1 in tumor progression. The relationship between HMGB3 and ELAVL1 was validated by RNA pull down and RIP assays. TOPFlash/FOPFlash reporter assay was used to detect β-catenin activity. Assay kits were utilized to measure glucose consumption, lactate production, and G6PD activity in nasopharyngeal carcinoma cells. Western blot was conducted to detect the expression of glycolysis-related proteins. The glycolytic capacity was analyzed through extracellular acidification rate (ECAR). RESULTS In both clinical samples and nasopharyngeal carcinoma cell lines, the expression levels of ELAVL1 mRNA and protein were found to be upregulated. Knockdown of ELAVL1 significantly inhibited the in vivo proliferation of nasopharyngeal carcinoma and suppressed the glycolytic capacity of nasopharyngeal carcinoma cells. ELAVL1 interacts with HMGB3, leading to an increase in the stability of HMGB3 mRNA. Overexpression of HMGB3 elevated the reduced β-catenin activity caused by sh-ELAVL1 and reversed the inhibitory effect of sh-ELAVL1 on cellular glycolytic capacity. Treatment with β-catenin inhibitor (FH535) effectively suppressed the promotion of glycolytic capacity induced by HMGB3 overexpression. CONCLUSIONS ELAVL1 promotes glycolysis in nasopharyngeal carcinoma cells by interacting with HMGB3 to stabilize HMGB3 mRNA, thereby activating β-catenin pathway. Therefore, targeting the ELAVL1-HMGB3-β-catenin axis has the potential to be a novel approach for treating nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yi Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, 423000, P.R. China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, P.R. China
| | - Haojie Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, 423000, P.R. China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, P.R. China
| | - Jinyong Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, 423000, P.R. China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, P.R. China
| | - Jiawen Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, 423000, P.R. China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, P.R. China
| | - Juan Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, 423000, P.R. China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, P.R. China
| | - Minghua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, 423000, P.R. China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, P.R. China
| | - Xiaohan Rong
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, 423000, P.R. China
| | - Yuanzhao Lan
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, 423000, P.R. China
| | - Qiong Wu
- Department of Nephrology, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), No. 102, luojiajing, beihu District, Chenzhou, Hunan, 423000, P.R. China.
| |
Collapse
|
4
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
5
|
Chikhirzhina E, Tsimokha A, Tomilin AN, Polyanichko A. Structure and Functions of HMGB3 Protein. Int J Mol Sci 2024; 25:7656. [PMID: 39062899 PMCID: PMC11276821 DOI: 10.3390/ijms25147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.
Collapse
Affiliation(s)
- Elena Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia; (A.T.); (A.N.T.); (A.P.)
| | | | | | | |
Collapse
|
6
|
Wang P, Wei X, Qu X, Zhu Y. Potential clinical application of microRNAs in bladder cancer. J Biomed Res 2024; 38:289-306. [PMID: 38808545 PMCID: PMC11300522 DOI: 10.7555/jbr.37.20230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 05/30/2024] Open
Abstract
Bladder cancer (BC) is the tenth most prevalent malignancy globally, presenting significant clinical and societal challenges because of its high incidence, rapid progression, and frequent recurrence. Presently, cystoscopy and urine cytology serve as the established diagnostic methods for BC. However, their efficacy is limited by their invasive nature and low sensitivity. Therefore, the development of highly specific biomarkers and effective non-invasive detection strategies is imperative for achieving a precise and timely diagnosis of BC, as well as for facilitating an optimal tumor treatment and an improved prognosis. microRNAs (miRNAs), short noncoding RNA molecules spanning around 20-25 nucleotides, are implicated in the regulation of diverse carcinogenic pathways. Substantially altered miRNAs form robust functional regulatory networks that exert a notable influence on the tumorigenesis and progression of BC. Investigations into aberrant miRNAs derived from blood, urine, or extracellular vesicles indicate their potential roles as diagnostic biomarkers and prognostic indicators in BC, enabling miRNAs to monitor the progression and predict the recurrence of the disease. Simultaneously, the investigation centered on miRNA as a potential therapeutic agent presents a novel approach for the treatment of BC. This review comprehensively analyzes biological roles of miRNAs in tumorigenesis and progression, and systematically summarizes their potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for BC. Additionally, we evaluate the progress made in laboratory techniques within this field and discuss the prospects.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaowei Wei
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaojun Qu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
7
|
Yang H, He P, Luo W, Liu S, Yang Y. circRNA TATA-box binding protein associated factor 15 acts as an oncogene to facilitate bladder cancer progression through targeting miR-502-5p/high mobility group box 3. Mol Carcinog 2024; 63:629-646. [PMID: 38226841 DOI: 10.1002/mc.23677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
Circular RNAs (circRNAs) are key in regulating bladder cancer progression. This study explored the effects of circRNA TATA-box binding protein associated factor 15 (circTAF15) on bladder cancer progression. We enrolled 80 bladder cancer patients to examine the relationship between circTAF15 expression and clinical features. The function of circTAF15 on bladder cancer cell viability, proliferation, migration, invasion, and glycolysis was monitored by cell counting kit-8 assay, 5-Ethynyl-2'-deoxyuridine experiment, Transwell experiment, and glycolysis analysis. Dual luciferase reporter gene assay, RNA pull-down assay, and RNA immunoprecipitation assay were used to verify the binding between circTAF15 and miR-502-5p or between miR-502-5p and high mobility group box 3 (HMGB3). circTAF15 effect on in vivo growth of bladder cancer was investigated by xenograft tumor experiment. Quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry were implemented to investigate the expression levels of genes. circTAF15 was upregulated in bladder cancer patients, associated with unfavorable outcomes. circTAF15 knockdown attenuated bladder cancer cell viability, proliferation, migration, invasion, epithelial-mesenchymal transition, and glycolysis. circTAF15 suppressed miR-502-5p expression, and miR-502-5p inhibited HMGB3 expression. Low miR-502-5p expression was associated with unfavorable outcomes in bladder cancer patients. miR-502-5p silencing and HMGB3 overexpression counteracted the inhibition of circTAF15 knockdown on the malignant phenotype of bladder cancer cells. circTAF15 knockdown attenuated the in vivo growth of bladder cancer cells. circTAF15 enhanced the progression of bladder cancer through upregulating HMGB3 via suppressing miR-502-5p. circTAF15 may be a novel target to treat bladder cancer in the future.
Collapse
Affiliation(s)
- Hong Yang
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peilin He
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei Luo
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shaoyou Liu
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Yang
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Wang Y, Li H, Chen W, Huang X, Fan R, Xu M, Zou L. CircRUNX1 drives the malignant phenotypes of lung adenocarcinoma through mediating the miR-5195-3p/HMGB3 network. Gen Thorac Cardiovasc Surg 2024; 72:164-175. [PMID: 37474742 DOI: 10.1007/s11748-023-01960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are key factors in the regulation of cancer progression. However, the role of circRUNX1 in lung adenocarcinoma (LUAD) progression is unclear. METHODS The expression levels of circRUNX1, microRNA (miR)-5195-3p, and high-mobility group protein B3 (HMGB3) were detected by quantitative real-time PCR. Cell proliferation, migration, invasion and apoptosis were analyzed by EdU staining, colony formation assay, transwell assay and flow cytometry. Protein levels were measured using western blot analysis. The interaction between miR-5195-3p and circRUNX1 or HMGB3 was verified by dual-luciferase reporter assay and RIP assay. Animal experiments were performed to investigate the role of circRUNX1 in LUAD tumorigenesis. RESULTS We found that circRUNX1 was upregulated in LUAD tumor tissues and cells. CircRUNX1 knockdown suppressed LUAD cell proliferation and metastasis, while promoted apoptosis. In terms of mechanism, we found that circRUNX1 could sponge miR-5195-3p, and miR-5195-3p inhibitor abolished the regulation of circRUNX1 knockdown on LUAD cell proliferation, metastasis and apoptosis. In addition, miR-5195-3p could target HMGB3, and HMGB3 overexpression reversed the inhibition effect of miR-5195-3p on LUAD progression. Moreover, circRUNX1 knockdown reduced LUAD tumorigenesis. CONCLUSION CircRUNX1 facilitated LUAD proliferation and metastasis by regulating the miR-5195-3p/HMGB3 axis, suggesting that it might be a possible therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317, Zhongshan Road, Yanping District, Nanping City, 353000, Fujian Province, People's Republic of China
| | - Hui Li
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317, Zhongshan Road, Yanping District, Nanping City, 353000, Fujian Province, People's Republic of China
| | - Wenbin Chen
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317, Zhongshan Road, Yanping District, Nanping City, 353000, Fujian Province, People's Republic of China
| | - Xiaoliang Huang
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317, Zhongshan Road, Yanping District, Nanping City, 353000, Fujian Province, People's Republic of China
| | - Renliang Fan
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317, Zhongshan Road, Yanping District, Nanping City, 353000, Fujian Province, People's Republic of China
| | - Meijia Xu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317, Zhongshan Road, Yanping District, Nanping City, 353000, Fujian Province, People's Republic of China
| | - Li Zou
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, No. 317, Zhongshan Road, Yanping District, Nanping City, 353000, Fujian Province, People's Republic of China.
| |
Collapse
|
9
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
10
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Zhou X, Zhang Q, Liang G, Liang X, Luo B. Overexpression of HMGB3 and its prognostic value in breast cancer. Front Oncol 2022; 12:1048921. [PMID: 36620553 PMCID: PMC9815698 DOI: 10.3389/fonc.2022.1048921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background High mobility group protein B3 (HMGB3) is abundantly expressed in a number of malignancies, contributing to tumor cell growth and predicting poor outcomes. More research on the connection between HMGB3 and breast cancer is needed. The prognostic significance of HMGB3 in breast cancer was examined and validated in this study. Methods Using The Cancer Genome Atlas (TCGA) database RNA sequencing and clinical data, we investigated the associations between HMGB3 expression and tumor mutations, prognosis, and immune infiltration in breast cancer. The Gene Expression Profiling Interactive Analysis (GEPIA), Tumor Immune Estimation Resource (TIMER), breast cancer gene-expression miner (bc-GenExMiner), UALCAN, OncoLnc, cBio Cancer Genomics Portal (cBioPortal), and LinkedOmics databases were applied to examine the levels of expression, mutation, coexpression, and immune correlation of HMGB3 in breast cancer. cBioPortal and the Database for Annotation, Visualization, and Integrated Discovery (DAVID) were used for coexpression and enrichment analyses, respectively. Experimental tests and a separate cohort of breast cancer patients in our center were used for validation. To determine independent risk factors affecting breast carcinoma prognosis, multivariate Cox regression analysis was performed. The Kaplan-Meier method was applied to analyze the connection between HMGB3 expression and overall survival time in breast cancer. Results Pan-cancer investigation using the GEPIA and UALCAN databases revealed a high level of HMGB3 expression in different malignancies, including breast cancer. HMGB3 might be a potential diagnostic biomarker, according to the receiver operating characteristic (ROC) curve (AUC=0.932). And immunohistochemistry confirmed higher HMGB3 protein expression in breast cancer tissues in clinical samples. Experimental tests also showed that breast cancer cells have higher expression of HMGB3, and knockdown of HMGB3 can promote the proliferation of breast cancer cells and increase sensitivity to chemotherapy. Human epidermal growth factor receptor 2 (HER2), Nottingham Prognostic Index (NPI), basal-like status, nodal status (N+), triple-negative status, and Scarff-Bloom-Richardson (SBR) grade all showed positive correlations with HMGB3 expression. Conversely, HMGB3 expression was negatively associated with the expression of estrogen receptor (ER) and progesterone receptor (PR) in breast cancer. Breast cancer patients with high HMGB3 expression had poor overall survival, which was validated by an analysis of a separate cohort of breast cancer patients in our center. Cox regression analysis identified high HMGB3 expression as an independently associated risk factor for breast carcinoma. The amount of immunological infiltration was substantially linked with the high expression of HMGB3. The chromosome centromeric region, ATPase activity, and the cell cycle are critical areas where HMGB3 is involved, according to enrichment analysis. Therefore, we suspected that HMGB3 might be a potential biomarker for detecting and treating breast carcinoma. Conclusion Breast cancer tissues had higher HMGB3 expression than normal breast tissues. HMGB3 overexpression may serve as an indicator for poor breast cancer outcomes.
Collapse
Affiliation(s)
- Xiaomei Zhou
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qu Zhang
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gai Liang
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Liang
- Department of Abdominal Oncology, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Bo Luo,
| |
Collapse
|
12
|
Gao S, Zhang X, Bai W, Wang J, Jiang B. Circ-IGF1R Affects the Progression of Colorectal Cancer by Activating the miR-362-5p/HMGB3-Mediated Wnt/β-Catenin Signal Pathway. Biochem Genet 2022; 61:1210-1229. [DOI: 10.1007/s10528-022-10316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
|
13
|
Guo X, Jiao H, Cao L, Meng F. Biological implications and clinical potential of invasion and migration related miRNAs in glioma. Front Integr Neurosci 2022; 16:989029. [PMID: 36479040 PMCID: PMC9720134 DOI: 10.3389/fnint.2022.989029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2022] [Indexed: 12/01/2024] Open
Abstract
Gliomas are the most common primary malignant brain tumors and are highly aggressive. Invasion and migration are the main causes of poor prognosis and treatment resistance in gliomas. As migration and invasion occur, patient survival and prognosis decline dramatically. MicroRNAs (miRNAs) are small, non-coding 21-23 nucleotides involved in regulating the malignant phenotype of gliomas, including migration and invasion. Numerous studies have demonstrated the mechanism and function of some miRNAs in glioma migration and invasion. However, the biological and clinical significance (including diagnosis, prognosis, and targeted therapy) of glioma migration and invasion-related miRNAs have not been systematically discussed. This paper reviews the progress of miRNAs-mediated migration and invasion studies in glioma and discusses the clinical value of migration and invasion-related miRNAs as potential biomarkers or targeted therapies for glioma. In addition, these findings are expected to translate into future directions and challenges for clinical applications. Although many biomarkers and their biological roles in glioma invasion and migration have been identified, none have been specific so far, and further exploration of clinical treatment is still in progress; therefore, we aimed to further identify specific markers that may guide clinical treatment and improve the quality of patient survival.
Collapse
Affiliation(s)
| | | | | | - Facai Meng
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
14
|
Crosstalk of miRNAs with signaling networks in bladder cancer progression: Therapeutic, diagnostic and prognostic functions. Pharmacol Res 2022; 185:106475. [DOI: 10.1016/j.phrs.2022.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
|
15
|
Varvil MS, Bailey T, Dhawan D, Knapp DW, Ramos-Vara JA, dos Santos AP. The miRNome of canine invasive urothelial carcinoma. Front Vet Sci 2022; 9:945638. [PMID: 36072391 PMCID: PMC9443663 DOI: 10.3389/fvets.2022.945638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Urothelial carcinoma (UC) comprises up to 2% of all naturally occurring neoplasia in dogs and can be challenging to diagnose. MicroRNAs (miRNAs) have been reported to be dysregulated in numerous diseases, including neoplasia. MiRNA expression has been evaluated in human UC, but there is limited information regarding the miRNA transcriptome of UC in dogs. Our study aimed to evaluate differential miRNA expression in bladder tissue collected from normal canine urothelium and canine invasive UC (iUC) to elucidate the dysregulated pathways in canine UC. Next-Generation RNA sequencing (RNA-Seq) was performed for dogs with UC (n = 29) and normal canine urothelium (n = 4). Raw RNA data were subjected to normalization, and pairwise comparison was performed using EdgeR with Benjamini-Hochberg FDR multiple testing correction (p < 0.05; >2-fold change) comparing tissue samples of normal urothelium to canine iUC samples. Principal component analysis and hierarchical cluster analysis were performed. MiRNA of FFPE tissue samples of separate iUC (n = 5) and normal urothelium (n = 5) were used to evaluate five miRNAs using RT-qPCR. Pathway analysis was performed utilizing miRWalk, STRING database, and Metascape utilizing KEGG pathways and GO terms databases. Twenty-eight miRNAs were differentially expressed (DE) by RNA-Seq. RT-qPCR confirmed that four miRNAs are significantly downregulated in UC compared to healthy urothelial samples (miR-105a, miR-143, miR-181a, and miR-214). Principal component analysis and hierarchical cluster analysis showed separation between miRNAs in iUC and the control group. The DE miRNAs are most often associated with gene silencing by miRNA, miRNAs in cancer, and miRNAs involved in DNA damage responses. Proteins involved include HRAS, KRAS, ARAF, RAF1, MAPK1, MAP2K1, MAPK3, FGFR3, EGFR, HBEGF, RASSF1, E2F2, E2F3, ERBB2, SRC, MMP1, and UP3KA. The differential expression of miRNAs in canine iUC compared to normal canine urothelial tissue indicates that these markers should be further evaluated for their potential role as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Taylor Bailey
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Deborah W. Knapp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - José A. Ramos-Vara
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
16
|
Chen F, Sun F, Liu X, Shao J, Zhang B. Glaucocalyxin A Inhibits the Malignant Progression of Epithelial Ovarian Cancer by Affecting the MicroRNA-374b-5p/HMGB3/Wnt-β-Catenin Pathway Axis. Front Oncol 2022; 12:955830. [PMID: 35912216 PMCID: PMC9329791 DOI: 10.3389/fonc.2022.955830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Glaucocalyxin A (GLA) is an ent-kaurene diterpenoid from Rabdosia japonica var possessing anti-tumor activity. This study aimed to investigate effects of GLA on epithelial ovarian cancer (EOC) and elucidate underlying mechanisms. Methods The expression of HMGB3 in EOC tissues was analyzed by GEPIA and immunohistochemistry. Cell proliferation was determined using CCK-8 and colony formation assays. Cell invasion, migration, and apoptosis were detected using Transwell, wound healing, and flow cytometry assays, respectively. Interactions between HMGB3 and miRNAs were predicted using ENCORI and validated using a dual-luciferase assay. mRNA expression levels of HMGB3 and miRNAs were measured using qPCR. Protein expression levels of HMGB3, E-cadherin, N-cadherin, Wnt3a,β-catenin, Bcl-2, and Bax were measured by western blotting. A tumor xenograft model was established to validate the efficacy and mechanism of GLA in vivo. Results HMGB3 was upregulated in EOC tissues and cells. GLA dose-dependently inhibited EOC cell proliferation and epithelial-mesenchymal transition (EMT). HMGB3 overexpression promoted proliferation, invasion, migration, and EMT, and suppressed the apoptosis of EOC cells. In addition, miR-374b-5p was targeted by HMGB3, and its overexpression hindered malignant characteristics of EOC cells. HMGB3 overexpression weakened antitumor effects of GLA and miR-374b-5p in EOC cells. Moreover, the Wnt-β-catenin pathway was inhibited by the GLA-mediated miR-374b-5p/HMGB3 axis. In vivo experiments showed that GLA inhibited EOC tumor growth, meanwhile, upregulated the miR-374b-5p level and downregulated the expression of HMGB3, Wnt3a, and β-catenin in tumor tissues. Conclusions GLA suppressed the malignant progression of EOC by regulating the miR-374b-5p/HMGB3/Wnt-β-catenin pathway axis.
Collapse
Affiliation(s)
- Feng Chen
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
| | - Fang Sun
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
| | - Xia Liu
- Department of Pathology, Xuzhou Central Hospital, Xuzhou, China
| | - Jing Shao
- Department of Clinical Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Bei Zhang
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
- *Correspondence: Bei Zhang,
| |
Collapse
|
17
|
Wu H, Feng H, Miao X, Ma J, Liu C, Zhang L, Yang L. Construction and validation of a prognostic model based on 11 lymph node metastasis-related genes for overall survival in endometrial cancer. Cancer Med 2022; 11:4641-4655. [PMID: 35778922 PMCID: PMC9741985 DOI: 10.1002/cam4.4844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most common malignant tumors in female reproductive system. The incidence of lymph node metastasis (LNM) is only about 10% in clinically suspected early-stage EC patients. Discovering prognostic models and effective biomarkers for early diagnosis is important to reduce the mortality rate. METHODS A least absolute shrinkage and selection operator (LASSO) regression was conducted to identify the characteristic dimension decrease and distinguish porgnostic LNM related genes signature. Subsequently, a novel prognosis-related nomogram was constructed to predict overall survival (OS). Survival analysis was carried out to explore the individual prognostic significance of the risk model and key gene was validated in vitro. RESULTS In total, 89 lymph node related genes (LRGs) were identified. Based on the LASSO Cox regression, 11 genes were selected for the development of a risk evaluation model. The Kaplan-Meier curve indicated that patients in the low-risk group had considerably better OS (p = 3.583e-08). The area under the ROC curve (AUC) of this model was 0.718 at 5 years of OS. Then, we developed an OS-associated nomogram that included the risk score and clinicopathological features. The concordance index of the nomogram was 0.769. The survival verification performed in three subgroups from the nomogram demonstrated the validity of the model. The AUC of the nomogram was 0.787 at 5 years OS. Proliferation and metastasis of HMGB3 were explored in EC cell line. External validation with 30 patients in our hospital showed that patients with low-risk scores had a longer OS (p-value = 0.03). Finally, we revealed that the most frequently mutated genes in the low-risk and high-risk groups are PTEN and TP53, respectively. CONCLUSIONS Our results suggest that LNM plays an important role in the prognosis, and HMGB3 was potential as a biomarker for EC patients.
Collapse
Affiliation(s)
- Hong Wu
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Haiqin Feng
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Xiaoli Miao
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Jiancai Ma
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Cairu Liu
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Lina Zhang
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| | - Liping Yang
- Department of Obstetrics and GynecologyHandan Central HospitalHandanChina
| |
Collapse
|
18
|
Sharma P, Yadav P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. HMGB3 inhibition by miR-142-3p/sh-RNA modulates autophagy and induces apoptosis via ROS accumulation and mitochondrial dysfunction and reduces the tumorigenic potential of human breast cancer cells. Life Sci 2022; 304:120727. [PMID: 35753437 DOI: 10.1016/j.lfs.2022.120727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
AIMS High mobility group box (HMGB) family proteins, HMGB1, HMGB2, HMGB3, and HMGB4 are oncogenic. The oncogenic nature of HMGB1 is characterized by its association with autophagy, ROS, and MMP. Since HMGB3 is its paralog, we hypothesized that it might also modulate autophagy, ROS, and MMP. Hence, we targeted HMGB3 using its shRNA or miR-142-3p and assessed the changes in autophagy, ROS, MMP, and tumorigenic properties of human breast cancer cells. MAIN METHODS Cell viability was assessed by resazurin staining and annexin-V/PI dual staining was used for confirming apoptosis. Colony formation, transwell migration, invasion and luciferase reporter (for miRNA-target validation) assays were also performed. ROS and MMP were detected using DHE and MitoTracker dyes, respectively. A zebrafish xenograft model was used to assess the role of miR-142-3p on in vivo metastatic potential of breast cancer cells. KEY FINDINGS Breast cancer tissues from Indian patients and TCGA samples exhibit overexpression of HMGB3. miR-142-3p binds to 3' UTR of HMGB3, leading to its downregulation that subsequently inhibits colony formation and induces apoptosis involving increased ROS accumulation and decreased MMP, phospho-mTOR and STAT3. Our findings show that HMGB3 is directly involved in the miR-142-3p-mediated disruption of autophagy and induction of apoptotic cell death via modulation of LC3, cleaved PARP and Bcl-xL. In addition, miR-142-3p inhibited migration, invasion and metastatic potential of breast cancer cells. SIGNIFICANCE Our findings highlighted the role of HMGB3, for the first time, in the modulation of autophagy and apoptosis in human breast cancer cells, and these results have therapeutic implications.
Collapse
Affiliation(s)
- Priyanshu Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Poonam Yadav
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
19
|
Montazer M, Taghehchian N, Mojarrad M, Moghbeli M. Role of microRNAs in regulation of WNT signaling pathway in urothelial and prostate cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urothelial cancer (UC) and prostate cancer (PCa) are the most common cancers among men with a high ratio of mortality in advanced-stages. The higher risk of these malignancies among men can be associated with higher carcinogens exposure. Molecular pathology of UC and PCa is related to the specific mutations and aberrations in some signaling pathways. WNT signaling is a highly regulated pathway that has a pivotal role during urothelial and prostate development and homeostasis. This pathway also plays a vital role in adult stem cell niches to maintain a balance between stemness and differentiation. Deregulation of the WNT pathway is frequently correlated with tumor progression and metastasis in urothelial and prostate tumors. Therefore, regulatory factors of WNT pathways are being investigated as diagnostic or prognostic markers and novel therapeutic targets during urothelial and prostate tumorigenesis. MicroRNAs (miRNAs) have a pivotal role in WNT signaling regulation in which there are interactions between miRNAs and WNT signaling pathway during tumor progression. Since, the miRNAs are sensitive, specific, and noninvasive, they can be introduced as efficient biomarkers of tumor progression.
Main body
In present review, we have summarized all of the miRNAs that have been involved in regulation of WNT signaling pathway in urothelial and prostate cancers.
Conclusions
It was observed that miRNAs were mainly involved in regulation of WNT signaling in bladder cancer cells through targeting the WNT ligands and cytoplasmic WNT components such as WNT5A, WNT7A, CTNNB1, GSK3β, and AXIN. Whereas, miRNAs were mainly involved in regulation of WNT signaling in prostate tumor cells via targeting the cytoplasmic WNT components and WNT related transcription factors such as CTNNB1, GSK3β, AXIN, TCF7, and LEF1. MiRNAs mainly functioned as tumor suppressors in bladder and prostate cancers through the WNT signaling inhibition. This review paves the way of introducing a noninvasive diagnostic panel of WNT related miRNAs in urothelial and prostate tumors.
Collapse
|
20
|
Gong W, Guo Y, Yuan H, Hu X, Chai R, Zheng B, Wan Z, Tu S. HMGB3 is a Potential Therapeutic Target by Affecting the Migration and Proliferation of Colorectal Cancer. Front Cell Dev Biol 2022; 10:891482. [PMID: 35712661 PMCID: PMC9194825 DOI: 10.3389/fcell.2022.891482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Colorectal cancer is one of the common malignant tumors in the digestive system, with high incidence and mortality rate. Therefore, there is an urgent need to identify and develop new molecular targets for colorectal cancer treatment. Previous studies have pointed out the important role of HMGB3 in tumors, and how it works in colorectal cancer needs to be studied in depth. In this study, we found that HMGB3 was highly expressed in COAD in the cBioPortal and GEPIA2 databases. Kaplan-Meier analysis showed that compared with patients with lower HMGB3 levels, patients with higher HMGB3 levels had poorer OS (p = 0.001). We also found a correlation between HMGB3 expression and immune infiltration of CRC. To investigate the mechanism of HMGB3 knockdown-mediated colorectal cancer inhibition, we detected a downregulation of N-cadherin, Vimentin and β-catenin proteins after knockdown of HMGB3. Taken together, HMGB3 can be an effective target for CRC treatment in the future, and we have reason to believe that HMGB3 will be of greater value in more tumors in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ziang Wan
- *Correspondence: Ziang Wan, ; Shiliang Tu,
| | | |
Collapse
|
21
|
Yang M, Zheng E, Ni J, Xu X, Jiang X, Zhao G. Circular RNA circFOXO3 facilitate non-small cell lung cancer progression through upregulating HMGB3 via sponging miR-545-3p/miR-506-3p. Tissue Cell 2022; 75:101702. [PMID: 35038619 DOI: 10.1016/j.tice.2021.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Circular RNAs (circRNAs) have emerged as a pivotal regulatory element in the progression of human cancers. Being an important member of circRNAs, circFOXO3 has been implicated in tumor invasion or metastasis of non-small cell lung cancer (NSCLC); however, the molecular mechanism underlying this promoting effect remains an enigma. The present study aims to study the function of circFOXO3 and dissect the relevant intracellular network in the progression and metastasis of NSCLC. METHODS Quantitative real time PCR (RT-qPCR) assay and Western blotting were used to quantify the levels of RNAs and proteins respectively. starBase v2.0 and luciferase assay were used to validate the target of circRNAs or miRNAs. Cell Counting Kit-8 (CCK-8) assay was adopted to examine cell viability. Transwell was used to determine cell invasion and migration. Xenograft model was established to detect tumor growth. RESULTS RT-qPCR showed that circFOXO3 was overexpressed in NSCLC cells and tissues. Knockdown of circFOXO3 not only inhibited NSCLC cell proliferation, migration and invasion in vitro but also suppressed tumor growth in vivo. starBase v2.0 and luciferase assay results collectively suggested that circFOXO3 sponged miR-545-3p and miR-506-3p. Dual-inhibition of circFOXO3 and its target miRNAs suppressed the reduction of cell proliferation, migration and invasion induced by siRNA of circFOXO3 (si-circFOXO3), demonstrating that the effect of circFOXO3 on NSCLC was dependent on sponging miR-545-3p and miR-506-3p. Further bioinformatic analysis and biochemistry experiments revealed that miR-545-3p and miR-506-3p regulated the expression of a family member of high-mobility group box, HMGB3. CONCLUSION Here, we show thatcircFOXO3 in NSCLC promotes the proliferation, migration and invasion of NSCLC cells, thereby promoting tumor growth. We further find that circFOXO3 sponges miR-545-3p/miR-506-3p that bind to 3'-UTR of HMGB3 mRNA, which constitutes the major network fulfilling the circFOXO3's promoting effect. Therefore, we proposed that circFOXO3 could be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Minglei Yang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China; Department of Thoracic Surgery, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Enkuo Zheng
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China
| | - Junjun Ni
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China
| | - Xiang Xu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China
| | - Xu Jiang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China
| | - Guofang Zhao
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China; Department of Thoracic Surgery, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China.
| |
Collapse
|
22
|
HMGB3 promotes PARP inhibitor resistance through interacting with PARP1 in ovarian cancer. Cell Death Dis 2022; 13:263. [PMID: 35332131 PMCID: PMC8948190 DOI: 10.1038/s41419-022-04670-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) resistance remains a therapeutic challenge in ovarian cancer. High-mobility group box 3 (HMGB3) plays significant roles in the development of drug resistance of many cancers. However, the function of HMGB3 in PARPi resistance is poorly understood. In the current study, we clarified that HMGB3 was aberrantly overexpressed in high-grade serous ovarian carcinoma (HGSOC) tissues, and high HMGB3 levels indicated shorter overall survival and drug resistance in HGSOC. The overexpression of HMGB3 increased the insensitivity of ovarian cancer to PARPi, whereas HMGB3 knockdown reduced PARPi resistance. Mechanistically, PARP1 was identified as a novel interaction partner of HMGB3, which could be blocked using olaparib and was enhanced upon DNA damage conditions. We further showed that loss of HMGB3 induced PARP1 trapping at DNA lesions and inhibited the PARylation activity of PARP1, resulting in an increased DNA damage response and cell apoptosis. The PARPi-resistant role of HMGB3 was also verified in a xenograft mouse model. In conclusion, HMGB3 promoted PARPi resistance via interacting with PARP1, and the targeted inhibition of HMGB3 might overcome PARPi resistance in ovarian cancer therapy.
Collapse
|
23
|
Zhong X, Zhang S, Zhang Y, Jiang Z, Li Y, Chang J, Niu J, Shi Y. HMGB3 is Associated With an Unfavorable Prognosis of Neuroblastoma and Promotes Tumor Progression by Mediating TPX2. Front Cell Dev Biol 2022; 9:769547. [PMID: 34988076 PMCID: PMC8721485 DOI: 10.3389/fcell.2021.769547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor apart from central nervous system malignancies in children aged 0–14 years, and the outcomes of high-risk patients are dismal. High mobility group box 3 (HMGB3) plays an oncogenic role in many cancers; however, its biological role in NB is still unclear. Using data mining, we found that HMGB3 expression was markedly elevated in NB patients with unfavorable prognoses. When HMGB3 expression in NB cell lines was inhibited, cell proliferation, migration, and invasion were suppressed, and HMGB3 knockdown inhibited NB tumor development in mice. RT−PCR was employed to detect mRNA expression of nine coexpressed genes in response to HMGB3 knockdown, and TPX2 was identified. Furthermore, overexpression of TPX2 reversed the cell proliferation effect of HMGB3 silencing. Multivariate Cox regression analysis indicated that HMGB3 and TPX2 might be independent prognostic factors for overall survival and event-free survival, which showed the highest significance (p < 0.001). According to the nomogram predictor constructed, the integration of gene expression and clinicopathological features exhibited better prognostic prediction power. Furthermore, the random forest algorithm and receiver operating characteristic curves also showed that HMGB3 and TPX2 played important roles in discriminating the vital status (alive/dead) of patients in the NB datasets. Our informatics analysis and biological experiments suggested that HMGB3 is correlated with the unfavorable clinical outcomes of NB, and plays an important role in promoting cell growth, proliferation, and invasion in NB, potentially representing a new therapeutic target for tumor progression.
Collapse
Affiliation(s)
- Xiaodan Zhong
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Yutong Zhang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yanan Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jian Chang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
25
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
26
|
Huang C, Yu W, Wang Q, Huang T, Ding Y. CircANTXR1 Contributes to the Malignant Progression of Hepatocellular Carcinoma by Promoting Proliferation and Metastasis. J Hepatocell Carcinoma 2021; 8:1339-1353. [PMID: 34786378 PMCID: PMC8590609 DOI: 10.2147/jhc.s317256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Circular RNA (circRNA) is a key regulator for the malignant progression of cancer. However, the role of circRNA anthrax toxin receptor 1 (circANTXR1) in hepatocellular carcinoma (HCC) is still unclear. Methods Quantitative real-time PCR was performed to detect RNA expression. Cell proliferation, migration and invasion were determined using MTT assay, EdU staining, colony formation assay, wound healing assay and transwell assay. The protein levels of metastasis markers, x-ray repair cross complementing 5 (XRCC5) and exosome markers were examined using Western blot analysis. Xenograft tumor models were built to investigate the role of circANTXR1 in HCC tumorigenesis. The relationship between microRNA (miR)-532-5p and circANTXR1 or XRCC5 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. The identification of exosomes were performed using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Results CircANTXR1 was a stable and highly expressed circRNA in HCC. Silenced circANTXR1 inhibited the proliferation, migration and invasion of HCC cells in vitro, and suppressed HCC tumor growth in vivo. MiR-532-5p could be sponged by circANTXR1, and its inhibitor could reverse the inhibition of circANTXR1 silencing on HCC cells progression. In addition, we discovered that XRCC5 was a target of miR-532-5p. Furthermore, XRCC5 overexpression could reverse the suppressive effect of miR-532-5p overexpression on HCC cell proliferation, migration and invasion. Exosome was involved in the transport of circANTXR1 in HCC cells. Exosome circANTXR1 might be a potential serum biomarker for HCC patients. Conclusion CircANTXR1 promotes the progression of HCC through the miR-532-5p/XRCC5 axis, which might be a potential serum biomarker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Changshan Huang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Wei Yu
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Qian Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Tao Huang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yuechao Ding
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
27
|
Ma L, Yan W, Sun X, Chen P. Long noncoding RNA VPS9D1-AS1 promotes esophageal squamous cell carcinoma progression via the Wnt/β-catenin signaling pathway. J Cancer 2021; 12:6894-6904. [PMID: 34659577 PMCID: PMC8517997 DOI: 10.7150/jca.54556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/29/2021] [Indexed: 01/22/2023] Open
Abstract
The VPS9D1 antisense RNA1 (VPS9D1-AS1, lncRNA MYU) can act as an oncogene or an antioncogene in different malignancies. In the present study, we demonstrated that VPS9D1-AS1 is significantly upregulated in esophageal squamous cell carcinoma (ESCC) and assessed its biological function and clinical prognosis. RNA-sequencing was conducted in four pairs of ESCC tissues and normal adjacent tissues (NATs). Compared with controls, lncRNA VPS9D1-AS1 was highly expressed in ESCC tissues, cell lines and plasma. VPS9D1-AS1 upregulation significantly correlated with the histopathological grade and clinical stage of ESCC. Analyses revealed poor prognosis in ESCC patients with high VPS9D1-AS1 expression. VPS9D1-AS1 knockdown led to the inhibition of tumor proliferation, migration, and invasion in vivo and vitro. VPS9D1-AS1 silencing downregulated the Wnt/β-catenin signaling pathways by acting on key proteins such as β-catenin and c-Myc. However, the expressions of these proteins increased after the addition of pathway agonist CT99021. Therefore, taken together VPS9D1-AS1 is highly expressed in ESCC and its expression can lead to poor prognosis. In conclusion, this study suggested that VPS9D1-AS1 acts as a vital part in facilitating ESCC progression and can be a potential biomarker for the diagnosis of patients with ESCC.
Collapse
Affiliation(s)
- Liang Ma
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu , China
| | - Wenyue Yan
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu , China
| | - Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ping Chen
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu , China
| |
Collapse
|
28
|
Xi J, Xi Y, Zhang Z, Hao Y, Wu F, Bian B, Hao G, Li W, Zhang S. Hsa_circ_0060937 accelerates non-small cell lung cancer progression via modulating miR-195-5p/HMGB3 pathway. Cell Cycle 2021; 20:2040-2052. [PMID: 34470585 DOI: 10.1080/15384101.2021.1969203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) exert a critical effect on tumorigenesis and development. Our research aimed to clarify the function and underlying mechanism of circ_0060937 inNSCLC. The concentrations of circ_0060937, miR-195-5p and high-mobility group box 3 (HMGB3) were monitored via qRT-PCR and western blot assays. Additionally, cell proliferation, apoptosis, migration and invasion were assessed using CCK-8, colony formation, flow cytometry and transwell assays. Glycolysis was evaluated via detecting glucose uptake and lactate product. The association between miR-195-5p and circ_0060937/HMGB3 were validated using dual-luciferase reporter, RNA pull-down and RIP assays. Furthermore,in vivo experiment was performed to analyze tumorigenesis.Circ_0060937 and HMGB3 levels were elevated, whereas miR-195-5p level was dropped in NSCLC. Circ_0060937 down-regulation restrainedNSCLC cell proliferation, migration, invasion and glycolysis, and triggered apoptosis. Knockdown of circ_0060937 restrained NSCLC development via absorbing miR-195-5p. Circ_0060937 silencing inhibited NSCLC progression by mediating HMGB3. Besides, circ_0060937 depletion suppressed tumor growth in vivo.Circ_0060937 knockdown hindered NSCLC development and glycolysis via regulating miR-195-5p/HMGB3 pathway.
Collapse
Affiliation(s)
- Junfeng Xi
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Yunfeng Xi
- Department of Dermatology, The First Hospital of Yulin City, Yulin, China
| | - Zhibin Zhang
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Yanhong Hao
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Fei Wu
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Burong Bian
- Deapartment of Oncology, The First Hospital of Yulin City, Yulin, China
| | - Guangjun Hao
- Deapartment of Oncology, The First Hospital of Yulin City, Yulin, China
| | - Weiwei Li
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Wang Y, Gao C, Zhou K, Liu W, Zhang Y, Zhao Y. MicroRNA-532-5p-programmed cell death protein 4 (PDCD4) axis regulates angiotensin II-induced human umbilical vein endothelial cell apoptosis and proliferation. Microvasc Res 2021; 138:104195. [PMID: 34116070 DOI: 10.1016/j.mvr.2021.104195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND This study was carried out to investigate the effect of microRNA miR-532-5p on the proliferation of hypertension endothelial cells. METHODS Angiotensin II (Ang II)-treated human umbilical vein endothelial cells (HUVECs) and primary human aortic endothelial cells (HAECs) were used as cell models to imitate the pathological changes in endothelial cells under hypertensive conditions. The expression levels of miR-532-5p and programmed cell death protein 4 (PDCD4) were detected by Quantitative Real-time PCR (qRT-PCR). The effects of miR-532-5p and PDCD4 on the proliferation of HUVECs and HAECs treated with Ang II were detected by Methyl Thiazolyl Tetrazolium (MTT) assay. The effects of miR-532-5p and PDCD4 on the apoptosis and cell cycle of HUVECs and HAECs treated with Ang II were detected by flow cytometry. Western blot was used to detect the expression levels of PDCD4, apoptosis-related proteins and cycle-related proteins in HUVECs and HAECs treated with Ang II. Bioinformatics analysis and Luciferase gene reporter assay were used to assess the relationship between miR-532-5p and PDCD4. RESULTS The expression levels of miR-532-5p were reduced, while the expression levels of PDCD4 were raised in Ang II-treated HUVECs and HAECs. MiR-532-5p mimic and si-PDCD4 restrained the apoptosis, promoted the proliferation of Ang II-treated HUVECs and HAECs and caused S-phase arrest of cells. PDCD4 was identified as a potential target for miR-532-5p. Knockdown of PDCD4 significantly affected apoptosis and proliferation of Ang II-treated HUVECs. MiR-532-5p regulates apoptosis and proliferation of Ang II-induced HUVECs and HAECs. In addition, overexpression of PDCD4 attenuated the effect of miR-532-5p on the proliferation of Ang II-treated HUVECs and HAECs. CONCLUSION MiR-532-5p inhibited the expression of PDCD4, thereby inhibiting apoptosis and promoting proliferation of Ang II-treated HUVECs and HAECs.
Collapse
Affiliation(s)
- Yu Wang
- School of Physical Education, Henan University, Kaifeng City, Henan Province 475004, PR China; Bioinformatics Center, Henan University, Kaifeng City, Henan Province 475001, PR China
| | - Chuanyu Gao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou City, Henan Province 475052, PR China; Heart Center, Henan Provincial People's Hospital, Zhengzhou City, Henan Province 450018, PR China; Henan Key Laboratory of Coronary Heart Disease Control, Central China Fuwai Hospital, Zhengzhou City, Henan Province 4750052, PR China.
| | - Ke Zhou
- School of Physical Education, Henan University, Kaifeng City, Henan Province 475004, PR China; Bioinformatics Center, Henan University, Kaifeng City, Henan Province 475001, PR China.
| | - Weili Liu
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou City, Henan Province 451464, PR China; Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou City, Henan Province 450003, PR China
| | - Yulin Zhang
- Institute of Health Education, Henan Provincial Center for Disease Prevention and Control, Zhengzhou City, Henan Province 450016, PR China
| | - Yi Zhao
- Department of Neonatology, Kaifeng Maternity and Children Health Hospital, Kaifeng City, Henan Province 475002, PR China
| |
Collapse
|
30
|
Jiang PF, Zhang XJ, Song CY, Zhang YX, Wu Y. S100P acts as a target of miR-495 in pancreatic cancer through bioinformatics analysis and experimental verification. Kaohsiung J Med Sci 2021; 37:562-571. [PMID: 33949774 DOI: 10.1002/kjm2.12383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
S100 calcium binding protein P (S100P) and miR-495 are aberrantly expressed and exert essential roles in cancers. However, the mechanisms of miR-495-S100P in pancreatic cancer are yet to be illustrated. Thus, we explored the regulatory functions of miR-495-S100P axis in pancreatic adenocarcinoma cells growth and invasion. In this study, we identified that S100P was upregulated in pancreatic adenocarcinoma by bioinformatics analysis of the GEO (Gene Expression Omnibus database) microarray dataset (GSE16515). Western blotting and luciferase reporter gene analysis exhibited that miR-495 negatively determined the level of S100P via binging to its 3'-untranslated regions (3'-UTRs). A series of functional experiments indicated that upregulation of miR-495 or S100P knockdown suppressed pancreatic adenocarcinoma cells proliferation, invasion, and promoted apoptosis. Furthermore, the expression of S100P was negatively associated with the level of miR-495 in The Cancer Genome Atlas (TCGA) pancreatic adenocarcinoma case-cohort. Besides, reintroduction of S100P debilitated the anti-cancer action of miR-495 in pancreatic adenocarcinoma cells. Our data indicated that miR-495 performed suppressive roles in pancreatic adenocarcinoma through targeting S100P.
Collapse
Affiliation(s)
- Peng-Fei Jiang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, China
| | - Xiu-Ju Zhang
- Outpatient Department, Liaocheng Chiping District People's Hospital, Liaocheng, China
| | - Cai-Yun Song
- Department of Psychiatry, Liaocheng Fourth People's Hospital, Liaocheng, China
| | - Yan-Xi Zhang
- Clinical Medicine, Mudanjiang Medical College, Mudanjiang, China
| | - Yan Wu
- Health Management Center, Weifang People's Hospital, Weifang, China
| |
Collapse
|
31
|
Kim MY, Shin H, Moon HW, Park YH, Park J, Lee JY. Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Sci Rep 2021; 11:7355. [PMID: 33795765 PMCID: PMC8016942 DOI: 10.1038/s41598-021-86785-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) of urine exosomes have emerged as biomarkers for urological cancers, owing to their high stability. MiRNAs have been linked to factors associated with aggressive prostate cancer such as biochemical recurrence (BCR) and metastasis. In this study, we aimed to identify urinary exosomal miRNAs as prognostic markers associated with BCR in intermediate-risk prostate cancer. We profiled the expression levels of miRNAs via next generation sequencing in urinary exosomes from 21 non-BCR patients and 6 BCR patients of intermediate-risk prostate cancer. A total of 21 urinary exosomal miRNAs were found to be differentially expressed (> twofold) in BCR patients compared to non-BCR patients. For external validation, we validated these results using quantitative reverse transcription PCR in an independent cohort of 28 non-BCR patients and 26 BCR patients. A validation analysis revealed that three miRNAs (miR-26a-5p, miR-532-5p, and miR-99b-3p) were upregulated in exosomes from BCR patients. The univariate and multivariate Cox regression analyses showed that miR-532-5p was an important predictive factor for BCR of intermediate-risk prostate cancer. In conclusion, miR-532-5p in urine exosomes might be a potential biomarker for predicting BCR, which is a poor prognosis in patients with intermediate-risk prostate cancer. Further research is needed on the biological functions and mechanisms of this miRNA.
Collapse
Affiliation(s)
- Mee Young Kim
- Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunwoo Shin
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyong Woo Moon
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Hyun Park
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ji Youl Lee
- Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Gu M, Jiang Z, Li H, Peng J, Chen X, Tang M. MiR-93/HMGB3 regulatory axis exerts tumor suppressive effects in colorectal carcinoma cells. Exp Mol Pathol 2021; 120:104635. [PMID: 33773992 DOI: 10.1016/j.yexmp.2021.104635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE MicroRNA (miR)-93 has been proven to mediate the initiation and progression of colorectal carcinoma (CRC); however, the mechanisms by which miR-93 mediates CRC development need deeper elucidation. The present study is designed to investigate the association between miR-93 and high mobility group box 3 (HMGB3), as well as the functions of miR-93, in CRC. METHODS miR-93 expression was quantified by RT-qPCR. CRC cells were transfected or cotransfected with miR-93 mimic, miR-93 inhibitor, pcDNA3.1-HMGB3 and sh-HMGB3, and then the proliferative, migratory and invasive capacities were detected in addition to the apoptotic rate. Western blotting assessed the expression levels of HMGB3, PI3K, p-PI3K, AKT and p-AKT. The interaction between miR-93 and HMGB3 was identified. RESULTS In CRC tissues, miR-93 was downregulated and HMGB3 was upregulated. LOVO and SW480 cells transfected with miR-93 mimic exhibited reduced proliferation, invasion and migration as well as increased apoptosis. The ratios of p-PI3K/PI3K and p-AKT/AKT were declined after miR-93 mimic was introduced into the CRC cell lines. miR-93 negatively downregulated HMGB3, and introduction of pcDNA3,1-HMGB3 could counteract, in part, the inhibitory effects of miR-93 on the malignant properties of CRC cells as well as the ratios of p-PI3K/PI3K and p-AKT/AKT. CONCLUSION miR-93 targeted HMGB3 to block the activation of the PI3K/AKT pathway and thus enhance CRC cell apoptosis.
Collapse
Affiliation(s)
- Min Gu
- Center for Laboratory Medicine, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412000, China
| | - Zuiming Jiang
- Center for Laboratory Medicine, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412000, China
| | - Huiyuan Li
- Changsha KingMed Center for Clinical Laboratory Co., Ltd, Changsha 410006, China
| | - Jun Peng
- Center for Laboratory Medicine, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412000, China
| | - Xiang Chen
- Center for Laboratory Medicine, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412000, China
| | - Manling Tang
- Center for Laboratory Medicine, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412000, China.
| |
Collapse
|
33
|
Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Hong L, Fan D. Biological Implications and Clinical Potential of Metastasis-Related miRNA in Colorectal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:42-54. [PMID: 33335791 PMCID: PMC7723777 DOI: 10.1016/j.omtn.2020.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC), ranking as the third commonest cancer, leads to extremely high rates of mortality. Metastasis is the major cause of poor outcome in CRC. When metastasis occurs, 5-year survival rates of patients decrease sharply, and strategies to enhance a patient's lifetime seem limited. MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that are significantly involved in manipulation of CRC malignant phenotypes, including proliferation, invasion, and metastasis. To date, accumulating studies have revealed the mechanisms and functions of certain miRNAs in CRC metastasis. However, there is no systematic discussion about the biological implications and clinical potential (diagnostic role, prognostic role, and targeted therapy potential) of metastasis-related miRNAs in CRC. This review mainly summarizes the recent advances of miRNA-mediated metastasis in CRC. We also discuss the clinical values of metastasis-related miRNAs as potential biomarkers or therapeutic targets in CRC. Moreover, we envisage the future orientation and challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji’an 343700, Jiangxi Province, China
| | - Chao Liu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
34
|
Alkassis M, Kourie HR, Sarkis J, Nemr E. Predictive biomarkers in bladder cancer. Biomark Med 2021; 15:241-246. [PMID: 33625249 DOI: 10.2217/bmm-2020-0575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Marwan Alkassis
- Department of Urology, Hôtel Dieu de France, Université Saint Joseph, Beirut, Lebanon
| | - Hampig R Kourie
- Department of Hematology-Oncology, Hôtel Dieu de France, Université Saint Josephe, Beirut, Lebanon
| | - Julien Sarkis
- Department of Urology, Hôtel Dieu de France, Université Saint Joseph, Beirut, Lebanon
| | - Elie Nemr
- Department of Urology, Hôtel Dieu de France, Université Saint Joseph, Beirut, Lebanon
| |
Collapse
|
35
|
Lin X, Ling Q, Lv Y, Ye W, Huang J, Li X, Guo Q, Wang J, Li Z, Jin J. Plasma exosome-derived microRNA-532 as a novel predictor for acute myeloid leukemia. Cancer Biomark 2021; 28:151-158. [PMID: 32176633 DOI: 10.3233/cbm-191164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The interest in plasma biomarkers has increased recently. Plasma exosome-derived microRNA-532 is aberrantly expressed in a variety of human cancers and has the prognostic value in many solid tumors. However, the prognostic impact of the expression value on AML remains unclear. OBJECTIVE The aim of this study is to investigate the prognostic value of exosome-derived microRNA-532 in AML patients. METHODS We performed the real-time PCR to quantify exosome-derived microRNA-532 in plasma of 198 AML patients. To assess the prognostic value, we performed Cox regression analyses in the context of well-established clinical and molecular markers. Cellular metabolic profile was conducted to help us understand the biological insight of its expression. RESULTS The expression level was not associated with white blood cell counts, age, FAB subtypes, cytogenetic risk groups and genes of FLT3-ITD, NPM1, CEBPA and DNMT3A mutations. Interestingly, high expressers had a favorable overall survival in the univariate analysis. This prognostic value was testified in the multivariate analysis. Moreover, up-regulation of miR-532 was negatively associated with cellular energy like fructose and glutamine. CONCLUSION We found plasma exosome-derived microRNA-532 can be used as a novel survival predictor for acute myeloid leukemia.
Collapse
Affiliation(s)
- Xia Lin
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Qing Ling
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Yunfei Lv
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansong Huang
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Xia Li
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Guo
- Department of Nephrology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Zhongqi Li
- The Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Wen B, Wei YT, Zhao K. The role of high mobility group protein B3 (HMGB3) in tumor proliferation and drug resistance. Mol Cell Biochem 2021; 476:1729-1739. [PMID: 33428061 DOI: 10.1007/s11010-020-04015-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
The high mobility group protein B (HMGB) family (including HMGB1, HMGB2, HMGB3, and HMGB4) can regulate the mechanisms of DNA replication, transcription, recombination, and repair, and act as cytokines to mediate responses to infection, injury, and inflammation. HMGB1/2/3 has a high similarity in sequence and structure, while HMGB4 has no acidic C-terminal tail. Among them, HMGB3 can regulate the self-renewal and differentiation of normal hematopoietic stem cell population, but the decrease of its expression is easy to induce leukemia. Up-regulation of its expression promotes tumor development and chemotherapy resistance through a variety of mechanisms, and non-coding RNA can regulate to promote tumor cell proliferation, invasion, and migration and inhibit cancer cell apoptosis.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China
| | - Ying-Ting Wei
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China.
| |
Collapse
|
37
|
Wu G, Weng W, Xia P, Yan S, Zhong C, Xie L, Xie Y, Fan G. Wnt signalling pathway in bladder cancer. Cell Signal 2020; 79:109886. [PMID: 33340660 DOI: 10.1016/j.cellsig.2020.109886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
Bladder cancer (BC) is one of the most common tumours of the urinary system and is also known as a highly malignant tumour. In addition to conventional diagnosis and treatment methods, recent research has focused on studying the molecular mechanisms related to BC, in the hope that new, less toxic and effective targeted anticancer drugs and new diagnostic markers can be discovered. It is known that the Wingless (Wnt) signalling pathway and its related genes, proteins and other substances are involved in multiple biological processes of various tumours. Clarifying the contribution of the Wnt signalling pathway in bladder tumours will help establish early diagnosis indicators, develop new therapeutic drugs and evaluate the prognosis for BC. This review aims to summarise previous studies related to BC and the Wnt signalling pathway, with a focus on exploring the participating substances and their mechanisms in the regulation of the Wnt signalling pathway to better determine how to promote new chemotherapeutic drugs, potential therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Guanlin Wu
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 13125, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin 13125, Germany.
| | - Weidong Weng
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, Tübingen D-72076, Germany.
| | - Pengfei Xia
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 13125, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin 13125, Germany.
| | - Shixian Yan
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 13125, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin 13125, Germany.
| | - Cheng Zhong
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 13125, Germany; Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin 10117, Germany.
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China.
| | - Yu Xie
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China; Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China; The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
38
|
Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Han Y, Hong L, Fan D. Biological functions and theranostic potential of HMGB family members in human cancers. Ther Adv Med Oncol 2020; 12:1758835920970850. [PMID: 33224279 PMCID: PMC7659026 DOI: 10.1177/1758835920970850] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
The high mobility group box (HMGB) protein family consists of four members: HMGB1, 2, 3, and 4. They share similar amino acid sequences and identical functional regions, especially HMGB1, 2, and 3. The homology in structure may lead to similarity in function. In fact, though their targets may be different, they all possess the fundamental function of binding and distorting target DNAs. However, further research confirmed they are distributed differently in tissues and involved in various distinct physiological and pathological cellular processes, including cell proliferation, division, migration, and differentiation. Recently, the roles of HMGB family members in carcinogenesis has been widely investigated; however, systematic discussion on their functions and clinical values in malignant tumors is limited. In this review, we mainly review and summarize recent advances in knowledge of HMGB family members in terms of structure, distribution, biochemical cascades, and specific mechanisms regarding tumor progression. Importantly, the diagnostic, prognostic, and therapeutic value of these proteins in cancers is discussed. Finally, we envisage the orientation and challenges of this field in further studies.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji'an, Jiangxi Province, China
| | - Chao Liu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Province, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
39
|
Ma Y, Zhao HX, Shi YJ, Cheng MG. MicroRNA-532-5p is a prognostic marker and inhibits the aggressive phenotypes of osteosarcoma through targeting CXCL2. Kaohsiung J Med Sci 2020; 36:885-894. [PMID: 32643867 DOI: 10.1002/kjm2.12261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of miR-532-5p is involved in the development of several cancers. Nevertheless, the roles of miR-532-5p in osteosarcoma (OS) have yet to be illuminated. In the present study, we found that miR-532-5p was significantly downregulated in both OS tissues and cell lines. The low level of miR-532-5p was associated with advance clinical stage and poor overall survival in patient with OS. The functional experiments implied that upregulation of miR-532-5p restrained OS U2OS cell growth and metastatic ability in vitro; induced apoptosis, and impaired OS cell growth in vivo. Mechanistically, chemokine (C-X-C Motif) ligand 2 (CXCL2) was proved as a target gene of miR-532-5p. The inhibitory effects of miR-532-5p on OS cell were rescued by CXCL2 overexpression. Altogether, we demonstrated that miR-532-5p exerted tumor-inhibitory functions in OS cell via regulating CXCL2.
Collapse
Affiliation(s)
- Yong Ma
- Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Hai-Xia Zhao
- Internal Medicine-Neurology, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Yin-Ju Shi
- Nursing Department, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Ming-Guo Cheng
- Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| |
Collapse
|
40
|
Sun H, Wu S, Sun B. MicroRNA-532-5p protects against atherosclerosis through inhibiting vascular smooth muscle cell proliferation and migration. Cardiovasc Diagn Ther 2020; 10:481-489. [PMID: 32695627 DOI: 10.21037/cdt-20-91] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The present study aimed to explore the expression and clinical value of miR-532-5p in atherosclerosis (AS) patients, and analyze its regulating effect on biological behaviors of vascular smooth muscle cells (VSMCs). Methods A total of 103 AS patients and 77 healthy controls were included. The expression level of miR-532-5p was measured using quantitative real-time PCR (qRT-PCR). A receiver operating characteristic (ROC) analysis was counted to assess the diagnostic value of miR-532-5p in AS. CCK-8 and Transwell assay were used to detect the role of miR-532-5p in VSMCs proliferation and migration. Results MiR-532-5p was downregulated in AS patients compared with that in healthy controls. Serum miR-532-5p was inversely related to the carotid intima-media thickness (CIMT) in AS patients. A ROC curve was conducted with an area under the curve (AUC) of 0.897, with high sensitivity and specificity. Overexpression of miR-532-5p inhibited cell proliferation and migration in VSMCs, whereas miR-532-5p downregulation had a reverse effect. Conclusions Decreased expression of miR-532-5p might be a potential diagnostic biomarker for AS. Overexpression of miR-532-5p inhibits the proliferation and migration of VSMCs. The present results indicate a therapeutic potential of miR-532-5p for AS.
Collapse
Affiliation(s)
- Huijuan Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, China
| | - Shanshan Wu
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|
41
|
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU, McManus DP. Serum Exosomal miRNAs for Grading Hepatic Fibrosis Due to Schistosomiasis. Int J Mol Sci 2020; 21:ijms21103560. [PMID: 32443549 PMCID: PMC7278994 DOI: 10.3390/ijms21103560] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic infection with Schistosoma japonicum or Schistosoma mansoni results in hepatic fibrosis of the human host. The staging of fibrosis is crucial for prognosis and to determine the need for treatment of patients with schistosomiasis. This study aimed to determine whether there is a correlation between the levels of serum exosomal micro-ribonucleic acids (miRNAs) (exomiRs) and fibrosis progression in schistosomiasis. Reference gene (RG) validation was initially carried out for the analysis of serum exomiRs expression in staging liver fibrosis caused by schistosome infection. The expression levels of liver fibrosis-associated exomiRs in serum were determined in a murine schistosomiasis model and in a cohort of Filipino schistosomiasis japonica patients (n = 104) with different liver fibrosis grades. Of twelve RG candidates validated, miR-103a-3p and miR-425-5p were determined to be the most stable genes in the murine schistosomiasis model and subjects from the schistosomiasis-endemic area, respectively. The temporal expression profiles of nine fibrosis-associated serum exomiRs, as well as their correlations with the liver pathologies, were determined in C57BL/6 mice during S. japonicum infection. The serum levels of three exomiRs (miR-92a-3p, miR-146a-5p and miR-532-5p) were able to distinguish subjects with fibrosis grades I-III from those with no fibrosis, but only the serum level of exosomal miR-146a-5p showed potential for distinguishing patients with mild (grades 0–I) versus severe fibrosis (grades II–III). The current data imply that serum exomiRs can be a supplementary tool for grading liver fibrosis in hepatosplenic schistosomiasis with moderate accuracy.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
- Correspondence: (P.C.); (D.P.M.); Tel.: +61-7-3362-0406 (P.C.); +61-7-3362-0401 (D.P.M.)
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
| | - Remigio M. Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila 1781, Philippines;
| | - Allen G. Ross
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia; (A.G.R.); (D.U.O.)
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh
| | - David U. Olveda
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia; (A.G.R.); (D.U.O.)
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
- Correspondence: (P.C.); (D.P.M.); Tel.: +61-7-3362-0406 (P.C.); +61-7-3362-0401 (D.P.M.)
| |
Collapse
|
42
|
Jiang ZT, Han Y, Liu XY, Lv LY, Pan JH, Liu CD. Tripterine Restrains the Aggressiveness of Hepatocellular Carcinoma Cell via Regulating miRNA-532-5p/CXCL2 Axis. Onco Targets Ther 2020; 13:2973-2985. [PMID: 32308429 PMCID: PMC7152543 DOI: 10.2147/ott.s238074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Triterpene has attracted considerable interests because it exhibits anticancer effects. However, the effects of tripterine on hepatocellular carcinoma (HCC) are not well studied. In the current study, the mechanism of tripterine on HCC cells growth and metastasis was examined. Methods The inhibitory effect on the growth and aggressiveness in HCC cells was analyzed by Cell Counting Kit-8 (CCK-8), wound healing and Transwell assay. The levels of microRNA-532-5p (miR-532-5p) in HCC cells and tissues were measured using qRT-PCR. The expression of chemokine (C-X-C Motif) ligand 2 (CXCL2) was determined by Western blotting and immunohistochemistry (IHC). Luciferase reporter gene assay was used to validate the binding between miR-532-5p and CXCL2. The impact of tripterine on the growth and metastasis of HCC cells in vivo was analyzed using transplanted tumor model and experimental lung metastasis model, respectively. Results We found that tripterine inhibited HCC cells proliferation, migration ability and invasion. Under tripterine treatment, the level of miR-532-5p was strikingly raised, and overexpression of miR‑532-5p reduced cell viability and metastatic-related traits. In addition, we identified CXCL2 as a target of miR-532-5p in HCC. Rescue experiments indicated that overexpression of CXCL2 restored the migration and invasive capacity of HCC cells inhibited by miR-532-5p or tripterine treatment. Finally, the tumor growth and metastatic ability of HCC MHCC97H cell in vivo were also significantly restrained by tripterine. The expression of CXCL2 was distinctly decreased and miR-532-5p level was increased by tripterine in vivo. Conclusion In conclusion, tripterine inhibits the growth, migration ability and invasiveness of HCC cells through intervening miR-532-5p/CXCL2.
Collapse
Affiliation(s)
- Zhi Tao Jiang
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Yi Han
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Xiao Yan Liu
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Ling Yan Lv
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Jin Huo Pan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Chun Di Liu
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| |
Collapse
|
43
|
Hu J, Wang L, Guan C. MiR-532-5p Suppresses Migration and Invasion of Lung Cancer Cells Through Inhibiting CCR4. Cancer Biother Radiopharm 2020; 35:673-681. [PMID: 32228308 DOI: 10.1089/cbr.2019.3258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Studies showed that miR-532-5p suppresses proliferation and induces apoptosis of lung cancer (LC) cells; its role in LC is not fully understood. Therefore, this research aimed to reveal the effect and mechanism of miR-532-5p on migration and invasion of LC cells. Materials and Methods: The transfection efficiencies of miR-532-5p mimic, inhibitor, and overexpressed CCR4 were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The relationships between miR-532-5p and CCR4 in A549 and SBC-5 cells were predicted by targetScan and verified by dual-luciferase reporter assay, Western blot, and qRT-PCR. Migration and invasion of cells transfected with miR-532-5p mimic, inhibitor, and CCR4 were determined by scratch test and transwell assay, respectively. The levels of epithelial-to-mesenchymal transition (EMT)-related proteins (E-cadherin (E-Cad)), N-catenin (N-Cad), and vimentin) in cells were measured by Western blot. Results: MiR-532-5p mimic suppressed migration and invasion, while miR-532-5p inhibitor promoted migration and invasion of cells. CCR4 was a downstream target of miR-532-5p and both its protein and mRNA expressions were inhibited by miR-532-5p mimic, but promoted by miR-532-5p inhibitor. CCR4 promoted migration, invasion, and EMT process, and such effects of CCR4 were reversed by miR-532-5p mimic. Conclusion: MiR-532-5p functioned as a cancer suppressor by negatively regulating CCR4 in LC cells, pointing to a potential protective mechanism of miR-532-5p to LC patients.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Respiratory Medicine, Hangzhou Dingqiao Hospital, Hangzhou, China
| | - Lu Wang
- Department of Emergency, Hangzhou Dingqiao Hospital, Hangzhou, China
| | - Caihong Guan
- Department of Respiratory, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
44
|
Wang X, Yin Z, Zhao Y, He M, Dong C, Zhong M. Identifying potential prognostic biomarkers in head and neck cancer based on the analysis of microRNA expression profiles in TCGA database. Mol Med Rep 2020; 21:1647-1657. [PMID: 32016476 DOI: 10.3892/mmr.2020.10964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/05/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to identify sensitive, specific and independent prognostic biomarkers in head and neck cancer (HNC) based on microRNA expression profiles and other high‑throughput sequencing data in The Cancer Genome Atlas (TCGA) database. Identification of such prognostic biomarkers could provide insight into HNC diagnosis and treatment. The differential expression profiles of microRNAs between HNC tissues and adjacent cancer tissues in the TCGA database were analyzed (log fold‑change >2; P<0.01). Univariate and multivariate Cox regression analyses of the differentially expressed microRNAs were performed to determine those significantly related to the survival of patients with HNC. The identified microRNAs were verified by survival and receiver operating characteristic curve analyses. To better predict prognosis, a combined prognostic model (risk equation) was established based on the risk coefficient of each microRNA, calculated by a multivariate Cox regression analysis, and the risk score was calculated. To explore the signaling pathways related to prognosis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed on the differentially expressed genes between the high‑risk and low‑risk groups, grouped according to the median risk score. A total of 89 differentially expressed microRNAs between HNC and adjacent cancer tissues were screened, 11 of which were identified as risk factors related to HNC survival by the univariate Cox regression analysis (P<0.05). The multivariate Cox regression analysis showed that three of the 11 microRNAs, hsa‑miR‑99a, hsa‑miR‑499a and hsa‑miR‑1911 (all P<0.01), were identified as independent risk factors significantly related to patient survival. The risk equation used was as follows: Risk score=(‑0.1597 x hsa‑miR‑99a) + (0.1871 x hsa‑miR‑499a) + (0.1033 x hsa‑miR‑1911). KEGG and GO analyses showed that the JAK‑STAT signaling pathway and some metabolic pathways were associated with HNC prognosis. The present study suggested that hsa‑miR‑99a, hsa‑miR‑499a and hsa‑miR‑1911 may serve as potential prognostic biomarkers in HNC.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zeli Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Ming Zhong
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
45
|
Ludwig N, Fehlmann T, Kern F, Gogol M, Maetzler W, Deutscher S, Gurlit S, Schulte C, von Thaler AK, Deuschle C, Metzger F, Berg D, Suenkel U, Keller V, Backes C, Lenhof HP, Meese E, Keller A. Machine Learning to Detect Alzheimer's Disease from Circulating Non-coding RNAs. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:430-440. [PMID: 31809862 PMCID: PMC6943763 DOI: 10.1016/j.gpb.2019.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/26/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Blood-borne small non-coding (sncRNAs) are among the prominent candidates for blood-based diagnostic tests. Often, high-throughput approaches are applied to discover biomarker signatures. These have to be validated in larger cohorts and evaluated by adequate statistical learning approaches. Previously, we published high-throughput sequencing based microRNA (miRNA) signatures in Alzheimer’s disease (AD) patients in the United States (US) and Germany. Here, we determined abundance levels of 21 known circulating miRNAs in 465 individuals encompassing AD patients and controls by RT-qPCR. We computed models to assess the relation between miRNA expression and phenotypes, gender, age, or disease severity (Mini-Mental State Examination; MMSE). Of the 21 miRNAs, expression levels of 20 miRNAs were consistently de-regulated in the US and German cohorts. 18 miRNAs were significantly correlated with neurodegeneration (Benjamini-Hochberg adjusted P < 0.05) with highest significance for miR-532-5p (Benjamini-Hochberg adjusted P = 4.8 × 10−30). Machine learning models reached an area under the curve (AUC) value of 87.6% in differentiating AD patients from controls. Further, ten miRNAs were significantly correlated with MMSE, in particular miR-26a/26b-5p (adjusted P = 0.0002). Interestingly, the miRNAs with lower abundance in AD were enriched in monocytes and T-helper cells, while those up-regulated in AD were enriched in serum, exosomes, cytotoxic t-cells, and B-cells. Our study represents the next important step in translational research for a miRNA-based AD test.
Collapse
Affiliation(s)
- Nicole Ludwig
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Manfred Gogol
- Institut für Gerontologie, Universität Heidelberg, 69047 Heidelberg, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen, 72074 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tuebingen, Germany
| | - Stephanie Deutscher
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Simone Gurlit
- Department of Anesthesiology and Intensive Care, St. Franziskus Hospital Muenster, 48145 Muenster, Germany
| | - Claudia Schulte
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen, 72074 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tuebingen, Germany
| | - Anna-Katharina von Thaler
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen, 72074 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tuebingen, Germany
| | - Christian Deuschle
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen, 72074 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tuebingen, Germany
| | - Florian Metzger
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, 72016 Tuebingen, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen, 72074 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tuebingen, Germany
| | - Ulrike Suenkel
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen, 72074 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tuebingen, Germany
| | - Verena Keller
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
46
|
Garg M, Maurya N. WNT/β-catenin signaling in urothelial carcinoma of bladder. World J Nephrol 2019; 8:83-94. [PMID: 31624709 PMCID: PMC6794554 DOI: 10.5527/wjn.v8.i5.83] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Urothelial carcinoma of bladder is the second most prevalent genitourinary disease. It is a highly heterogeneous disease as it represents a spectrum of neoplasms, including non-muscle invasive bladder cancer (NMIBC), muscle invasive bladder cancer (MIBC) and metastatic lesions. Genome-wide approaches and candidate gene analysis suggest that malignant transformation of the bladder is multifactorial and a multitude of genes are involved in the development of MIBC or NMIBC phenotypes. Wnt signaling is being examined to control and maintain balance between stemness and differentiation in adult stem cell niches. Owing to its participation in urothelial development and maintenance of adult urothelial tissue homeostasis, the components of Wnt signaling are reported as an important diagnostic and prognostic markers as well as novel therapeutic targets. Mutations/epigenetic alterations in the key molecules of Wnt/β-catenin canonical pathway have been linked with tumorigenesis, development of drug resistance and enhanced survival. Present review extends our understanding on the functions of key regulatory molecules of canonical Wnt/β-catenin pathway in urothelial tumorigenesis by inducing cancer stem cell phenotype (UCSCs). UCSCs may be responsible for tumor heterogeneity, high recurrence rates and complex biological behavior of bladder cancer. Therefore, understanding the role of UCSCs and the regulatory mechanisms that are responsible for high relapse rates and metastasis could help to develop pathway inhibitors and augment current therapies. Potential implications in the treatment of urothelial carcinoma of bladder by targeting this pathway primarily in UCSCs as well as in bulk tumor population that are responsible for high relapse rates and metastasis may facilitate potential therapeutic avenues and better prognosis.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Niharika Maurya
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
47
|
Zhu Y, Bian Y, Zhang Q, Hu J, Li L, Yang M, Qian H, Yu L, Liu B, Qian X. LINC00365 promotes colorectal cancer cell progression through the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 121:1260-1272. [PMID: 31544991 DOI: 10.1002/jcb.29359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022]
Abstract
In the past decade, substantial evidence established that long noncoding RNAs are serious about mediating the evolution of malignancies. In previous studies, LINC00365, which has not been reported in colorectal cancer (CRC), was selected using the bioinformatics analysis in GSE109454 and GSE41655 data sets. However, the function and mechanism of LINC00365 are still obscure. In our study, LINC00365 was found upregulated in CRC specimens and intimately connected with the prognosis of patients with CRC. In addition, LINC00365 overexpression enhances the cell abilities of proliferation, migration, and invasion in vitro. Meanwhile, mechanistic studies showed that LINC00365 might involve in CRC cell progression by mediating the Wnt/β-catenin pathway. Furthermore, LINC00365 upregulation increased CDK1 protein expression. In conclusion, this study suggests that LINC00365 acts as a vital part in facilitating CRC progression and might play as a therapeutic target for patients with CRC.
Collapse
Affiliation(s)
- Yiping Zhu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yinzhu Bian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Qun Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jing Hu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Li
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Mi Yang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Hanqing Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lixia Yu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaoping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
48
|
Feng C, So HI, Yin S, Su X, Xu Q, Wang S, Duan W, Zhang E, Sun C, Xu Z. MicroRNA-532-3p Suppresses Malignant Behaviors of Tongue Squamous Cell Carcinoma via Regulating CCR7. Front Pharmacol 2019; 10:940. [PMID: 31555130 PMCID: PMC6727182 DOI: 10.3389/fphar.2019.00940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022] Open
Abstract
To provide better therapeutic avenues for treating tongue squamous cell carcinoma (TSCC), a series of experiments about the effects of microRNA (miR)-532-3p on TSCC malignant behaviors were carried out. The result showed that miR-532-3p was down-regulated and C-C chemokine receptor 7 (CCR7) was up-regulated in the tumor tissues compared with those in the paired paratumor tissues. Further, expression of miR-532-3p was detected in four TSCC cell lines, TSCCA, TCA8113, CAL-27, and SCC-25. The miR-532-3p mimics and inhibitor were transfected into the CAL-27 and TCA8113 cell lines which were the relatively lowest and highest miR-532-3p expressions, respectively. It was found that the overexpression of miR-532-3p suppressed TSCC cell proliferation, migration, invasion, and promoted apoptosis in vitro, whilst the knockdown of miR-532-3p reversed these behaviors. The bioinformatics predicted that CCR7 was a downstream gene of miR-532-3p, which was confirmed via luciferase assay. Following, the decline of CCR7 in the miR-532-3p mimics group and the rise of CCR7 in the miR-532-3p inhibitor group were also verified. In addition, enhanced cell proliferation, migration and invasion induced by CCR7 were partly restrained by miR-532-3p in TSCC cell. Meanwhile, miR-532-3p attenuated tumourigenesis in vivo due to the reduction of tumor volume and Ki-67 positive rate and the increase of apoptotic cells. Taken together, these findings reveal a pivotal role for the miR-532-3p/CCR7 axis in regulating TSCC, and this novel axis could be suitable for therapeutic intervention in TSCC disease.
Collapse
Affiliation(s)
- Cuijuan Feng
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Hyon Il So
- Department of Oral and Maxillofacial Surgery, Pyongyang Medical College, Kim IL Sung University, Pyongyang, North Korea
| | - Shoucheng Yin
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Xingzhou Su
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Qiang Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Simin Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Weiyi Duan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Enjiao Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Changfu Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Zhongfei Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
49
|
Zhou Q, Chen S, Lu M, Luo Y, Wang G, Xiao Y, Ju L, Wang X. EFEMP2 suppresses epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in human bladder cancer. Int J Biol Sci 2019; 15:2139-2155. [PMID: 31592144 PMCID: PMC6775297 DOI: 10.7150/ijbs.35541] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor-containing fibulin-like extracellular matrix protein 2 (EFEMP2), an extracellular matrix protein, is highly associated with tumor invasion and metastasis. However, influenced by the tumor microenvironment, EFEMP2 played different roles in different tumors. The current study focused on exploring the role of EFEMP2 in bladder cancer (BCa). The results suggested that the expression of EFEMP2 was significantly higher in normal tissues and cells compared with BCa samples and cells. And we found a negative correlation between EFEMP2 expression and high tumor stage, high tumor grade, patients with low EFEMP2 expression had a much poorer survival than those patients with high EFEMP2 expression. The multivariate analysis revealed that low EFEMP2 expression was a high-risk predictor of BCa survival. Furthermore, cell proliferation, migration and metastasis can be obviously affected by the changes of EFEMP2 expression both in vitro and in vivo. Our results also turned out that knockdown of EFEMP2 could significantly reduce the epithelial marker (E-cadherin), increase mesenchymal markers (N-cadherin, Vimentin, Snail and Slug) as well as the key factors of Wnt/β-catenin signaling pathway (β-catenin, c-Myc and cyclin D1). The reversed results were found in the EFEMP2 overexpression cells. Importantly, the related expression changes of epithelial-mesenchymal transition (EMT) markers and Wnt/β-catenin signaling pathway factors induced by EFEMP2 upregulation or downregulation can be rescued using LiCl or XAV939. Collectively, our observations revealed that EFEMP2 is a blocker of tumor progression and metastasis in BCa.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China.,Urological Clinical Research Center of Laparoscopy in Hubei Province, Wuhan, China
| |
Collapse
|
50
|
Tian H, Wang X, Lu J, Tian W, Chen P. MicroRNA-621 inhibits cell proliferation and metastasis in bladder cancer by suppressing Wnt/β-catenin signaling. Chem Biol Interact 2019; 308:244-251. [PMID: 31145890 DOI: 10.1016/j.cbi.2019.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Increasing evidence has shown that dysregulation of microRNA-621 (miR-621) is demonstrated to be associated with several cancers. However, the role of miR-621 in bladder cancer (BCa) remains unclear. Herein, we aimed to study the expression pattern, biological function, and molecular mechanism of miR-621 in BCa. First, we demonstrated that miR-621 was frequently downregulated in BCa tissues and cell lines compared with the adjacent normal BCa tissues and non-cancerous immortalized urothelial cell line. In addition, the expression of miR-621 was negatively correlated with overall survival of BCa patients. Functional experiments suggessted that miR-621 inhibited the proliferation and metastasis of BCa cells. Notably, dual-luciferase assay showed that miR-621 directly targeted the 3' UTR of TRIM29, which was frequently upregulated in BCa tissues and displayed inverse correlation with miR-621 expression. Furthermore, we demonstrated that miR-621 inhibited the proliferation and metastasis of BCa cells via Wnt/β-catenin signaling pathway by targeting TRIM29. Our study suggested that the miR-621/TRIM29 axis inhibits the proliferation and metastasis of BCa cells via Wnt/β-catenin signaling pathway and may have potential applications for development of BCa diagnosis or treatment.
Collapse
Affiliation(s)
- Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | | | - Jianfeng Lu
- Department of pathology, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|