1
|
Pooran G, Firouzeh G, Zeinab K, Gholamreza D. Remote ischemic per-conditioning mitigates renal ischemia-reperfusion injury via hydrogen sulfide-mediated upregulation of Gclc and Gclm genes in male rats. Life Sci 2025; 376:123726. [PMID: 40404123 DOI: 10.1016/j.lfs.2025.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 05/11/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
The aim of this study was to determine if remote ischemic per-conditioning (RIPerC) can provide protection to the kidneys from ischemia-reperfusion injury (IRI) by increasing the expression of the Gclc and Gclm genes involved in innate defenses. Rats undergoing sham surgery were used as controls. Induction of renal IRI involved blocking the renal pedicles for 60 min, then allowing 24 h of reperfusion. RIPerC involved 4 cycles (5 min) of limb I/R. Animals were divided into seven groups in a random manner: sham, I/R, I/R + RIPerC, I/R + NaHS (NaHS, 100 μmol /kg, i.p), I/R + RIPerC+NaHS, I/R + PAG (propargyl glycine, 50 mg/kg, i.p.) and I/R + RIPerC+PAG. Following reperfusion, samples of urine, blood, and renal tissue were gathered for functional, molecular, and histological analysis. Renal IRI impaired kidney function (reduced CCr, increased FENa, decreased water reabsorption, and reduced urine osmolality), increased oxidative stress (an increase in total oxidative status and a decrease in total antioxidant capacity), and reduced expression of CBS, CSE, Gclc and Gclm genes, causing tissue damage. RIPerC attenuated the IRI-induced kidney dysfunction, oxidative stress, and gene expression changes. Inhibiting hydrogen sulfide signaling with propargylglycine reduced the benefits of RIPerC, while the hydrogen sulfide donor NaHS enhanced them. These findings suggest RIPerC's renal protective effects involve upregulation of antioxidant defense pathways.
Collapse
Affiliation(s)
- Ghahramani Pooran
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran
| | | | - Karimi Zeinab
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Daryabor Gholamreza
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2025; 42:341-360. [PMID: 39655451 DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Significance: Hydrogen sulfide (H2S), a ubiquitous small gaseous signaling molecule, plays a critical role in various diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), ischemic stroke, and myocardial infarction (MI) via reducing inflammation, inhibiting oxidative stress, and cell apoptosis. Recent Advances: Uncontrolled inflammation is closely related to pathological process of ischemic stroke, RA, MI, and IBD. Solid evidence has revealed the axes between gut and other organs like joint, brain, and heart, and indicated that H2S-mediated anti-inflammatory effect against IBD, RA, MI, and ischemic stroke might be related to regulating the functions of axes between gut and other organs. Critical Issues: We reviewed endogenous H2S biogenesis and the H2S-releasing donors, and revealed the anti-inflammatory effects of H2S in IBD, ischemic stroke, RA, and MI. Importantly, this review outlined the potential role of H2S in the gut-joint axis, gut-brain axis, and gut-heart axis as a gasotransmitter. Future Direction: The rate, location, and timing of H2S release from its donors determine its potential success or failure as a useful therapeutic agent and should be focused on in the future research. Therefore, there is still a need to explore internal and external sources monitoring and controlling H2S concentration. Moreover, more efficient H2S-releasing compounds are needed; a better understanding of their chemistry and properties should be further developed. Antioxid. Redox Signal. 42, 341-360.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2025; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Emre Aydıngöz S, Teimoori A, Orhan HG, Demirtaş E, Zeynalova N. A meta-analysis of animal studies evaluating the effect of hydrogen sulfide on ischemic stroke: is the preclinical evidence sufficient to move forward? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9533-9548. [PMID: 39017715 PMCID: PMC11582254 DOI: 10.1007/s00210-024-03291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that has been studied for its potential therapeutic effects, including its role in the pathophysiology and treatment of stroke. This systematic review and meta-analysis aimed to determine the sufficiency of overall preclinical evidence to guide the initiation of clinical stroke trials with H2S and provide tailored recommendations for their design. PubMed, Web of Science, Scopus, EMBASE, and MEDLINE were searched for studies evaluating the effect of any H2S donor on in vivo animal models of regional ischemic stroke, and 34 publications were identified. Pooling of the effect sizes using the random-effect model revealed that H2S decreased the infarct area by 34.5% (95% confidence interval (CI) 28.2-40.8%, p < 0.0001), with substantial variability among the studies (I2 = 89.8%). H2S also caused a 37.9% reduction in the neurological deficit score (95% CI 29.0-46.8%, p < 0.0001, I2 = 63.8%) and in the brain water content (3.2%, 95% CI 1.4-4.9%, p = 0.0014, I2 = 94.6%). Overall, the studies had a high risk of bias and low quality of evidence (median quality score 5/15, interquartile range 4-9). The majority of the included studies had a "high" or "unclear" risk of bias, and none of the studies overall had a "low" risk. In conclusion, H2S significantly improves structural and functional outcomes in in vivo animal models of ischemic stroke. However, the level of evidence from preclinical studies is not sufficient to proceed to clinical trials due to the low external validity, high risk of bias, and variable design of existing animal studies.
Collapse
Affiliation(s)
- Selda Emre Aydıngöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey.
| | - Ariyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Elif Demirtaş
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Nargız Zeynalova
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Ichinose F, Hindle A. Sulfide catabolism in hibernation and neuroprotection. Nitric Oxide 2024; 146:19-23. [PMID: 38521487 PMCID: PMC11055667 DOI: 10.1016/j.niox.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The mammalian brain is exquisitely vulnerable to lack of oxygen. However, the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. In this narrative review, we present a case for sulfide catabolism as a key defense mechanism of the brain against acute oxygen shortage. We will examine literature on the role of sulfide in hypoxia/ischemia, deep hibernation, and leigh syndrome patients, and present our recent data that support the neuroprotective effects of sulfide catabolism and persulfide production. When oxygen levels become low, hydrogen sulfide (H2S) accumulates in brain cells and impairs the ability of these cells to use the remaining, available oxygen to produce energy. In recent studies, we found that hibernating ground squirrels, which can withstand very low levels of oxygen, have high levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize hydrogen sulfide in the brain. Silencing SQOR increased the sensitivity of the brain of squirrels and mice to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury in mice. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological agents that scavenge sulfide and/or increase persulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to ischemic injury to the brain or spinal cord. Drugs that oxidize hydrogen sulfide and/or increase persulfide may prove to be an effective approach to the treatment of patients experiencing brain injury caused by oxygen deprivation or mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Allyson Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
6
|
Xie L, Wu H, He Q, Shi W, Zhang J, Xiao X, Yu T. A slow-releasing donor of hydrogen sulfide inhibits neuronal cell death via anti-PANoptosis in rats with spinal cord ischemia‒reperfusion injury. Cell Commun Signal 2024; 22:33. [PMID: 38217003 PMCID: PMC10785475 DOI: 10.1186/s12964-023-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/23/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Spinal cord ischemia‒reperfusion injury (SCIRI) can lead to paraplegia, which leads to permanent motor function loss. It is a disastrous complication of surgery and causes tremendous socioeconomic burden. However, effective treatments for SCIRI are still lacking. PANoptosis consists of three kinds of programmed cell death, pyroptosis, apoptosis, and necroptosis, and may contribute to ischemia‒reperfusion-induced neuron death. Previous studies have demonstrated that hydrogen sulfide (H2S) exerts a neuroprotective effect in many neurodegenerative diseases. However, whether H2S is anti-PANoptosis and neuroprotective in the progression of acute SCIRI remains unclear. Thus, in this study we aimed to explore the role of H2S in SCIRI and its underlying mechanisms. METHODS Measurements of lower limb function, neuronal activity, microglia/macrophage function histopathological examinations, and biochemical levels were performed to examine the efficacy of H2S and to further demonstrate the mechanism and treatment of SCIRI. RESULTS The results showed that GYY4137 (a slow-releasing H2S donor) treatment attenuated the loss of Nissl bodies after SCIRI and improved the BBB score. Additionally, the number of TUNEL-positive and cleaved caspase-3-positive cells was decreased, and the upregulation of expression of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 expression were reversed after GYY4137 administration. Meanwhile, both the expression and activation of p-MLKL, p-RIP1, and p-RIP3, along with the number of PI-positive and RIP3-positive neurons, were decreased in GYY4137-treated rats. Furthermore, GYY4137 administration reduced the expression of NLRP3, cleaved caspase-1 and cleaved GSDMD, decreased the colocalization NeuN/NLRP3 and Iba1/interleukin-1β-expressing cells, and inhibited proinflammatory factors and microglia/macrophage polarization. CONCLUSIONS H2S ameliorated spinal cord neuron loss, prevented motor dysfunction after SCIRI, and exerted a neuroprotective effect via the inhibition of PANoptosis and overactivated microglia-mediated neuroinflammation in SCIRI.
Collapse
Affiliation(s)
- Lei Xie
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Hang Wu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qiuping He
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Weipeng Shi
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Zhang
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
7
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
8
|
Star BS, van der Slikke EC, Ransy C, Schmitt A, Henning RH, Bouillaud F, Bouma HR. GYY4137-Derived Hydrogen Sulfide Donates Electrons to the Mitochondrial Electron Transport Chain via Sulfide: Quinone Oxidoreductase in Endothelial Cells. Antioxidants (Basel) 2023; 12:antiox12030587. [PMID: 36978834 PMCID: PMC10044827 DOI: 10.3390/antiox12030587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The protective effects of hydrogen sulphide (H2S) to limit oxidative injury and preserve mitochondrial function during sepsis, ischemia/reperfusion, and neurodegenerative diseases have prompted the development of soluble H2S-releasing compounds such as GYY4137. Yet, the effects of GYY4137 on the mitochondrial function of endothelial cells remain unclear, while this cell type comprises the first target cell after parenteral administration. Here, we specifically assessed whether human endothelial cells possess a functional sulfide:quinone oxidoreductase (SQOR), to oxidise GYY4137-released H2S within the mitochondria for electron donation to the electron transport chain. We demonstrate that H2S administration increases oxygen consumption by human umbilical vein endothelial cells (HUVECs), which does not occur in the SQOR-deficient cell line SH-SY5Y. GYY4137 releases H2S in HUVECs in a dose- and time-dependent fashion as quantified by oxygen consumption and confirmed by lead acetate assay, as well as AzMC fluorescence. Scavenging of intracellular H2S using zinc confirmed intracellular and intramitochondrial sulfur, which resulted in mitotoxic zinc sulfide (ZnS) precipitates. Together, GYY4137 increases intramitochondrial H2S and boosts oxygen consumption of endothelial cells, which is likely governed via the oxidation of H2S by SQOR. This mechanism in endothelial cells may be instrumental in regulating H2S levels in blood and organs but can also be exploited to quantify H2S release by soluble donors such as GYY4137 in living systems.
Collapse
Affiliation(s)
- Bastiaan S. Star
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (B.S.S.); (H.R.B.)
| | - Elisabeth C. van der Slikke
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Céline Ransy
- The National Center for Scientific Research (CNRS), The National Institute of Health and Medical Research (Inserm), Université de Paris, F-75014 Paris, France
| | - Alain Schmitt
- The National Center for Scientific Research (CNRS), The National Institute of Health and Medical Research (Inserm), Université de Paris, F-75014 Paris, France
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Frédéric Bouillaud
- The National Center for Scientific Research (CNRS), The National Institute of Health and Medical Research (Inserm), Université de Paris, F-75014 Paris, France
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (B.S.S.); (H.R.B.)
| |
Collapse
|
9
|
Deng G, Muqadas M, Adlat S, Zheng H, Li G, Zhu P, Nasser MI. Protective Effect of Hydrogen Sulfide on Cerebral Ischemia-Reperfusion Injury. Cell Mol Neurobiol 2023; 43:15-25. [PMID: 35066714 PMCID: PMC11415178 DOI: 10.1007/s10571-021-01166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023]
Abstract
The brain is the most sensitive organ to hypoxia in the human body. Hypoxia in the brain will lead to damage to local brain tissue. When the blood supply of ischemic brain tissue is restored, the damage will worsen, that is, cerebral ischemia-reperfusion injury. Hydrogen sulfide (H2S) is a gaseous signal molecule and a novel endogenous neuroregulator. Indeed, different concentrations of H2S have different effects on neurons. Low concentration of H2S can play an important protective role in cerebral ischemia-reperfusion injury by inducing anti-oxidative stress injury, inhibition of inflammatory response, inhibition of cell apoptosis, reduction of cerebrovascular endothelial cell injury, regulation of autophagy, and other ways, which provides a new idea for clinical diagnosis and treatment of related diseases. This review aims to report the recent research progress on the dual effect of H2S on brain tissue during cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Gang Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Masood Muqadas
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Salah Adlat
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Haiyun Zheng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Ge Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
10
|
Zhang Y, Zhang X, Lin S. Irisin: A bridge between exercise and neurological diseases. Heliyon 2022; 8:e12352. [PMID: 36619416 PMCID: PMC9816981 DOI: 10.1016/j.heliyon.2022.e12352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise plays a beneficial regulating role on each organ of the body through different mechanisms and is a powerful weapon to prevent disease. Irisin is released from muscle and widely distributed in the human body, participating in the physiological processes of multiple human systems and playing a protective role in multiple human organs. The protective effect of irisin on the nervous system is particularly remarkable, which can improve cognitive function, reduce the risk of ischemic stroke and improve its prognosis. Irisin also plays a guiding role in the prevention and treatment of neurodegenerative diseases and ischemic cerebrovascular diseases. Exercise is the driving factor promoting irisin secretion, and different exercise modes, intensity, frequency, and time all affect the level of serum irisin. As a result of analyzing the effects of various exercise modes on irisin secretion, we proposed an exercise program with a higher level of irisin secretion.
Collapse
|
11
|
Cerebral Ischemia/Reperfusion Injury and Pharmacologic Preconditioning as a Means to Reduce Stroke-induced Inflammation and Damage. Neurochem Res 2022; 47:3598-3614. [DOI: 10.1007/s11064-022-03789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
12
|
Hydrogen Sulfide Attenuates Neuroinflammation by Inhibiting the NLRP3/Caspase-1/GSDMD Pathway in Retina or Brain Neuron following Rat Ischemia/Reperfusion. Brain Sci 2022; 12:brainsci12091245. [PMID: 36138981 PMCID: PMC9497235 DOI: 10.3390/brainsci12091245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Gasdermin D-executing pyroptosis mediated by NLRP3 inflammasomes has been recognized as a key pathogenesis during stroke. Hydrogen sulfide (H2S) could protect CNS against ischemia/reperfusion (I/R)-induced neuroinflammation, while the underlying mechanism remains unclear. The study applied the middle cerebral artery occlusion/reperfusion (MCAO/R) model to investigate how the brain and the retinal injuries were alleviated in sodium hydrogen sulfide (NaHS)-treated rats. The rats were assigned to four groups and received an intraperitoneal injection of 50 μmol/kg NaHS or NaCl 15 min after surgery. Neurological deficits were evaluated using the modified neurologic severity score. The quantification of pro-inflammatory cytokines, NLRP3, caspase-1, and GSDMD were determined by ELISA and Western blot. Cortical and retinal neurodegeneration and cell pyroptosis were determined by histopathologic examination. Results showed that NaHS rescued post-stroke neurological deficits and infarct progression, improved retina injury, and attenuated neuroinflammation in the brain cortexes and the retinae. NaHS administration inhibits inflammation by blocking the NLRP3/caspase-1/GSDMD pathway and further suppressing neuronal pyroptosis. This is supported by the fact that it reversed the high-level of NLRP3, caspase-1, and GSDMD following I/R. Our findings suggest that compounds with the ability to donate H2S could constitute a novel therapeutic strategy for ischemic stroke.
Collapse
|
13
|
Fan J, Du J, Zhang Z, Shi W, Hu B, Hu J, Xue Y, Li H, Ji W, Zhuang J, Lv P, Cheng K, Chen K. The Protective Effects of Hydrogen Sulfide New Donor Methyl S-(4-Fluorobenzyl)- N-(3,4,5-Trimethoxybenzoyl)-l-Cysteinate on the Ischemic Stroke. Molecules 2022; 27:1554. [PMID: 35268655 PMCID: PMC8911759 DOI: 10.3390/molecules27051554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
In this paper, we report the design, synthesis and biological evaluation of a novel S-allyl-l-cysteine (SAC) and gallic acid conjugate S-(4-fluorobenzyl)-N-(3,4,5-trimethoxybenzoyl)-l-cysteinate (MTC). We evaluate the effects on ischemia-reperfusion-induced PC12 cells, primary neurons in neonatal rats, and cerebral ischemic neuronal damage in rats, and the results showed that MTC increased SOD, CAT, GPx activity and decreased LDH release. PI3K and p-AKT protein levels were significantly increased by activating PI3K/AKT pathway. Mitochondrial pro-apoptotic proteins Bax and Bim levels were reduced while anti-apoptotic protein Bcl-2 levels were increased. The levels of cleaved caspase-9 and cleaved caspase-3 were also reduced in the plasma. The endoplasmic reticulum stress (ERS) was decreased, which in turns the survival rate of nerve cells was increased, so that the ischemic injury of neurons was protected accordingly. MTC activated the MEK-ERK signaling pathway and promoted axonal regeneration in primary neurons of the neonatal rat. The pretreatment of MEK-ERK pathway inhibitor PD98059 and PI3K/AKT pathway inhibitor LY294002 partially attenuated the protective effect of MTC. Using a MCAO rat model indicated that MTC could reduce cerebral ischemia-reperfusion injury and decrease the expression of proinflammatory factors. The neuroprotective effect of MTC may be due to inhibition of the over-activation of the TREK-1 channel and reduction of the current density of the TREK1 channel. These results suggested that MTC has a protective effect on neuronal injury induced by ischemia reperfusion, so it may have the potential to become a new type of neuro-ischemic drug candidate.
Collapse
Affiliation(s)
- Jing Fan
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Junxi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Zhongwei Zhang
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Wenjing Shi
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Binyan Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Jiaqin Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Yan Xue
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Haipeng Li
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Wenjin Ji
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Pengcheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| |
Collapse
|
14
|
Omorou M, Liu N, Huang Y, Al-Ward H, Gao M, Mu C, Zhang L, Hui X. Cystathionine beta-Synthase in hypoxia and ischemia/reperfusion: A current overview. Arch Biochem Biophys 2022; 718:109149. [DOI: 10.1016/j.abb.2022.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
|
15
|
Zhu J, Ligi S, Yang G. An evolutionary perspective on the interplays between hydrogen sulfide and oxygen in cellular functions. Arch Biochem Biophys 2021; 707:108920. [PMID: 34019852 DOI: 10.1016/j.abb.2021.108920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The physiological effects of the endogenously generated hydrogen sulfide (H2S) have been extensively studied in recent years. This review summarized the role of H2S in the origin of life and H2S metabolism in organisms from bacteria to vertebrates, examined the relationship between H2S and oxygen from an evolutionary perspective and emphasized the oxygen-dependent manner of H2S signaling in various physiological and pathological processes. H2S and oxygen are inextricably linked in various cellular functions. H2S is involved in aerobic respiration and stimulates oxidative phosphorylation and ATP production within the cell. Besides, H2S has protective effects on ischemia and reperfusion injury in several organs by acting as an oxygen sensor. Also, emerging evidence suggests the role of H2S is in an oxygen-dependent manner. All these findings indicate the subtle relationship between H2S and oxygen and further explain why H2S, a toxic molecule thriving in an anoxia environment several billion years ago, still affects homeostasis today despite the very low content in the body.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Biology, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Samantha Ligi
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- Department of Biology, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.
| |
Collapse
|
16
|
Li M, Mao J, Zhu Y. New Therapeutic Approaches Using Hydrogen Sulfide Donors in Inflammation and Immune Response. Antioxid Redox Signal 2021; 35:341-356. [PMID: 33789440 DOI: 10.1089/ars.2020.8249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Inflammation and immune response are associated with many pathological disorders, including rheumatoid arthritis, lupus, heart failure, and cancer(s). In recent times, important roles of hydrogen sulfide (H2S) have been evidenced by researchers in inflammatory responses, as well as immunomodulatory effects in several disease models. Recent Advances: Numerous biological targets, including cytochrome c oxidase, various kinases, enzymes involved in epigenetic changes, transcription factors, namely nuclear factor kappa B and nuclear factor erythroid 2-related factor 2, and several membrane ion channels, are shown to be sensitive to H2S and have been widely investigated in various preclinical models. Critical Issues: A complete understanding of the effects of H2S in inflammatory and immune response is vital in the development of novel H2S generating therapeutics. In this review, the biological effects and pharmacological properties of H2S in inflammation and immune response are addressed. The review also covers some of the novel H2S releasing prodrugs developed in recent years as tools to study this fascinating molecule. Future Directions: H2S plays important roles in inflammation and immunity-related processes. Future researches are needed to further assess the immunomodulatory effects of H2S and to assist in the design of more efficient H2S carrier systems, or drug formulations, for the management of immune-related conditions in humans. Antioxid. Redox Signal. 35, 341-356.
Collapse
Affiliation(s)
- Meng Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jianchun Mao
- Department of Rheumatology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yizhun Zhu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- School of Pharmacy, Macau University of Science and Technology, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
18
|
Marutani E, Morita M, Hirai S, Kai S, Grange RMH, Miyazaki Y, Nagashima F, Traeger L, Magliocca A, Ida T, Matsunaga T, Flicker DR, Corman B, Mori N, Yamazaki Y, Batten A, Li R, Tanaka T, Ikeda T, Nakagawa A, Atochin DN, Ihara H, Olenchock BA, Shen X, Nishida M, Hanaoka K, Kevil CG, Xian M, Bloch DB, Akaike T, Hindle AG, Motohashi H, Ichinose F. Sulfide catabolism ameliorates hypoxic brain injury. Nat Commun 2021; 12:3108. [PMID: 34035265 PMCID: PMC8149856 DOI: 10.1038/s41467-021-23363-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.
Collapse
Affiliation(s)
- Eizo Marutani
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichi Hirai
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shinichi Kai
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert M H Grange
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fumiaki Nagashima
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aurora Magliocca
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daniel R Flicker
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Corman
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Naohiro Mori
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yumiko Yamazaki
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Annabelle Batten
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Li
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tomohiro Tanaka
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences & Exploratory Research Center on Life and Living Systems & Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takamitsu Ikeda
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Akito Nakagawa
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dmitriy N Atochin
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Benjamin A Olenchock
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, The Brigham and Women's Hospital, Boston, MA, USA
| | - Xinggui Shen
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences & Exploratory Research Center on Life and Living Systems & Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Zhang S, Yang G, Guan W, Li B, Feng X, Fan H. Autophagy Plays a Protective Role in Sodium Hydrosulfide-Induced Acute Lung Injury by Attenuating Oxidative Stress and Inflammation in Rats. Chem Res Toxicol 2021; 34:857-864. [PMID: 33539076 DOI: 10.1021/acs.chemrestox.0c00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sodium hydrosulfide (NaHS), as an exogenous hydrogen sulfide (H2S) donor, has been used in various pathological models. NaHS is usually considered to be primarily protective, however, the toxic effect of NaHS has not been well elucidated. The aim of this study was to investigate whether NaHS (1 mg/kg) can induce acute lung injury (ALI is a disease process characterized by diffuse inflammation of the lung parenchyma) and define the mechanism by which NaHS-induced ALI involves autophagy, oxidative stress, and inflammatory response. Wistar rats were randomly divided into three groups (control group, NaHS group, and 3-MA + NaHS group), and samples from each group were collected from 2, 6, 12, and 24 h. We found that intraperitoneal injection of NaHS (1 mg/kg) increased the pulmonary levels of H2S and oxidative stress-related indicators (reactive oxygen species, myeloperoxidase, and malondialdehyde) in a time-dependent manner. Intraperitoneal injection of NaHS (1 mg/kg) induced histopathological changes of ALI and inhibition of autophagy exacerbated the lung injury. This study demonstrates that administration of NaHS (1 mg/kg) induces ALI in rats and autophagy in response to ROS is protective in NaHS-induced ALI by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wei Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Yu Q, Li G, Ding Q, Tao L, Li J, Sun L, Sun X, Yang Y. Irisin Protects Brain against Ischemia/Reperfusion Injury through Suppressing TLR4/MyD88 Pathway. Cerebrovasc Dis 2020; 49:346-354. [PMID: 32756048 DOI: 10.1159/000505961] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/16/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammatory response exerts an important role in ischemia/reperfusion (I/R) injury. TLR4 and myeloid differentiation factor 88 (MyD88) are key components in inflammation and are involved in the cerebral I/R injury. Irisin is a skeletal muscle-derived myokine produced after exercise, which was found to suppress inflammation. In this study, we investigated whether irisin could protect the brain from I/R injury through the TLR4/MyD88 pathway. METHODS Male Sprague Dawley rats (20 months, 190 ∼ 240 g) were pretreated with irisin at 10, 50, or 100 mg/kg for consecutive 3 days and then subjected to surgery of middle cerebral artery occlusion or sham operation. Infarct size and neuron loss were measured to evaluate brain damage. The mRNA and protein levels of TLR4 and MyD88 were measured by in situ hybridization and immunohistochemistry, respectively. NF-κB activation was assessed by electrophoretic mobility shift assay. Neurological function was evaluated by neurobehavior score test and passive avoidance test. RESULTS Irisin could reduce neuronal damage and neurofunctional impairment after I/R injury. This effect was mediated by downregulating the TLR4/MyD88 and inhibiting NF-κB activation. CONCLUSION Irisin plays a beneficial effect in I/R injury through regulating the TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Qian Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guangyao Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Qian Ding
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yonghui Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China,
| |
Collapse
|