1
|
Bahnamiri PJ, Hajizadeh Moghaddam A, Ranjbar M, Nazifi E. Effects of Nostoc commune extract on the cerebral oxidative and neuroinflammatory status in a mice model of schizophrenia. Biochem Biophys Rep 2024; 37:101594. [PMID: 38371525 PMCID: PMC10873873 DOI: 10.1016/j.bbrep.2023.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 02/20/2024] Open
Abstract
Cyanobacterium Nostoc commune has long been used to alleviate various diseases. This research examines the effects of Nostoc commune extract (NCE) against behavioral disorders, cerebral oxidative stress, and inflammatory damage in the ketamine-induced schizophrenia model. Oral NCE administration (70 and 150 mg/kg/d) is performed after intraperitoneal ketamine injection (20 mg/kg) for 14 consecutive days. The forced swimming and open field tests are used to assess schizophrenia-like behaviors. After the behavioral test, dopamine (DA) level, oxidative stress markers, as well as the interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression are measured in the cerebral cortex. The results show that NCE treatment ameliorates KET-induced anxiety and depressive-like behaviors in OFT and FST, respectively. NCE considerably decreases the malondialdehyde (MDA) and DA levels and IL-6 and TNF-α expressions in mice with schizophrenia-like symptoms. Also, a significant increase is observed in the glutathione (GSH) level and catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GRx) activity in cerebral tissue. The present study shows that NCE treatment effectively improves KET-induced schizophrenia-like behaviors and oxidative and inflammatory damage. Therefore, NCE, via its bioactive constituents, could have strong neuroprotective effects in the schizophrenia-like model.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Ehsan Nazifi
- Department of Plant Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
2
|
Wang Y, Tan B, Shi S, Ye Y, Che X. Dopamine D2 receptor antagonist modulates rTMS-induced pain experiences and corticospinal excitability dependent on stimulation targets. Int J Clin Health Psychol 2024; 24:100413. [PMID: 37954401 PMCID: PMC10632113 DOI: 10.1016/j.ijchp.2023.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 11/14/2023] Open
Abstract
Both the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) rTMS have the potential to reduce certain chronic pain conditions. However, the analgesic mechanisms remain unclear, in which M1- and DLPFC-rTMS may have different impact on the release of dopamine receptor D2 neurotransmissions (DRD2). Using a double-blind, randomised, sham- and placebo-controlled design, this study investigated the influence of DRD2 antagonist on rTMS-induced analgesia and corticospinal excitability across the M1 and DLPFC. Healthy participants in each group (M1, DLPFC, or Sham) received an oral dose of chlorpromazine or placebo before the delivery of rTMS in two separate sessions. Heat pain and cortical excitability were assessed before drug administration and after rTMS intervention. DRD2 antagonist selectively abolished the increased heat pain threshold induced by DLPFC stimulation and increased pain unpleasantness. The absence of analgesic effects in DLPFC stimulation was not accompanied by plastic changes in the corticospinal pathway. In contrast, DRD2 antagonist increased corticospinal excitability and rebalanced excitation-inhibition relationship following motor cortex stimulation, although there were no clear changes in pain experiences. These novel findings together highlight the influence of dopaminergic neurotransmission on rTMS-induced analgesia and corticospinal excitability dependent on stimulation targets.
Collapse
Affiliation(s)
- Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Alijanpour S, Rezayof A. Activation of ventral hippocampal CB1 receptors inhibits ketamine-induced anxiogenic-like behavior: Alteration of BDNF/c-Fos levels in the mouse hippocampus. Brain Res 2023; 1810:148378. [PMID: 37121426 DOI: 10.1016/j.brainres.2023.148378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Considering the increasing usage of ketamine as a recreational drug with hallucinogenic properties and also scarce studies about receptor systems responsible for its effects, in the present study we aimed to investigate whether the activation of the ventral hippocampal (VH) CB1 cannabinoid receptors affects the anxiety-like behaviors induced by ketamine. Also, the levels of BDNF and c-Fos proteins in the mouse hippocampus were measured following the treatments. For this purpose, male NMRI mice were cannulated bilaterally in the VH with a stereotaxic apparatus. Anxiety properties and protein changes were measured using elevated plus-maze (EPM) and western blotting respectively. The results revealed that intraperitoneal (i.p.) administration of ketamine (5-20 mg/kg) significantly decreased the percentage of open arm time (%OAT) and open arm entry (%OAE) in the EPM with no alteration in the locomotor activity suggesting an anxiogenic-like behavior to ketamine. Furthermore, ketamine administration (10 mg/kg, i.p.) increased BDNF and c-Fos levels in the hippocampus. Interestingly, activation of the VH CB1 receptors by ACPA (0.5-4 ng/mouse) inhibited the anxiogenic-like behaviors produced by ketamine, whereas the microinjection of the same doses of ACPA into VH by itself had no effect on the EPM parameters. Hippocampal levels of BDNF and c-Fos decreased after treatment with combined ketamine with ACPA. These results suggest the therapeutic potency of cannabinoid receptor agonists for ketamine-induced anxiogenic-related responses. This effect might be at least partially mediated by the alteration of BDNF and c-Fos signaling in the hippocampus.
Collapse
Affiliation(s)
- Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Suárez Santiago JE, Roldán GR, Picazo O. Ketamine as a pharmacological tool for the preclinical study of memory deficit in schizophrenia. Behav Pharmacol 2023; 34:80-91. [PMID: 36094064 DOI: 10.1097/fbp.0000000000000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a serious neuropsychiatric disorder characterized by the presence of positive symptoms (hallucinations, delusions, and disorganization of thought and language), negative symptoms (abulia, alogia, and affective flattening), and cognitive impairment (attention deficit, impaired declarative memory, and deficits in social cognition). Dopaminergic hyperactivity seems to explain the positive symptoms, but it does not completely clarify the appearance of negative and cognitive clinical manifestations. Preclinical data have demonstrated that acute and subchronic treatment with NMDA receptor antagonists such as ketamine (KET) represents a useful model that resembles the schizophrenia symptomatology, including cognitive impairment. This latter has been explained as a hypofunction of NMDA receptors located on the GABA parvalbumin-positive interneurons (near to the cortical pyramidal cells), thus generating an imbalance between the inhibitory and excitatory activity in the corticomesolimbic circuits. The use of behavioral models to explore alterations in different domains of memory is vital to learn more about the neurobiological changes that underlie schizophrenia. Thus, to better understand the neurophysiological mechanisms involved in cognitive impairment related to schizophrenia, the purpose of this review is to analyze the most recent findings regarding the effect of KET administration on these processes.
Collapse
Affiliation(s)
- José Eduardo Suárez Santiago
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Roldán Roldán
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ofir Picazo
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
| |
Collapse
|
5
|
Xu K, Zhang Z, Li Y, Song L, Gou J, Sun C, Li J, Du S, Cao R, Cui S. Botulinum Toxin A, a Better Choice for Skeletal Muscle Block in a Comparative Study With Lidocaine in Rats. J Pharmacol Exp Ther 2022; 383:227-237. [PMID: 36116794 DOI: 10.1124/jpet.122.001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023] Open
Abstract
A positive response to scalene muscle block (SMB) is an important indication for the diagnosis of thoracic outlet syndrome. Lidocaine injection is commonly used in clinical practice in SMB, although there have been some cases of misdiagnosis. Botulinum toxin A (BTX-A) is one of the therapeutic agents in SMB, but whether it is also indicated for SMB diagnosis is controversial. To evaluate the muscle block efficiency of these two drugs, the contraction strength was repeatedly recorded on tibialis anterior muscle in rats. It was found that at a safe dosage, 2% lidocaine performed best at 40 μL, but it still exhibits an unsatisfactory partial blocking efficiency. Moreover, neither lidocaine injection in combination with epinephrine or dexamethasone nor multiple locations injection could improve the blocking efficiency. On the other hand, injections of 3, 6, and 12 U/kg BTX-A all showed almost complete muscle block. Gait analysis showed that antagonistic gastrocnemius muscle, responsible for heel rising, was paralyzed for nonspecific blockage in the 12 U/kg BTX-A group, but not in the 3 U/kg or 6 U/kg BTX-A group. Cleaved synaptosomal associated protein 25 (c-SNAP 25) was stained to test the transportation of BTX-A, and was additionally observed in the peripheral muscles in 6 and 12 U/kg groups. c-SNAP 25, however, was barely detectable in the spinal cord after BTX-A administration. Therefore, our results suggest that low dosage of BTX-A may be a promising option for the diagnostic SMB of thoracic outlet syndrome. SIGNIFICANCE STATEMENT: Muscle block is important for the diagnosis and treatment of thoracic outlet syndrome and commonly performed with lidocaine. However, misdiagnosis was observed sometimes. Here, we found that intramuscular injection of optimal dosage lidocaine only partially blocked the muscle contraction in rats, whereas low-dosage botulinum toxin, barely used in diagnostic block, showed almost complete block without affecting the central nervous system. This study suggests that botulinum toxin might be more suitable for muscle block than lidocaine in clinical practice.
Collapse
Affiliation(s)
- Ke Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhan Zhang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yueying Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lili Song
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jin Gou
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chengkuan Sun
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiayang Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuang Du
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rangjuan Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Li XJ, Yu JH, Wu X, Zhu XM, Lv P, Du Z, Lu Y, Wu X, Yao J. Ketamine enhances dopamine D1 receptor expression by modulating microRNAs in a ketamine-induced schizophrenia-like mouse model. Neurotoxicol Teratol 2022; 91:107079. [PMID: 35202796 DOI: 10.1016/j.ntt.2022.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
The abnormal expression of the dopamine D1 receptor (DRD1) may be associated with schizophrenia. MicroRNAs (miRNAs) can post-transcriptionally regulate DRD1 expression. Here, we established a ketamine-induced schizophrenia-like behavior mouse model and investigated the changes in miR-15a-3p, miR-15b-3p, miR-16-1-3p, and DRD1 in response to ketamine. Administration of high-dose ketamine for seven consecutive days to mice simulated the main symptoms of schizophrenia. The mice exhibited increasing excitability and autonomous activity and reduced learning and memory, including spatial memory. Moreover, ketamine decreased miR-15a-3p, miR-15b-3p, and miR-16-1-3p expression levels in the prefrontal cortex (PFC) and miR-16-1-3p expression in the hippocampus, whereas DRD1 expression increased in these brain regions. In HT22 mouse hippocampal neuronal cells, ketamine induced a dose-dependent increase of endogenous DRD1, which was partially attenuated by a combination of miR-15b-3p and miR-16-1-3p mimics. Indeed, the miR-15b-3p and miR-16-1-3p mimics could significantly inhibit endogenous DRD1expression. We identified +72 to +78 bp (TGCTGCT) of the DRD1 3'UTR as the core regulatory region recognized by the target miRNAs. In summary, we developed a ketamine-induced schizophrenia-like behavior mouse model and found that ketamine inhibited the levels of miR-15a-3p, miR-15b-3p, miR-16-1-3p and increased DRD1 expression in mice.
Collapse
Affiliation(s)
- Xiao-Jin Li
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Juan-Han Yu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, the Affiliated Sheng Jing Hospital of China Medical University, China.
| | - Xu Wu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China.
| |
Collapse
|
7
|
Natoli S. The multiple faces of ketamine in anaesthesia and analgesia. Drugs Context 2021; 10:dic-2020-12-8. [PMID: 33995542 PMCID: PMC8074779 DOI: 10.7573/dic.2020-12-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Ketamine is an anaesthetic agent with a unique dissociative profile and pharmacological effects ranging from the induction and maintenance of anaesthesia to analgesia and sedation, depending on the dose. This article provides information for the clinical use of ketamine in anaesthesia, in both conventional and special circumstances. Methods This is a non-systematic review of the literature, through a PubMed search up to February 2021. Results With a favourable pharmacokinetic profile, ketamine is used in hospital and prehospital settings for emergency situations. It is suitable for patients with many heart conditions and, unlike other anaesthetics, its potential for cardiorespiratory depression is low. Furthermore, it may be used when venous access is difficult as it may be administered through various routes. Ketamine is the anaesthetic of choice for patients with bronchospasm thanks to its bronchodilatory and anti-inflammatory properties. Conclusion With a favourable pharmacokinetic profile, ketamine is used in hospital and prehospital settings for emergency situations and is suitable for patients with many cardiac and respiratory conditions.
Collapse
Affiliation(s)
- Silvia Natoli
- Department of Clinical Science and Translational Medicine and Unit of Pain Therapy, Polyclinic of Tor Vergata, University of Rome, Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Sorrenti V, Cecchetto C, Maschietto M, Fortinguerra S, Buriani A, Vassanelli S. Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. Int J Mol Sci 2021; 22:1286. [PMID: 33525470 PMCID: PMC7865872 DOI: 10.3390/ijms22031286] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
General anesthesia in animal experiments is an ethical must and is required for all the procedures that are likely to cause more than slight or momentary pain. As anesthetics are known to deeply affect experimental findings, including electrophysiological recordings of brain activity, understanding their mechanism of action is of paramount importance. It is widely recognized that the depth and type of anesthesia introduce significant bias in electrophysiological measurements by affecting the shape of both spontaneous and evoked signals, e.g., modifying their latency and relative amplitude. Therefore, for a given experimental protocol, it is relevant to identify the appropriate anesthetic, to minimize the impact on neuronal circuits and related signals under investigation. This review focuses on the effect of different anesthetics on cortical electrical recordings, examining their molecular mechanisms of action, their influence on neuronal microcircuits and, consequently, their impact on cortical measurements.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Claudia Cecchetto
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan;
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
| | | | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Stefano Vassanelli
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|
9
|
Alharbi H, Ahmad M, Tian Z, Yu R, Li YL. Therapeutic value of the metabolomic active neurotransmitter isorhynchophylline in the treatment of spontaneously hypertensive rats by regulating neurotransmitters. Transl Neurosci 2021; 12:425-431. [PMID: 34760298 PMCID: PMC8562224 DOI: 10.1515/tnsci-2020-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Hypertension is one of the most reported cardiovascular and cerebrovascular diseases with significantly high morbidity and mortality rates. This condition threatens the very existence of human beings. Numerous studies conducted earlier revealed the good therapeutic effect of isorhynchophylline on hypertension since the former regulates the metabolic disorders in neurotransmitters. However, the mechanism behind this action is yet to be deciphered. The current study followed the targeted metabolomics method to investigate the changes in the neurotransmitter level in the hippocampus of spontaneously hypertensive rats (SHRs) after the rats were treated with isorhynchophylline. The authors predicted the metabolic pathways involved in extensively modified neurotransmitters. Further, the expressions of metabolism-key enzymes in mRNA and protein levels were also determined. When treated with isorhynchophylline, it induced notably varying metabolomic profiles of the hippocampus in SHRs. Isorhynchophylline perturbed a total of seven extensively modified neurotransmitters as well as the primarily related pathways such as tyrosine and glutamate metabolism. An increase in the key metabolic enzymes such as DDC, MAO, COMT, TH, and DβH was observed in the SHR group, whereas their levels decreased after treatment with isorhynchophylline. The expression of GAD67 established cross-current validity. So, isorhynchophylline has been proved to have potential therapeutic value to treat hypertension via tyrosine and glutamate metabolism in the hippocampus. Further, the current study also opened new ventures to further investigate the working mechanism of isorhynchophylline in hypertension.
Collapse
Affiliation(s)
- Homood Alharbi
- Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Ahmad
- Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh, Saudi Arabia
| | - Zhenhua Tian
- Department of Pharmaceutical Sciences, Traditional Chinese Medicine, Shandong University, Jinan, China
| | - Ruixue Yu
- Department of Pharmaceutical Sciences, Traditional Chinese Medicine, Shandong University, Jinan, China
| | - Yun Lun Li
- Department of Pharmaceutical Sciences, Traditional Chinese Medicine, Shandong University, Jinan, China
| |
Collapse
|