1
|
Lawrenz J, Wettstein L, Rodríguez Alfonso A, Nchioua R, von Maltitz P, Albers DPJ, Zech F, Vandeput J, Naesens L, Fois G, Neubauer V, Preising N, Schmierer E, Almeida-Hernandez Y, Petersen M, Ständker L, Wiese S, Braubach P, Frick M, Barth E, Sauter D, Kirchhoff F, Sanchez-Garcia E, Stevaert A, Münch J. Trypstatin as a Novel TMPRSS2 Inhibitor with Broad-Spectrum Efficacy against Corona and Influenza Viruses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2506430. [PMID: 40365759 DOI: 10.1002/advs.202506430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Indexed: 05/15/2025]
Abstract
Respiratory viruses, such as SARS-CoV-2 and influenza, exploit host proteases like TMPRSS2 for entry, making TMPRSS2 a prime antiviral target. Here, the identification and characterization of Trypstatin, a 61-amino acid Kunitz-type protease inhibitor derived from human hemofiltrate are reported. Trypstatin inhibits TMPRSS2 and related proteases with high potency, exhibiting half-maximal inhibitory concentration values in the nanomolar range, comparable to the small molecule inhibitor camostat mesylate. In vitro assays demonstrate that Trypstatin effectively blocks spike-driven entry of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and hCoV-NL63, as well as hemagglutinin-mediated entry of influenza A and B viruses. In primary human airway epithelial cultures, Trypstatin significantly reduces SARS-CoV-2 replication and retained activity in the presence of airway mucus. In vivo, intranasal administration of Trypstatin to SARS-CoV-2-infected Syrian hamsters reduces viral titers and alleviates clinical symptoms. These findings highlight Trypstatin's potential as a broad-spectrum antiviral agent against TMPRSS2-dependent respiratory viruses.
Collapse
Affiliation(s)
- Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Armando Rodríguez Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Julie Vandeput
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | - Lieve Naesens
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, 89081, Ulm, Germany
| | - Veronika Neubauer
- Institute of General Physiology, Ulm University, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Emilia Schmierer
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Yasser Almeida-Hernandez
- Chair of Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, 44227, Dortmund, Germany
| | - Moritz Petersen
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89081, Ulm, Germany
| | - Eberhard Barth
- Anesthesiology and Intensive Medicine Clinic, Ulm University Medical Center, 89081, Ulm, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Elsa Sanchez-Garcia
- Chair of Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, 44227, Dortmund, Germany
| | - Annelies Stevaert
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
2
|
Baby K, Vithalkar MP, Dastidar SG, Mukhopadhyay C, Hamdy R, Soliman SSM, Nayak Y. Exploring TMPRSS2 Drug Target to Combat Influenza and Coronavirus Infection. SCIENTIFICA 2025; 2025:3687892. [PMID: 40297833 PMCID: PMC12037250 DOI: 10.1155/sci5/3687892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Respiratory viral infections, including influenza and coronaviruses, present significant health risks worldwide. The recent COVID-19 pandemic highlights the urgent need for novel and effective antiviral agents. The host cell protease, transmembrane serine protease 2 (TMPRSS2), facilitates viral pathogenesis by playing a critical role in viral invasion and disease progression. This protease is coexpressed with the viral receptors of angiotensin-converting enzyme 2 (ACE2) for SARS-CoV-2 in the human respiratory tract and plays a significant role in activating viral proteins and spreading. TMPRSS2 activates the coronavirus spike (S) protein and permits membrane fusion and viral entry by cleaving the virus surface glycoproteins. It also activates the hemagglutinin (HA) protein, an enzyme necessary for the spread of influenza virus. TMPRSS2 inhibitors can reduce viral propagation and morbidity by blocking viral entry into respiratory cells and reducing viral spread, inflammation, and disease severity. This review examines the role of TMPRSS2 in viral replication and pathogenicity. It also offers potential avenues to develop targeted antivirals to inhibit TMPRSS2 function, suggesting a possible focus on targeted antiviral development. Ultimately, the review seeks to contribute to improving public health outcomes related to these viral infections.
Collapse
Affiliation(s)
- Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Centre for Emerging and Tropical Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, UAE
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
3
|
Subbarayan K, Bieber H, Massa C, Rodríguez FAE, Hossain SMAA, Neuder L, Wahbi W, Salo T, Tretbar S, Al-Samadi A, Seliger B. Link of TMPRSS2 expression with tumor immunogenicity and response to immune checkpoint inhibitors in cancers. J Transl Med 2025; 23:294. [PMID: 40055791 PMCID: PMC11887338 DOI: 10.1186/s12967-025-06177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND SARS-CoV-2 and other viruses rely on the protease function of the TMPRSS2 protein to invade host cells. Despite cancer patients often experience poorer outcomes following SARS-CoV-2 infection, the role of TMPRSS2 in different cancer types has not yet been analyzed in detail. Therefore, the aim of the study was to determine the expression, function and clinical relevance of TMPRSS2 in tumors. METHODS Publicly accessible RNA sequencing data from tumors, adjacent tissues and whole blood samples of COVID-19 patients as well as data from human tumor epithelial and endothelial cells infected with SARS-CoV-2 were analyzed for TMPRSS2 expression and correlated to the expression of immune-relevant genes and clinical parameters. In vitro models of cells transfected with TMPRSS2 (TMPRSS2high), siTMPRSS2 or mock controls (TMPRSS2low cells) were analyzed by qPCR, flow cytometry, ELISA and Western blot for the expression of immune response-relevant molecules. Co-cultures of TMPRSS2 model systems with blood peripheral mononuclear cells were employed to evaluate immune cell migration, cytotoxicity and cytokine release. RESULTS Higher expression levels of TMPRSS2 were found in blood from patients infected with SARS-CoV-2, while TMPRSS2 expression levels significantly varied between the tumor types analyzed. TMPRSS2high tumor cells exhibit increased activity of the interferon (IFN) signal pathway accompanied by an increased expression of class I human leukocyte antigens (HLA-I) and programmed cell death ligand 1 (PD-L1) elevated interleukin 6 (IL-6) secretion and reduced NK cell-mediated cytotoxicity compared to TMPRSS2low mock controls. Treatment with a Janus kinase (JAK) 2 inhibitor or TMPRSS2-specific siRNA decreased TMPRSS2 expression. Co-cultures of the in vitro TMPRSS2 models with peripheral blood mononuclear cells in the presence of the immune checkpoint inhibitor nivolumab resulted in a significantly increased migration and infiltration of immune cells towards TMPRSS2high cells and a reduced release of the innate immunity-related cytokines CCL2 and CCL3. CONCLUSIONS This study provides novel insights into the role of TMPRSS2 in various tumor systems and the impact of SARS-CoV-2 infection on the host immunogenicity via the activation of immune-relevant pathways. These findings were linked to the efficacy of immune checkpoint inhibitor therapy, offering a potential alternative strategy to mitigate the severity of COVID-19.
Collapse
Affiliation(s)
| | - Helena Bieber
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Translational Immunology, Faculty of Health Sciences, Brandenburg Medical School "Theodor Fontane", Brandenburg an der Havel, Germany
| | - Felipe Adonis Escalona Rodríguez
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), Havana, Cuba
- NanoCancer, Molecular Immunology Center (CIM), Havana, Cuba
| | - S M Al Amin Hossain
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lisa Neuder
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, 90014, Finland
| | - Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
- Institute of Translational Immunology, Faculty of Health Sciences, Brandenburg Medical School "Theodor Fontane", Brandenburg an der Havel, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| |
Collapse
|
4
|
Verhulst E, De Bruyn M, Berckmans P, Sim Y, Augustyns K, Pintelon I, Berg M, Van Wielendaele P, Lambeir A, Sterckx YG, Nelissen I, De Meester I. Human Transmembrane Serine Protease 2 (TMPRSS2) on Human Seminal Fluid Extracellular Vesicles Is Proteolytically Active. J Extracell Vesicles 2025; 14:e70061. [PMID: 40091430 PMCID: PMC11911546 DOI: 10.1002/jev2.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Human transmembrane serine protease 2 (TMPRSS2) has garnered substantial interest due to its clinical significance in various pathologies, notably its pivotal role in viral entry into host cells. The development of effective strategies to target TMPRSS2 is a current area of intense research and necessitates a consistent source of active TMPRSS2 with sufficient stability. Here, we comprehensively characterised human seminal-fluid extracellular vesicles (SF-EVs, also referred to as prostasomes), bearing a native source of surface-exposed, enzymatically active TMPRSS2 as demonstrated by high-sensitivity flow cytometry and a fluorometric activity assay. Additionally, we recombinantly produced human TMPRSS2 ectodomain in mammalian cells adopting a directed activation strategy. We observed comparable catalytic parameters and inhibition characteristics for both native SF-EV-associated and recombinant TMPRSS2 when exposed to serine protease inhibitor Nafamostat mesylate. Leveraging these findings, we developed a robust in vitro biochemical assay based on these SF-EVs for the screening of TMPRSS2-targeting compounds. Our results will accelerate the discovery and advancement of efficacious therapeutic approaches targeting TMPRSS2 and propel further exploration into the biological role of SF-EV-associated active TMPRSS2.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Michelle De Bruyn
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | | | - Yani Sim
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Antwerp Centre for Advanced Microscopy (ACAM), Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Maya Berg
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Anne‐Marie Lambeir
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Yann G.‐J. Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Inge Nelissen
- Health UnitFlemish Institute for Technological ResearchMolBelgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| |
Collapse
|
5
|
Bärreiter VA, Meister TL. Renal implications of coronavirus disease 2019: insights into viral tropism and clinical outcomes. Curr Opin Microbiol 2024; 79:102475. [PMID: 38615393 DOI: 10.1016/j.mib.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
In recent years, multiple coronaviruses have emerged, with the latest one, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing a global pandemic. Besides respiratory symptoms, some patients experienced extrapulmonary effects, such as cardiac damage or renal injury, indicating the broad tropism of SARS-CoV-2. The ability of the virus to effectively invade the renal cellular environment can eventually cause tissue-specific damage and disease. Indeed, patients with severe coronavirus disease 2019 exhibited a variety of symptoms such as acute proximal tubular injury, ischemic collapse, and severe acute tubular necrosis resulting in irreversible kidney failure. This review summarizes the current knowledge on how it is believed that SARS-CoV-2 influences the renal environment and induces kidney disease, as well as current therapy approaches.
Collapse
Affiliation(s)
- Valentin A Bärreiter
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Toni L Meister
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany; German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
6
|
Anandakrishnan N, Yi Z, Sun Z, Liu T, Haydak J, Eddy S, Jayaraman P, DeFronzo S, Saha A, Sun Q, Yang D, Mendoza A, Mosoyan G, Wen HH, Schaub JA, Fu J, Kehrer T, Menon R, Otto EA, Godfrey B, Suarez-Farinas M, Leffters S, Twumasi A, Meliambro K, Charney AW, García-Sastre A, Campbell KN, Gusella GL, He JC, Miorin L, Nadkarni GN, Wisnivesky J, Li H, Kretzler M, Coca SG, Chan L, Zhang W, Azeloglu EU. Integrated multiomics implicates dysregulation of ECM and cell adhesion pathways as drivers of severe COVID-associated kidney injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304401. [PMID: 38562892 PMCID: PMC10984064 DOI: 10.1101/2024.03.18.24304401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.
Collapse
|
7
|
van Eijk N, Schmacke LC, Steinmetzer T, Pilgram O, Poór M, Pászti-Gere E. In vitro testing of host-targeting small molecule antiviral matriptase/TMPRSS2 inhibitors in 2D and 3D cell-based assays. Biomed Pharmacother 2023; 168:115761. [PMID: 37865989 DOI: 10.1016/j.biopha.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic strongly stimulated the development of small molecule antivirals selectively targeting type II transmembrane serine proteases (TTSP), required for the host-cell entry of numerous viruses. A set of 3-amidinophenylalanine derivatives (MI-21, MI-472, MI-477, MI-485, MI-1903 and MI-1904), which inhibit the cleavage of certain viral glycoproteins was characterized in 2D and 3D primary human hepatocyte models on collagen- and Matrigel-coating using a CCK-8 assay to evaluate their cytotoxicity, a resorufin-based method to detect redox imbalances, fluorescence and ultrafiltration experiments to evaluate their interactions with human serum albumin (HSA) and α-acidic glycoprotein (AGP), and luminescence measurement to assess CYP3A4 modulation. For elucidation of selectivity of the applied compounds towards matriptase, transmembrane serine protease 2 (TMPRRS2), thrombin and factor Xa (FXa) Ki values were determined. It was proven that cell viability was only deteriorated by inhibitor MI-1903, and redox status was not influenced by administration of the selected inhibitors at 50 µM for 24 h. MI-472 and MI-477 formed relatively stable complexes with AGP. CYP3A4 inhibition was found to be strong in PHHs exposed to all inhibitors with the exception of MI-21, which seems to be a promising drug candidate also due to its better selectivity towards matriptase and TMPRSS2 over the blood clotting proteases thrombin and FXa. Our in vitro pharmacokinetic screening with these inhibitors helps to select the compounds with the best selectivity and safety profile suitable for a further preclinical characterization without animal sacrifice.
Collapse
Affiliation(s)
- Nicholas van Eijk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Luna C Schmacke
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Oliver Pilgram
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary.
| |
Collapse
|
8
|
Azevedo MT, Macedo S, Canberk S, Cardoso L, Gaspar TB, Pestana A, Batista R, Sobrinho-Simões M, Soares P. Significance of Furin Expression in Thyroid Neoplastic Transformation. Cancers (Basel) 2023; 15:3909. [PMID: 37568724 PMCID: PMC10417020 DOI: 10.3390/cancers15153909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Angiotensin-Converting Enzyme 2 (ACE2), Transmembrane Serine Protease 2 (TMPRSS2), and Furin were known to be key players in the SARS-CoV-2 infection, and the thyroid gland was revealed to be one of the relevant targets of the virus. Regardless of the viral infection, the expression of these molecules in the thyroid gland and their putative role in the neoplastic transformation of the thyrocytes has not been thoroughly explored. In this work, we aimed to characterize the mRNA and protein expression pattern of ACE2, TMPRSS2, and Furin in a series of patients with thyroid lesions. Our main results revealed a significantly decreased expression of ACE2 mRNA in the thyroid neoplasms in comparison to normal adjacent tissue. Furin mRNA was significantly increased in thyroid neoplasms when compared to normal adjacent tissue. In addition, a higher Furin mRNA level in thyroid carcinomas was associated with the presence of lymph node metastasis. Furin mRNA expression revealed a high discriminatory power between adjacent tissue and neoplasms. Protein expression of these molecules did not correlate with mRNA expression. Our study shows the mRNA downregulation of ACE2 and overexpression of Furin in thyroid neoplasms. Further studies are required to clarify if Furin expression can be a potential diagnostic indicator in thyroid neoplasia.
Collapse
Affiliation(s)
- Maria Teresa Azevedo
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.T.A.); (S.M.); (S.C.); (L.C.); (T.B.G.); (R.B.); (M.S.-S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto (FMUP), 4200-139 Porto, Portugal
| | - Sofia Macedo
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.T.A.); (S.M.); (S.C.); (L.C.); (T.B.G.); (R.B.); (M.S.-S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto (FMUP), 4200-139 Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Sule Canberk
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.T.A.); (S.M.); (S.C.); (L.C.); (T.B.G.); (R.B.); (M.S.-S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto (FMUP), 4200-139 Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Luís Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.T.A.); (S.M.); (S.C.); (L.C.); (T.B.G.); (R.B.); (M.S.-S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
| | - Tiago Bordeira Gaspar
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.T.A.); (S.M.); (S.C.); (L.C.); (T.B.G.); (R.B.); (M.S.-S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto (FMUP), 4200-139 Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Ana Pestana
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Rui Batista
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.T.A.); (S.M.); (S.C.); (L.C.); (T.B.G.); (R.B.); (M.S.-S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Manuel Sobrinho-Simões
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.T.A.); (S.M.); (S.C.); (L.C.); (T.B.G.); (R.B.); (M.S.-S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto (FMUP), 4200-139 Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, 4200-139 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.T.A.); (S.M.); (S.C.); (L.C.); (T.B.G.); (R.B.); (M.S.-S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto (FMUP), 4200-139 Porto, Portugal
| |
Collapse
|
9
|
Zheng L, Zhang L, Zheng Y, An J, Wen G, Jin H, Tuo B. Digestive system infection by SARS‑CoV‑2: Entry mechanism, clinical symptoms and expression of major receptors (Review). Int J Mol Med 2023; 51:19. [PMID: 36660939 PMCID: PMC9911086 DOI: 10.3892/ijmm.2023.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2022] [Indexed: 01/21/2023] Open
Abstract
Besides causing severe acute respiratory syndrome (SARS), SARS‑coronavirus 2 (SARS‑CoV‑2) also harms the digestive system. Given the appearance of numerous cases of SARS‑CoV‑2, it has been demonstrated that SARS‑CoV‑2 is able to harm target organs such as the gastrointestinal tract, liver and pancreas, and either worsen the condition of patients with basic digestive illnesses or make their prognosis poor. According to several previously published studies, angiotensin‑converting enzyme II (ACE2) and transmembrane serine protease II (TMPRSS2) are expressed either singly or in combination in the digestive system and in other regions of the human body. In order to change the viral conformation, create a fusion hole and release viral RNA into the host cell for replication and transcription, SARS‑CoV‑2 is capable of binding to these two proteins through the spike protein on its surface. As a result, the body experiences an immune reaction and an inflammatory reaction, which may lead to nausea, diarrhea, abdominal pain and even gastrointestinal bleeding, elevated levels of liver enzymes, acute liver injury, pancreatitis and other serious lesions. In order to provide possible strategies for the clinical diagnosis and treatment of digestive system diseases during the COVID‑19 pandemic, the molecular structure of SARS‑CoV‑2 and the mechanism via which SARS‑CoV‑2 enters the human body through ACE2 and TMPRSS2 were discussed in the present review, and the clinical manifestations of SARS‑CoV‑2 infection in the digestive system were also summarized. Finally, the expression characteristics of ACE2 and TMPRSS2 in the main target organs of the digestive system were described.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yi Zheng
- Department of Gastroenterology, The Fifth People's Hospital of Zunyi, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
10
|
How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020483. [PMID: 36830041 PMCID: PMC9952211 DOI: 10.3390/antiox12020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
SARS-CoV-2 induces a broad range of clinical manifestations. Besides the main receptor, ACE2, other putative receptors and co-receptors have been described and could become genuinely relevant to explain the different tropism manifested by new variants. In this study, we propose a biochemical model envisaging the competition for cysteine as a key mechanism promoting the infection and the selection of host receptors. The SARS-CoV-2 infection produces ROS and triggers a massive biosynthesis of proteins rich in cysteine; if this amino acid becomes limiting, glutathione levels are depleted and cannot control oxidative stress. Hence, infection succeeds. A receptor should be recognized as a marker of suitable intracellular conditions, namely the full availability of amino acids except for low cysteine. First, we carried out a comparative investigation of SARS-CoV-2 proteins and human ACE2. Then, using hierarchical cluster protein analysis, we searched for similarities between all human proteins and spike produced by the latest variant, Omicron BA.1. We found 32 human proteins very close to spike in terms of amino acid content. Most of these potential SARS-CoV-2 receptors have less cysteine than spike. We suggest that these proteins could signal an intracellular shortage of cysteine, predicting a burst of oxidative stress when used as viral entry mediators.
Collapse
|
11
|
Rabaan AA, Smajlović S, Tombuloglu H, Ćordić S, Hajdarević A, Kudić N, Mutai AA, Turkistani SA, Al-Ahmed SH, Al-Zaki NA, Al Marshood MJ, Alfaraj AH, Alhumaid S, Al-Suhaimi E. SARS-CoV-2 infection and multi-organ system damage: A review. BIOMOLECULES & BIOMEDICINE 2023; 23:37-52. [PMID: 36124445 PMCID: PMC9901898 DOI: 10.17305/bjbms.2022.7762] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023]
Abstract
The SARS-CoV-2 infection causes COVID-19, which has affected approximately six hundred million people globally as of August 2022. Organs and cells harboring angiotensin-converting enzyme 2 (ACE2) surface receptors are the primary targets of the virus. However, once it enters the body through the respiratory system, the virus can spread hematogenously to infect other body organs. Therefore, COVID-19 affects many organs, causing severe and long-term complications, even after the disease has ended, thus worsening the quality of life. Although it is known that the respiratory system is most affected by the SARS-CoV-2 infection, many organs/systems are affected in the short and long term. Since the COVID-19 disease simultaneously affects many organs, redesigning diagnostic and therapy policies to fit the damaged organs is strongly recommended. Even though the pathophysiology of many problems the infection causes is unknown, the frequency of COVID-19 cases rises with age and the existence of preexisting symptoms. This study aims to update our knowledge of SARS-CoV-2 infection and multi-organ dysfunction interaction based on clinical and theoretical evidence. For this purpose, the study comprehensively elucidates the most recent studies on the effects of SARS-CoV-2 infection on multiple organs and systems, including respiratory, cardiovascular, gastrointestinal, renal, nervous, endocrine, reproductive, immune, and parts of the integumentary system. Understanding the range of atypical COVID-19 symptoms could improve disease surveillance, limit transmission, and avoid additional multi-organ-system problems.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Samira Smajlović
- Laboratory Diagnostics Institute Dr. Dedić, Bihać, Bosnia and Herzegovina
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sabahudin Ćordić
- Cantonal Hospital “Dr. Irfan Ljubijankić”, Microbiological Laboratory, Bihać, Bosnia and Herzegovina
| | - Azra Hajdarević
- International Burch University, Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, Ilidža, Bosnia and Herzegovina
| | - Nudžejma Kudić
- University of Sarajevo, Faculty of Agriculture and Food Science, Sarajevo, Bosnia and Herzegovina
| | - Abbas Al Mutai
- Research Center, Almoosa Specialist Hospital, Al Mubarraz, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | | | - Shamsah H Al-Ahmed
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Nisreen A Al-Zaki
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Mona J Al Marshood
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
12
|
Bueno V, Frasca D. Mini-review: Angiotensin- converting enzyme 1 (ACE1) and the impact for diseases such as Alzheimer's disease, sarcopenia, cancer, and COVID-19. FRONTIERS IN AGING 2023; 4:1117502. [PMID: 36756193 PMCID: PMC9899811 DOI: 10.3389/fragi.2023.1117502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Ageing has been associated with comorbidities, systemic low-grade of inflammation, and immunosenescence. Hypertension is the most common morbidity and anti-hypertensives are used for more than 50%. Angiotensin-converting enzyme 1 inhibitors (ACEi) and angiotensin II receptor blockers (ARB) control blood pressure but also seem to play a role in comorbidities such as Alzheimer's disease, sarcopenia and cancer. The impact of anti-hypertensives in comorbidities is due to the expression of renin-angiotensin system (RAS) in several tissues and body fluids. Angiotensin-converting enzyme 1 (ACE1) has been linked to oxidative stress, metabolism, and inflammation. The levels and activity of ACE1 are under genetic control and polymorphisms have been correlated with susceptibility to Alzheimer's disease. In addition, some results found that ACEi and ARB users present delayed cognitive decline and reduced risk of dementia. Regarding to sarcopenia, RAS has been linked to the catabolic and anabolic pathways for muscle mass maintenance. In some studies, older adults using ACEi were highly benefited by exercise training. In cancer, RAS and its products have been shown to play a role since their inhibition in animal models modulates tumor microenvironment and improves the delivery of chemotherapy drugs. Clinically, the incidence of colorectal cancer is reduced in patients using ACEi and ARB. During the pandemic COVID-19 it was found that ACE2 receptor plays a role in the entry of SARS-CoV-2 into the host cell. ACE1 genotypes have been linked to an increased risk for COVID-19 and severe disease. In some studies COVID-19 patients taking ARB or ACEi presented better outcome.
Collapse
Affiliation(s)
- Valquiria Bueno
- Department of Microbiology Immunology and Parasitology, UNIFESP Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Frasca
- Department of Immunology, University of Miami, Miami, FL, United States
| |
Collapse
|
13
|
Beheshti Shirazi SS, Sakhaee F, Sotoodehnejadnematalahi F, Zamani MS, Ahmadi I, Anvari E, Fateh A. rs12329760 Polymorphism in Transmembrane Serine Protease 2 Gene and Risk of Coronavirus Disease 2019 Mortality. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7841969. [PMID: 36457338 PMCID: PMC9708353 DOI: 10.1155/2022/7841969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/04/2022] [Accepted: 11/12/2022] [Indexed: 08/29/2023]
Abstract
The protease produced by the transmembrane serine protease 2 (TMPRSS2) gene enhances viral infections and has been linked to severe acute respiratory syndrome coronavirus 2 pathogenesis. Therefore, this study evaluated the association between TMPRSS2 and coronavirus disease 2019 (COVID-19) mortality. TMPRSS2 rs12329760 polymorphism was genotyped using the tetraprimer amplification refractory mutation system-polymerase chain reaction method in 592 dead and 693 improved patients. In the current study, the frequency of TMPRSS2 rs12329760 CC than TT genotypes was significantly lower in improved patients than in dead patients. According to the findings of the multivariate logistic regression test, higher levels of mean age, creatinine, erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, lower levels of 25-hydroxyvitamin D, uric acid, and real-time PCR Ct values and TMPRSS2 rs12329760 CC genotype were observed to be associated with increased COVID-19 mortality rates. In conclusion, the TMPRSS2 rs12329760 CC genotype was a polymorphism linked to a significantly higher incidence of severe COVID-19. Further studies are required to corroborate the obtained findings.
Collapse
Affiliation(s)
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Enayat Anvari
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
A Time-Series Metabolomic Analysis of SARS-CoV-2 Infection in a Ferret Model. Metabolites 2022; 12:metabo12111151. [DOI: 10.3390/metabo12111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
The global threat of COVID-19 has led to an increased use of metabolomics to study SARS-CoV-2 infections in animals and humans. In spite of these efforts, however, understanding the metabolome of SARS-CoV-2 during an infection remains difficult and incomplete. In this study, metabolic responses to a SAS-CoV-2 challenge experiment were studied in nasal washes collected from an asymptomatic ferret model (n = 20) at different time points before and after infection using an LC-MS-based metabolomics approach. A multivariate analysis of the nasal wash metabolome data revealed several statistically significant features. Despite no effects of sex or interaction between sex and time on the time course of SARS-CoV-2 infection, 16 metabolites were significantly different at all time points post-infection. Among these altered metabolites, the relative abundance of taurine was elevated post-infection, which could be an indication of hepatotoxicity, while the accumulation of sialic acids could indicate SARS-CoV-2 invasion. Enrichment analysis identified several pathways influenced by SARS-CoV-2 infection. Of these, sugar, glycan, and amino acid metabolisms were the key altered pathways in the upper respiratory channel during infection. These findings provide some new insights into the progression of SARS-CoV-2 infection in ferrets at the metabolic level, which could be useful for the development of early clinical diagnosis tools and new or repurposed drug therapies.
Collapse
|
15
|
Fu J, Liu S, Tan Q, Liu Z, Qian J, Li T, Du J, Song B, Li D, Zhang L, He J, Guo K, Zhou B, Chen H, Fu S, Liu X, Cheng J, He T, Fu J. Impact of TMPRSS2 Expression, Mutation Prognostics, and Small Molecule (CD, AD, TQ, and TQFL12) Inhibition on Pan-Cancer Tumors and Susceptibility to SARS-CoV-2. Molecules 2022; 27:molecules27217413. [PMID: 36364238 PMCID: PMC9658242 DOI: 10.3390/molecules27217413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
As a cellular protease, transmembrane serine protease 2 (TMPRSS2) plays roles in various physiological and pathological processes, including cancer and viral entry, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we conducted expression, mutation, and prognostic analyses for the TMPRSS2 gene in pan-cancers as well as in COVID-19-infected lung tissues. The results indicate that TMPRSS2 expression was highest in prostate cancer. A high expression of TMPRSS2 was significantly associated with a short overall survival in breast invasive carcinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), while a low expression of TMPRSS2 was significantly associated with a short overall survival in lung adenocarcinoma (LUAD), demonstrating TMPRSS2 roles in cancer patient susceptibility and severity. Additionally, TMPRSS2 expression in COVID-19-infected lung tissues was significantly reduced compared to healthy lung tissues, indicating that a low TMPRSS2 expression may result in COVID-19 severity and death. Importantly, TMPRSS2 mutation frequency was significantly higher in prostate adenocarcinoma (PRAD), and the mutant TMPRSS2 pan-cancer group was significantly associated with long overall, progression-free, disease-specific, and disease-free survival rates compared to the wild-type (WT) TMPRSS2 pan-cancer group, demonstrating loss of functional roles due to mutation. Cancer cell lines were treated with small molecules, including cordycepin (CD), adenosine (AD), thymoquinone (TQ), and TQFL12, to mediate TMPRSS2 expression. Notably, CD, AD, TQ, and TQFL12 inhibited TMPRSS2 expression in cancer cell lines, including the PC3 prostate cancer cell line, implying a therapeutic role for preventing COVID-19 in cancer patients. Together, these findings are the first to demonstrate that small molecules, such as CD, AD, TQ, and TQFL12, inhibit TMPRSS2 expression, providing novel therapeutic strategies for preventing COVID-19 and cancers.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qi Tan
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhiying Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Ting Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Basic Medical School, Southwest Medical University, Luzhou 646000, China
| | - Lianmei Zhang
- Department of Pathology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Kan Guo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Hanchun Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha 410013, China
| | - Shangyi Fu
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Tao He
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Institute for Cancer Medicine, Basic Medical School, Southwest Medical University, Luzhou 646000, China
- Correspondence: (T.H.); (J.F.); Tel./Fax: +86-830-3160283 (J.F.)
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Correspondence: (T.H.); (J.F.); Tel./Fax: +86-830-3160283 (J.F.)
| |
Collapse
|
16
|
Reactive Centre Loop Mutagenesis of SerpinB3 to Target TMPRSS2 and Furin: Inhibition of SARS-CoV-2 Cell Entry and Replication. Int J Mol Sci 2022; 23:ijms232012522. [PMID: 36293378 PMCID: PMC9604144 DOI: 10.3390/ijms232012522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 virus can utilize host cell proteases to facilitate cell entry, whereby the Spike (S) protein is cleaved at two specific sites to enable membrane fusion. Furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin L (CatL) are the major proteases implicated, and are thus targets for anti-viral therapy. The human serpin (serine protease inhibitor) alpha-1 antitrypsin (A1AT) shows inhibitory activity for TMPRSS2, and has previously been found to suppress cell infection with SARS-CoV-2. Here, we have generated modified serpin inhibitors with increased specificity for these cellular proteases. Using SerpinB3 (SCCA-1), a cross-class inhibitor of CatL, as a scaffold, we have designed and produced reactive centre loop (RCL) variants to more specifically target both furin and TMPRSS2. Two further variants were generated by substituting the RCL P7–P1 with the spike protein S1/S2 cleavage site from either SARS-CoV-2 alpha or delta (P681R) sequences. Altered inhibitory specificity of purified recombinant proteins was verified in protease assays, with attenuated CatL inhibition and gain of furin or TMPRSS2 inhibition, as predicted, and modified serpins were shown to block S protein cleavage in vitro. Furthermore, the serpin variants were able to inhibit S-pseudoparticle entry into A549-ACE2-TMPRSS2 cells and suppress SARS-CoV-2 replication in Vero E6 cells expressing TMPRSS2. The construct designed to inhibit TMPRSS2 (B3-TMP) was most potent. It was more effective than A1AT for TMPRSS2 enzyme inhibition (with an eighteen-fold improvement in the second order inhibition rate constant) and for blocking SARS-CoV-2 viral replication. These findings advance the potential for serpin RCL mutagenesis to generate new inhibitors, and may lead to novel anti-viral biological molecules.
Collapse
|
17
|
Scott TM, Solis-Leal A, Lopez JB, Robison RA, Berges BK, Pickett BE. Comparison of Intracellular Transcriptional Response of NHBE Cells to Infection with SARS-CoV-2 Washington and New York Strains. Front Cell Infect Microbiol 2022; 12:1009328. [PMID: 36204651 PMCID: PMC9530606 DOI: 10.3389/fcimb.2022.1009328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China in December 2019 and caused a global pandemic resulting in millions of deaths and tens of millions of patients positive tests. While studies have shown a D614G mutation in the viral spike protein are more transmissible, the effects of this and other mutations on the host response, especially at the cellular level, are yet to be fully elucidated. In this experiment we infected normal human bronchial epithelial (NHBE) cells with the Washington (D614) strain or the New York (G614) strains of SARS-CoV-2. We generated RNA sequencing data at 6, 12, and 24 hours post-infection (hpi) to improve our understanding of how the intracellular host response differs between infections with these two strains. We analyzed these data with a bioinformatics pipeline that identifies differentially expressed genes (DEGs), enriched Gene Ontology (GO) terms and dysregulated signaling pathways. We detected over 2,000 DEGs, over 600 GO terms, and 29 affected pathways between the two infections. Many of these entities play a role in immune signaling and response. A comparison between strains and time points showed a higher similarity between matched time points than across different time points with the same strain in DEGs and affected pathways, but found more similarity between strains across different time points when looking at GO terms. A comparison of the affected pathways showed that the 24hpi samples of the New York strain were more similar to the 12hpi samples of the Washington strain, with a large number of pathways related to translation being inhibited in both strains. These results suggest that the various mutations contained in the genome of these two viral isolates may cause distinct effects on the host transcriptional response in infected host cells, especially relating to how quickly translation is dysregulated after infection. This comparison of the intracellular host response to infection with these two SARS-CoV-2 isolates suggest that some of the mechanisms associated with more severe disease from these viruses could include virus replication, metal ion usage, host translation shutoff, host transcript stability, and immune inhibition.
Collapse
Affiliation(s)
- Tiana M. Scott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Antonio Solis-Leal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
- Population Health and Host-pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - J. Brandon Lopez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
18
|
SARS-CoV-2 Virus Culture, Genomic and Subgenomic RNA Load, and Rapid Antigen Test in Experimentally Infected Syrian Hamsters. J Virol 2022; 96:e0103422. [PMID: 36040179 PMCID: PMC9517720 DOI: 10.1128/jvi.01034-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The duration of SARS-CoV-2 genomic RNA shedding is much longer than that of infectious SARS-CoV-2 in most COVID-19 patients. It is very important to determine the relationship between test results and infectivity for efficient isolation, contact tracing, and post-isolation. We characterized the duration of viable SARS-CoV-2, viral genomic and subgenomic RNA (gRNA and sgRNA), and rapid antigen test positivity in nasal washes, oropharyngeal swabs, and feces of experimentally infected Syrian hamsters. The duration of viral genomic RNA shedding is longer than that of viral subgenomic RNA, and far longer than those of rapid antigen test (RAgT) and viral culture positivity. The rapid antigen test results were strongly correlated with the viral culture results. The trend of subgenomic RNA is similar to that of genomic RNA, and furthermore, the subgenomic RNA load is highly correlated with the genomic RNA load. IMPORTANCE Our findings highlight the high correlation between rapid antigen test and virus culture results. The rapid antigen test would be an important supplement to real-time reverse transcription-RCR (RT-PCR) in early COVID-19 screening and in shortening the isolation period of COVID-19 patients. Because the subgenomic RNA load can be predicted from the genomic RNA load, measuring sgRNA does not add more benefit to determining infectivity than a threshold determined for gRNA based on viral culture.
Collapse
|
19
|
Saengsiwaritt W, Jittikoon J, Chaikledkaew U, Udomsinprasert W. Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis. Rev Med Virol 2022; 32:e2323. [PMID: 34997794 DOI: 10.1002/rmv.2323] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Novel coronavirus disease 2019 (COVID-19) poses a global threat, due to its fluctuating frequency and lethality. Published data revealed associations of COVID-19 susceptibility and severity with host genetic polymorphisms in renin-angiotensin-aldosterone system (RAAS)-related genes including angiotensin-converting enzyme (ACE)1, ACE2, and transmembrane protease (TMPRSS)2. However, the findings remain inconclusive. Accordingly, we aimed to clarify associations of genetic variants in those genes with COVID-19 susceptibility and severity using a systematic review with meta-analysis. From inception through 1 July 2021, a literature search was performed using PubMed, Scopus, Web of Science, and Cochrane Library databases. Allelic distributions for each polymorphism were calculated as pooled odds ratios (OR) with 95% confidence intervals (CI) to assess the strength of association. A total of 3333 COVID-19 patients and 5547 controls from 11 eligible studies were included. From a systematic review, ACE1 rs1799752, ACE1 rs4646994, ACE2 rs2285666, and TMPRSS2 rs12329760 were identified as common polymorphisms of RAAS-related genes. Meta-analysis showed a significant association between TMPRSS2 rs12329760 C-allele and an increased risk of developing severe COVID-19 (OR = 1.32, 95% CI: 1.01, 1.73). Likewise, additional meta-analyses uncovered that both ACE1 rs4646994 DD-genotype and ACE2 rs2285666 GG-genotype carriers had a significantly increased risk of developing severe COVID-19 (OR = 2.06, 95% CI: 1.45, 2.93; OR = 2.14, 95% CI: 1.26, 3.66; respectively). Genetic polymorphisms of ACE1 rs4646994 DD-genotype, ACE2 rs2285666 GG-genotype, and TMPRSS2 rs12329760 CC-genotype and C-allele may serve as predictive models of COVID-19 severity.
Collapse
Affiliation(s)
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
20
|
Rasmi Y, Mosa OF, Alipour S, Heidari N, Javanmard F, Golchin A, Gholizadeh-Ghaleh Aziz S. Significance of Cardiac Troponins as an Identification Tool in COVID-19 Patients Using Biosensors: An Update. Front Mol Biosci 2022; 9:821155. [PMID: 35281265 PMCID: PMC8912935 DOI: 10.3389/fmolb.2022.821155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly developed as a global health emergency. Respiratory diseases are significant causes of morbidity and mortality in these patients with a spectrum of different diseases, from asymptomatic subclinical infection to the progression of severe pneumonia and subsequent acute respiratory distress syndrome. Individuals with cardiovascular disease are more likely to become infected with SARS-CoV-2 and develop severe symptoms. Hence, patients with underlying cardiovascular disease mortality rate are over three times. Furthermore, note that patients with a history of cardiovascular disease are more likely to have higher cardiac biomarkers, especially cardiac troponins, than infected patients, especially those with severe disease, making these patients more susceptible to cardiac damage caused by SARS-2-CoV. Biomarkers are important in decision-making to facilitate the efficient allocation of resources. Viral replication in the heart muscle can lead to a cascade of inflammatory processes that lead to fibrosis and, ultimately, cardiac necrosis. Elevated troponin may indicate damage to the heart muscle and may predict death. After the first Chinese analysis, increased cardiac troponin value was observed in a significant proportion of patients, suggesting that myocardial damage is a possible pathogenic mechanism leading to severe disease and death. However, the prognostic performance of troponin and whether its value is affected by different comorbidities present in COVID-19 patients are not known. This review aimed to assess the diagnostic value of troponin to offer insight into pathophysiological mechanisms and reported new assessment methods, including new biosensors for troponin in patients with COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Osama F Mosa
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Mecca, Saudi Arabia
- Biochemistry Department, Bukhara State Medical Institute Named After Abu Ali ibn Sino, Bukhara, Uzbekistan
| | - Shahriar Alipour
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Heidari
- Department of Clinical Biochemistry, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farzaneh Javanmard
- Department of Pathology, Urmia University of Medical Science, Urmia, Iran
| | - Ali Golchin
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Liu X, Liu B, Shang Y, Cao P, Hou J, Chen F, Zhang B, Fan Y, Tan K. Decreased TMPRSS2 expression by SARS-CoV-2 predicts the poor prognosis of lung cancer patients through metabolic pathways and immune infiltration. Aging (Albany NY) 2022; 14:73-108. [PMID: 35017320 PMCID: PMC8791221 DOI: 10.18632/aging.203823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world and became a global pandemic in 2020. One promising drug target for SARS-CoV-2 is the transmembrane protease serine 2 (TMPRSS2). This study was designed to explore the expression status, prognostic significance and molecular functions of TMPRSS2 in lung cancer. TMPRSS2 expression was investigated using the TIMER, Oncomine, UALCAN, GEO, HPA and TCGA databases. The prognostic value of TMPRSS2 was examined using Cox regression and a nomogram. KEGG, GO and GSEA were performed to investigate the cellular function of TMPRSS2 in lung cancer. The relationship between TMPRSS2 and immune infiltration was determined using the TIMER and CIBERSORT algorithms. TMPRSS2 mRNA and protein expression was significantly reduced in lung cancer. Decreased TMPRSS2 expression and increased DNA methylation of TMPRSS2 were associated with various clinicopathological parameters in patients with lung cancer. Low TMPRSS2 mRNA expression also correlated with poor outcome in lung cancer patients. Moreover, a nomogram was constructed and exhibited good predictive power for the overall survival of lung cancer patients. KEGG and GO analyses and GSEA implied that multiple immune- and metabolism-related pathways were significantly linked with TMPRSS2 expression. Intriguingly, TMPRSS2 expression associated with immune cell infiltration in lung cancer. More importantly, TMPRSS2 expression was markedly decreased in SARS-CoV-infected cells. These findings indicate that TMPRSS2 may be a promising prognostic biomarker and therapeutic target for lung cancer through metabolic pathways and immune cell infiltration.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Bing Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yanan Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jiajie Hou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fei Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Bo Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
22
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Hossain MS, Tonmoy MIQ, Fariha A, Islam MS, Roy AS, Islam MN, Kar K, Alam MR, Rahaman MM. Prediction of the Effects of Variants and Differential Expression of Key Host Genes ACE2, TMPRSS2, and FURIN in SARS-CoV-2 Pathogenesis: An In Silico Approach. Bioinform Biol Insights 2021; 15:11779322211054684. [PMID: 34720581 PMCID: PMC8554545 DOI: 10.1177/11779322211054684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022] Open
Abstract
A new strain of the beta coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is solely responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic. Although several studies suggest that the spike protein of this virus interacts with the cell surface receptor, angiotensin-converting enzyme 2 (ACE2), and is subsequently cleaved by TMPRSS2 and FURIN to enter into the host cell, conclusive insight about the interaction pattern of the variants of these proteins is still lacking. Thus, in this study, we analyzed the functional conjugation among the spike protein, ACE2, TMPRSS2, and FURIN in viral pathogenesis as well as the effects of the mutations of the proteins through the implementation of several bioinformatics approaches. Analysis of the intermolecular interactions revealed that T27A (ACE2), G476S (receptor-binding domain [RBD] of the spike protein), C297T (TMPRSS2), and P812S (cleavage site for TMPRSS2) coding variants may render resistance in viral infection, whereas Q493L (RBD), S477I (RBD), P681R (cleavage site for FURIN), and P683W (cleavage site for FURIN) may lead to increase viral infection. Genotype-specific expression analysis predicted several genetic variants of ACE2 (rs2158082, rs2106806, rs4830971, and rs4830972), TMPRSS2 (rs458213, rs468444, rs4290734, and rs6517666), and FURIN (rs78164913 and rs79742014) that significantly alter their normal expression which might affect the viral spread. Furthermore, we also found that ACE2, TMPRSS2, and FURIN proteins are functionally co-related with each other, and several genes are highly co-expressed with them, which might be involved in viral pathogenesis. This study will thus help in future genomics and proteomics studies of SARS-CoV-2 and will provide an opportunity to understand the underlying molecular mechanism during SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Sajedul Islam
- Department of Biochemistry & Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Arpita Singha Roy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Nur Islam
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Kumkum Kar
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology & Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | |
Collapse
|