1
|
Singh V, Haribabu J, Arulraj A, Vediyappan R, Sreekanth A. Design, synthesis, and anticancer evaluation of N4-substituted thiosemicarbazones derived from ortho- and para-ethoxy-benzaldehydes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125662. [PMID: 39733706 DOI: 10.1016/j.saa.2024.125662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
R2 - C(S) - NH - N = CH - R1 [R1 = o-OCH2CH3 & R2 = C4H9N (2-EBP), R1 = o-OCH2CH3 & R2 = C4H9NO (2-EBM), R1 = p-OCH2CH3 & R2 = C4H9N (4-EBP), and R1 = p-OCH2CH3 & R2 = C4H9NO (4-EBM)] have been synthesized. The ligands have been verified via various spectroscopic methods such as IR, NMR, etc. Single-crystal X-ray diffraction methods were applied to identify the structure of 4-EBP. Absorption/emission spectroscopic titration was used to assess the interaction of ligands to calf thymus (CT) DNA. DNA binding studies revealed interactions characterized by hyperchromicity and a slight redshift. 4-EBP showed the highest binding constant (1.58 × 105), indicating that it binds stronger to CT-DNA. The red shift and significant hypochromic shift seen in the fluorescence titration spectra of the BSA binding probes showed the strong interaction of the ligand to BSA. EGFR protein docking investigations verified the potential of the ligands to treat its targets. 4-EBP has the highest docking score (-6.7987 kcal) compared to other synthesized ligands. The B3LYP/6-311 G (d, p) ++ was implemented to calculate density functional theory (DFT). All ligands have a LogP value below 5, indicating lipophilic properties suitable for SwissADME studies. All new ligands follow Lipinski's drug class rules. Low synthetic input levels between 2 and 3 indicate the best results for this material. Each ligand (2-EBP to 4-EBM) has been marked to perform as an oral drug candidate. To test the anticancer potential of four ligands (2-EBP to 4-EBM). 4-EBP showed good efficacy against endothelial and liver cancer cells, with IC50 values of 21.2 ± 0.1 and 45.3 ± 0.1 against MCF-7 and HepG-2 respectively.
Collapse
Affiliation(s)
- Vipin Singh
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu 620015, India
| | - Jebiti Haribabu
- Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Av. José Pedro Alessandri 1242, Ñuñoa 7800002, Santiago, Chile
| | - Ramesh Vediyappan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
2
|
Abd El-Lateef HM, Khalaf MM, Abdou A. Preparation, Characterization, In Vitro Biological Evaluation, DFT Calculations, and Molecular Docking Investigations of 1H-Imidazole-2-Carboxylic acid and Histidine-Based Mixed-Ligand Complexes. Chem Biodivers 2025; 22:e202402049. [PMID: 39286845 DOI: 10.1002/cbdv.202402049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Mixed-ligand complexes incorporating 1H-Imidazole-2-Carboxylic acid (IMCA) and Histidine (LHIS) show promise for biomedical and biotechnological applications. This study synthesizes and characterizes FeIMCALHIS, CoIMCALHIS, and NiIMCALHIS coordination compounds using metal chloride salts (FeCl3.6H2O, CoCl2.6H2O, NiCl2.6H2O) in ethanolic solutions. The complexes are characterized by spectroscopic methods (IR, UV-vis, and mass spectra), elemental analysis, conductivity, magnetic, and thermal analysis. Molar conductivity indicates their non-electrolytic nature. UV-vis spectra reveal absorption bands with pathochromic shifts, and electronic spectra show characteristic metal-ligand transitions, indicating their structural configuration and coordination geometry. 3D geometry optimization shows six-coordination around Fe(III) and Co(II) in FeIMCALHIS and CoIMCALHIS, and four-coordination around Ni(II) in NiIMCALHIS. Analysis of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) suggests decreased electron donation ability upon coordination. Electronic structure parameters (HOMO, LUMO, ionization potential, energy gap, electron affinity, chemical potentials, and electronegativity) provide further insights into stability and reactivity. The metal complexes exhibit enhanced antimicrobial, antioxidant, and anti-inflammatory activity compared to individual ligands, with FeIMCALHIS showing notable antimicrobial activity. Molecular docking analysis reveals strong binding interactions with target proteins, highlighting their potential therapeutic applications.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Aly Abdou
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
3
|
Akash S, Shanto SKHI, Islam MR, Bayil I, Afolabi SO, Guendouzi A, Abdellattif MH, Zaki MEA. Discovery of novel MLK4 inhibitors against colorectal cancer through computational approaches. Comput Biol Med 2024; 182:109136. [PMID: 39298888 DOI: 10.1016/j.compbiomed.2024.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Colorectal cancer (CRC) is a significant health issue globally, affecting approximately 10 % of the world's population. The prevalence of CRC highlights the need for effective treatments and prevention strategies. The current therapeutic option, such as chemotherapy, has significant side effects. Thus, this study investigated the anticancer properties of Sanguinarine derivatives, an alkaloid found in traditional herbs via chemoinformatic approaches. Six Sanguinarine derivatives were discovered through virtual screening and molecular docking to determine their binding affinities against the mixed lineage kinase (MLK4) protein which is responsible for CRC. All the compounds were found to be more effective than standard drug used for colorectal cancer treatment, with Sanguinarine derivative 11 showing the highest affinity. The stability of the drug was confirmed through molecular dynamics simulations at 500 ns. This suggests that compound 11 has a higher chance of replacing 5-Fluorouracil, which is currently a widely used chemotherapy drug. Before molecular dynamics simulations, the pharmacokinetic and chemical properties of Sanguinarine derivatives were determined using pkCSM server and DFT method, respectively. The results support that compound 11 is a good drug candidate, as evidenced by Lipinski's Rule of Five. Therefore, compound 11 is recommended for further analysis via in vivo and in vitro studies to confirm its efficacy and safety.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh.
| | - S K Hasibul Islam Shanto
- Department of Pharmacy, Faculty of Health Science, Northern University Bangladesh, Ashkona, Dhaka, 1230, Bangladesh.
| | - Md Rezaul Islam
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Imren Bayil
- Department of Bioinformatics and Computational Biology, Gaziantep University, Turkey.
| | | | - Abdelkrim Guendouzi
- Laboratory of Chemistry: Synthesis, Properties and Applications (LCSPA), University of Saïda, Algeria.
| | - Magda H Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, Saudi Arabia.
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Luo X, Xu T, Ngan DK, Xia M, Zhao J, Sakamuru S, Simeonov A, Huang R. Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure. Toxicol Appl Pharmacol 2024; 492:117098. [PMID: 39251042 PMCID: PMC11563913 DOI: 10.1016/j.taap.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.
Collapse
Affiliation(s)
- Xi Luo
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Tuan Xu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Deborah K Ngan
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Jinghua Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Srilatha Sakamuru
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA.
| |
Collapse
|
5
|
Hamurcu F. Synthesis, characterization, and biological properties of novel Schiff bases containing pentafluorophenyl hydrazine. J Biochem Mol Toxicol 2023; 37:e23512. [PMID: 37638565 DOI: 10.1002/jbt.23512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
In the present study, new Schiff bases derived from pentafluorophenyl-hydrazine (L1, L2, L3, L4) were synthesized and their structures were characterized by 1 H nuclear magnetic resonance spectroscopy (NMR), 13 C NMR, 19 F NMR, fourier transform infrared spectroscopy, and elemental analysis methods. Then, the anticancer activities of the obtained compounds were investigated using three human cancer cell lines (A2780, over; Caco-2, colon; and HT-29 colon carcinoma cell lines). According to the obtained cytotoxicity results, compound number L4 was found to have the highest anticancer activity in A2780 (over) and Caco-2 (colon) cell lines. Furthermore, in silico, ADMET properties, where studies play an important role in the development and prediction of drug compounds, were calculated using web-based platforms. In addition, molecular docking studies were performed to evaluate the binding interactions between the synthesized pentafluorophenyl-hydrazone compounds and the MDM2 protein (4JSC). Both in vitro and in silico results showed that the synthesized compounds could act as potent anticancer agents.
Collapse
Affiliation(s)
- Fatma Hamurcu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey
| |
Collapse
|
6
|
Shalaby MA, Fahim AM, Rizk SA. Antioxidant activity of novel nitrogen scaffold with docking investigation and correlation of DFT stimulation. RSC Adv 2023; 13:14580-14593. [PMID: 37197676 PMCID: PMC10183801 DOI: 10.1039/d3ra02393a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Heterocyclic scaffolds are frequently employed in drug development to treat a variety of conditions, including cancers. These substances have the ability to engage covalently or non-covalently with particular residues in the target proteins, inhibiting them. In this study, the formation of N-, S-, and O-containing heterocycles by the interaction of chalcone with nitrogen-containing nucleophiles such as hydrazine, hydroxyl amine, guanidine, urea, and aminothiourea was explored. FT-IR, UV-visible, NMR, and mass spectrometric studies were used to confirm the heterocyclic compounds that were produced. These substances were tested for their antioxidant activity by their capacity to scavenge the artificial radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH). The strongest antioxidant activity was demonstrated by compound 3 (IC50 = 93.4 μM), whereas compound 8 (IC50 = 448.70 μM) had the lowest activity when compared to vitamin C (IC50 141.9 μM). Also, the experimental findings and the docking estimation of these heterocyclic compounds with PDBID:3RP8 were in agreement. Additionally, the compounds' global reactivity characteristics, such as HOMO-LUMO gaps, electronic hardness, chemical potential, electrophilicity index, and Mulliken charges, were identified using DFT/B3LYP/6-31G(d,p) basis sets. The two chemicals that displayed the best antioxidant activity also had their molecular electrostatic potential (MEP) ascertained using DFT simulations.
Collapse
Affiliation(s)
- Mona A Shalaby
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia, P.O. 11566 Cairo Egypt
| | - Asmaa M Fahim
- Green Chemistry Department, National Research Centre Dokki, P.O. Box 12622 Cairo Egypt
| | - Sameh A Rizk
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia, P.O. 11566 Cairo Egypt
| |
Collapse
|
7
|
Wu H, Zhang Y, Chen H, Liu J, Xiu L, Huang J. Preparation, antioxidant and antibacterial activities of cryptate copper(II)/sulfonate chitosan complexes. Int J Biol Macromol 2023; 231:123200. [PMID: 36634801 DOI: 10.1016/j.ijbiomac.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In this work, we synthesized cryptate copper(II) followed by complexed with sulfonate chitosan (SCS). After characterization, the evaluation of the antioxidant properties of resulting complexes were carried out by 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH•), hydroxyl radical (•OH), and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS•+), while the antibacterial and biofilm inhibitory activity against Pseudomonas aeruginosa PAO1 (P. aeruginosa PAO1) were also investigated. According to the results, cryptate copper(II) exhibited the best antioxidant activity followed by cryptate copper(II)/SCS complexes, and SCS. Significant antibacterial activity of cryptate copper(II) against P. aeruginosa PAO1 was observed with the minimum inhibitory concentration of MIC value 12.50 μg/mL and minimum bactericidal concentration of MBC value 100.00 μg/mL, followed by cryptate copper(II)/SCS complexes and SCS. Cryptate copper(II) and cryptate copper(II)/SCS exhibited antibacterial activity which copper ions might enter the interior of cells, and the intracellular ions made the killed bacteria serve as an antibacterial agent showing a zombie effect. The copper ions complexed with cryptate and SCS rendering potential unlimited biological activities, might become one of the most popular research areas because of their unique coordination chemistry and their long-term biological activities.
Collapse
Affiliation(s)
- Huixiang Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Yujun Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Hao Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Jing Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Lili Xiu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
8
|
Cemaloğlu R, Asmafiliz N, Çoşut B, Kılıç Z, Sabah BN, Açık L, Mergen H, Hökelek T. Phosphorus-nitrogen compounds: Part 69—Unsymmetrical dispiro(N/N)cyclotriphosphazenes containing different pendant arms: syntheses, characterization, stereogenism, photophysical and bioactivity studies. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
9
|
Bekier A, Gatkowska J, Chyb M, Sokołowska J, Chwatko G, Głowacki R, Paneth A, Dzitko K. 4-Arylthiosemicarbazide derivatives – Pharmacokinetics, toxicity and anti-Toxoplasma gondii activity in vivo. Eur J Med Chem 2022; 244:114812. [DOI: 10.1016/j.ejmech.2022.114812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
|
10
|
A.A.Elkanzi N, Hrichi H, Salah H, Albqmi M, M.Ali A, Abdou A. Synthesis, structural, biological, molecular docking and DFT investigation of Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of the 4-[(5-oxo-4,5-dihydro-1,3-thiazol-2-yl)hydrazono]methyl}phenyl 4-methylbenzenesulfonate Schiff-base ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Çeşme M. 2-Aminophenol-based ligands and Cu(II) complexes: synthesis, characterization, X-ray structure, thermal and electrochemical properties, and in vitro biological evaluation, ADMET study and molecular docking simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ragab A, Ammar YA, Ezzat A, Mahmoud AM, Mohamed MBI, El-Tabl AS, Farag RS. Synthesis, characterization, thermal properties, antimicrobial evaluation, ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Comput Biol Med 2022; 145:105473. [PMID: 35395516 DOI: 10.1016/j.compbiomed.2022.105473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
One of the interesting research fields is developing and assessing novel metal-containing medications. A new isatin-3-thiosemicarbazone derivative 4 was synthesized by two different methods based on hydrazone derivatives 2 and 3. Additionally, the chelation of thiosemicarbazone with copper (II) and zinc (II) forms a monobasic tridentate (ONS) complex with two five-member rings and a tetrahedral geometry structure. The structure of synthesized complexes was characterized using elemental analysis, FT-IR, mass spectra, and 1H/13C NMR. Thermogravimetric analysis revealed the upgrading of the thermal stability of metal complexes compared to their thiosemicarbazone ligand. The stoichiometric ratio of the coordination confirmed the formation of 1:1 (M: L) stoichiometry. In vitro antimicrobial activity was screened against two gram-positive, two gram-negative, and one fungal strain. Both ligand 4 and Zn complex 6 displayed high antimicrobial activity compared with copper complex 5 based on the zone of inhibition. Further, MIC and MBC were determined for both zinc and ligand. The zinc complex 6 displayed excellent antimicrobial activity with (MIC = 3.9-27.77 μg/mL) against bacterial strains and (MIC = 7.81 μg/mL) against C. albicans, as well as exhibited MBC values ranging between (MBC = 6.51-45.58 μg/mL) and (MFC = 13.58 μg/mL), respectively, and demonstrated bactericidal and fungicidal behavior. The in-silico ADMET study for ligand and two complexes were determined and showed non-AMES toxicity, non-carcinogenic, and obey the rule of five. A comparative docking study provided more insight into the binding mechanisms and suggested that antimicrobial activity may be due to inhibition of different targets.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed Ezzat
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ammar M Mahmoud
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud Basseem I Mohamed
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Abdou S El-Tabl
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Rabie S Farag
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|