1
|
Ma C, Zhang H, Liu Z, Meng X, Chen S, Zhang J, Li Y, Huang X. Treatment options of nitrogen heterocyclic compounds in industrial wastewater: From fundamental technologies to energy valorization applications and future process design strategies. WATER RESEARCH 2025; 281:123575. [PMID: 40179728 DOI: 10.1016/j.watres.2025.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Nitrogen heterocyclic compounds (NHCs) widely exist in industrial wastewater and presented significant environmental and health risks due to their toxicity and persistence. This review addressed the challenges in treating NHCs in industrial wastewater, focusing on developing sustainable and efficient treatment processes. While various technologies, including adsorption, advanced oxidation/reduction processes (AOPs/ARPs), and microbial treatments, have been studied at the experimental stage of treating synthetic wastewater, scale-up for industrial applications is imperative. After analyzing the characteristics of NHCs and evaluating different treatment methods with the aid of efficiency and cost-benefit analysis, efficient detoxification while maximizing energy recovery constitutes a critical requirement in treating NHC-containing wastewater. Hence, we proposed a comprehensive strategy combining hydrolysis-acidification pretreatment enhanced by electro-assisted micro-aeration with methanogenic anaerobic digestion as core treatment units. The process design for NHC-containing wastewater treatment should consider the dynamic balance between removal efficiency, energy consumption, and ammonia recovery, incorporating environmental and economic impacts through life cycle assessment and technical-economic analysis. The potential of machine learning in optimizing operational parameters, predicting effluent quality, and supporting process design decisions is promising. To develop interpretable and practical solutions, the integration of data-driven approaches with mechanistic understanding and prior knowledge is indispensable. This review provided novel insights into sustainable NHC treatment strategies in the context of energy valorization and artificial intelligence advancement, offering guidance for future research and industrial applications.
Collapse
Affiliation(s)
- Chao Ma
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, PR China
| | - Huiqin Zhang
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, PR China
| | - Ziwei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xinran Meng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Sijia Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jingsong Zhang
- CITIC Envirotech Pte. (Guangzhou) Ltd., Guangzhou 511455, PR China
| | - Yeqiang Li
- CITIC Envirotech Pte. (Guangzhou) Ltd., Guangzhou 511455, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Wei LY, Lin YW, Luo JC, Li YX, Hu YT, Guo SY, Jiang Z, Zhao DD, Chen SB, Huang ZS. Design, synthesis and structure-activity relationship of novel 2-pyrimidinylindole derivatives as orally available anti-obesity agents. Eur J Med Chem 2024; 277:116773. [PMID: 39163779 DOI: 10.1016/j.ejmech.2024.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Due to the emerging global epidemic of obesity, developing safe and effective agents for anti-obesity is urgently needed. Our previous study found that 2-pyrimidinylindole derivative Wd3d exhibited potential anti-obesity activity. Herein, to further optimize the potential moiety, structural modifications were proceeded for two rounds in this study. Firstly, we designed, synthesized, and evaluated 36 new derivatives of 2-pyrimidinylindole scaffold with different substituents on the indole ring and pyrimidine ring to investigate their structure-activity relationship (SAR). Then, analogs with potent activity had the aldehyde group replaced with the acylhydrazone group to reduce cytotoxicity and improve metabolic stability. Detailed SAR studies and animal evaluation experiments led to the discovery of the compound 9ga, which significantly reduced TG accumulation with an EC50 value of 0.07 μM and showed relatively low cytotoxicity with an IC50 value of around 24 μM. Oral administration of 9ga effectively prevented the excessive growth of body weight and lessened fat mass as well as liver mass, decreased lipid accumulation in the liver and blood, and improved the heart injury parameter in the diet-induced obesity mouse model significantly better than Wd3d. A mechanism study showed that 9ga regulated the lipid metabolism during early adipogenesis by inhibiting PPARγ pathway. In conclusion, our study further highlights the anti-obesity potential of 2-pyrimidinylindole derivatives in diet-induced obesity.
Collapse
Affiliation(s)
- Li-Yuan Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu-Wei Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Chun Luo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi-Xian Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Singh G, Priyanka, Sushma, Sharma S, Deep Kaur J, Devi A, Gupta S, Devi S, Mohan B. Designing of efficient two-armed colorimetric and fluorescent indole appended organosilicon sensors for the detection of Al(III) ions: Implication as paper-based sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123015. [PMID: 37364410 DOI: 10.1016/j.saa.2023.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Metal ions have significant roles in diagnosis, industry, human health, and the environment. To design and develop new lucid molecular receptors for the selective detection of metal ions is important for environmental and medical applications. In the present work, two-armed indole appended Schiff bases conjoined with 1,2,3-Triazole bis-organosilane and bis-organosilatrane skelton sensors for naked eye colorimetric and fluorescent detection sensors for Al(III) are developed. The introduction of Al(III) in sensor 4 and 5 show red shift in UV-visible spectra, changes in fluorescence spectra and immediate color change from colorless to dark yellow. Furthermore, the pH and time response studies were explored for both sensors 4 & 5. The sensors 4 and 5 exhibited significantly low detection limit (LOD) in nano-molar range 1.41 × 10-9 M and 0.17 × 10-9 M respectively from emission titration. The LOD form absorption titration was found to be 0.6 × 10-7 M for sensor 4 and 0.22 × 10-7 M for sensor 5. In addition, the sensing model is developed as paper based sensor for its practical applicability. The theoretical calculations were performed on Gaussian 03 program by relaxing the structures using Density functional theory.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India.
| | - Priyanka
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India.
| | - Sushma
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Sanjay Sharma
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Anita Devi
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Sofia Gupta
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Swati Devi
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Kim HJ, Kim DH, Um SH. The Novel Inhibitory Effect of YM976 on Adipocyte Differentiation. Cells 2023; 12:cells12020205. [PMID: 36672141 PMCID: PMC9856710 DOI: 10.3390/cells12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The pyrimidine derivative YM976 (4-(3-chlorophenyl)-1,7-diethylpyrido(2,3-d)-pyrimidin-2(1H)-one) exerts anti-inflammatory and anti-asthmatic effects. Considering that accumulation of lipids in adipose tissue is accompanied by inflammation, we investigated whether YM976 affects adipocyte differentiation. We found that YM976 significantly decreased lipid accumulation without cytotoxicity and reduced the expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) as well as their lipogenic regulators including fatty acid synthase (FASN) and fatty acid-binding protein 4 (FABP4) in 3T3-L1 cells induced for differentiation. YM976 mainly inhibited the early stage of adipocyte differentiation. Furthermore, intracellular cAMP level was elevated by YM976 resulting in increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Conversely, decreasing the levels of AMPK or treatment with Compound C, an AMPK inhibitor, lessened the suppressive effects of YM976 on PPARγ transcriptional activity and adipogenesis. Thus, our results suggest YM976 as a novel potential compound for controlling lipid accumulation and formation of adipocytes in obesity.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence (BICS) at Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Byun Y, Moon K, Park J, Ghosh P, Mishra NK, Kim IS. Methylene Thiazolidinediones as Alkylation Reagents in Catalytic C–H Functionalization: Rapid Access to Glitazones. Org Lett 2022; 24:8578-8583. [DOI: 10.1021/acs.orglett.2c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihye Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Kim HJ, Lee DE, Park EC, Ra MJ, Jung SM, Yu JN, Um SH, Kim KH. Anti-Adipogenic Effects of Salicortin from the Twigs of Weeping Willow (Salix pseudolasiogyne) in 3T3-L1 Cells. Molecules 2022; 27:molecules27206954. [PMID: 36296558 PMCID: PMC9609119 DOI: 10.3390/molecules27206954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Salix pseudolasiogyne (Salicaceae), the “weeping willow,” has been used in traditional Korean medicine to treat pain and fever due to its high concentrations of salicylic acid and salicin. The present study investigated bioactive compounds from S. pseudolasiogyne twigs to discover bioactive natural products. Phytochemical investigation of the ethanol (EtOH) extract of S. pseudolasiogyne twigs followed by liquid chromatography–mass spectrometry (LC/MS)-based analysis led to the isolation of two salicin derivatives, salicortinol and salicortin, the structures of which were determined by interpretation of their NMR spectra and data from the LC/MS analysis. To the best of our knowledge, this is the first report of salicortinol isolated from S. pseudolasiogyne. The isolated compounds were evaluated for their anti-adipogenic effects in 3T3-L1 cells. Both salicortinol and salicortin were found to significantly inhibit adipocyte differentiation in 3T3-L1 cells. In particular, salicortin exhibited a strong inhibitory effect on lipid accumulation. Furthermore, salicortin inhibited the expression of lipogenic and adipogenic transcription factors, including FASN, FABP4, C/EBPα, C/EBPβ, and PPARγ, without inducing cytotoxicity. These results suggest that salicortin could be a potential therapeutic compound for the prevention or treatment of metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Korea
| | - Da Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Eon Chung Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Moon-Jin Ra
- Hongcheon Institute of Medicinal Herb, Hongcheon-gun 25142, Korea
| | - Sang-Mi Jung
- Hongcheon Institute of Medicinal Herb, Hongcheon-gun 25142, Korea
| | - Jeong-Nam Yu
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Korea
- Biomedical Institute Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (S.H.U.); (K.H.K.); Tel.: +82-31-299-6123 (S.H.U.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (S.H.U.); (K.H.K.); Tel.: +82-31-299-6123 (S.H.U.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
7
|
Bioactive Phytochemicals from Salix pseudolasiogyne Twigs: Anti-Adipogenic Effect of 2'- O-Acetylsalicortin in 3T3-L1 Cells. Int J Mol Sci 2022; 23:ijms231912006. [PMID: 36233307 PMCID: PMC9570486 DOI: 10.3390/ijms231912006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Salix pseudolasiogyne (Salicaceae) is a willow tree and has been used as a medicinal herb in Korea to treat pain and fever. As a part of an ongoing study to identify bioactive natural products, potential anti-adipogenic compounds were investigated using the ethanol (EtOH) extract of S. pseudolasiogyne twigs. Phytochemical investigation of the EtOH extracts using liquid chromatography-mass spectrometry (LC/MS) led to the separation of two compounds, oregonin (1) and 2'-O-acetylsalicortin (2). The structures of the isolates were identified using nuclear magnetic resonance spectroscopy and LC/MS analysis. To the best of our knowledge, it is the first report identifying oregonin (1) in twigs of S. pseudolasiogyne. Here, we found that the isolated compounds, oregonin (1) and 2'-O-acetylsalicortin (2), showed anti-adipogenic effects during 3T3-L1 cell differentiation. Notably, 2'-O-acetylsalicortin (2), at a concentration of 50 µM, significantly suppressed lipid accumulation. Moreover, the mRNA and protein levels of lipogenic and adipogenic transcription factors were reduced in 2'-O-acetylsalicortin (2)-treated 3T3-L1 cells. Taken together, these results indicate that 2'-O-acetylsalicortin (2), isolated from S. pseudolasiogyne twigs, has the potential to be applied as a therapeutic agent to effectively control adipocyte differentiation, a critical stage in the progression of obesity.
Collapse
|