1
|
Yue Y, Cao S, Cao F, Wei Y, Li A, Wang D, Liu P, Zeng H, Lin J. Unveiling research hotspots: a bibliometric study on macrophages in musculoskeletal diseases. Front Immunol 2025; 16:1519321. [PMID: 40356917 PMCID: PMC12066445 DOI: 10.3389/fimmu.2025.1519321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Research on the role of macrophages in musculoskeletal (MSK) diseases has significantly increased in recent years. However, a thorough evaluation of the developmental trajectory of this field, including the contributions of prominent authors and primary research themes, remains insufficient. Furthermore, the identification of emerging research hotspots requires more detailed exploration. This study collated articles and reviews addressing "macrophages in MSK diseases" published between 2004 and 2023, with all data extracted from the Web of Science database. The collected data were analyzed using a variety of bibliometric and visualization tools, such as VOSviewer, CiteSpace, GraphPad Prism, and R packages. Results indicate that China and the United States are the leading contributors in this research domain. Among the many academic institutions involved, Shanghai Jiao Tong University and the University of California stand out as the most productive. The journal "Frontiers in Immunology" had the highest publication output on this topic. The five most frequently explored research domains include Immunology, Rheumatology, Pharmacology and Pharmacy, Cell Biology, and Biochemistry and Molecular Biology. These results offer a comprehensive overview of the current state of research in this field and provide meaningful insights for guiding future studies.
Collapse
Affiliation(s)
- Yaohang Yue
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
- Shandong Second Medical University, Clinical Medical College, Weifang, China
| | - Siyang Cao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fuyang Cao
- Department of Orthopedics, Second Hospital of Shanxi Medical University,
Taiyuan, Shanxi, China
| | - Yihao Wei
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic
University, Hong Kong, Hong Kong SAR, China
| | - Aikang Li
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianjing Lin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
Mishra V, Baranwal V, Mugale MN, Sharma S, Mishra RK. Stat3 Induces IL-10 and SR-A/CD204 Expression in Silica Nanoparticle-Triggered Pulmonary Fibrosis through Transactivation. ACS Biomater Sci Eng 2025; 11:609-622. [PMID: 39643585 DOI: 10.1021/acsbiomaterials.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Inhalation of silica dust in the workplace has been addressed as a serious occupational pulmonary disease subsequently leading to inflammation and fibrosis. Enhanced expression of IL-10 significantly contributes to the disease etiology, along with an elevated Th2-type paradigm. Previously, we showed that the exaggerated Th2-type response was also associated with consistent upregulation of Stat3 in mouse airways stimulated with silica microparticles. However, a precise understanding of silicosis in light of the IL-10/Stat3 immune axis is required. We, therefore, aimed to determine the regulatory role of IL-10 in nanosized silica (nSiO2)-induced pulmonary fibrosis in association with Stat3. Herein, we report that amorphous nSiO2 could induce pulmonary fibrosis with consistent and concomitant upregulation of IL-10, Stat3, and SR-A/CD204. Following exogenous administration of siStat3 and rIL-10, the study further confirmed that Stat3 mediates the regulation of IL-10 and SR-A/CD204 and that IL-10 could regulate its own expression in an autoregulatory loop. The ChIP assay highlighted the localization of Stat3 over two putative binding sites in the IL-10 promoter region, which subsequently resulted in the overexpression of SR-A/CD204. Conclusively, Stat3-mediated transregulation of IL-10 through an autoregulatory loop in silicosis could offer novel molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Vani Mishra
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT), Prayagraj 211004, India
| | - Vikas Baranwal
- Toshniwal Brothers (SR) Pvt. Ltd., 11, AECS Layout, Sanjay Nagar, Bengaluru, Karnataka 560094, India
| | - Madhav Nilakanth Mugale
- Department of Toxicology and Experimental Medicine, CSIR─Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT), Prayagraj 211004, India
| | - Rohit Kumar Mishra
- Centre of Science and Society, Institute of Interdisciplinary Sciences (IIDS), University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
3
|
Ao LH, Wei YG, Tian HR, Zhao H, Li J, Ban JQ. Advances in the study of silica nanoparticles in lung diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169352. [PMID: 38110102 DOI: 10.1016/j.scitotenv.2023.169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Silicon dioxide nanoparticles (SiNPs) are one of the major forms of silicon dioxide and are composed of the most-abundant compounds on earth. Based on their excellent properties, SiNPs are widely used in food production, synthetic processes, medical diagnostics, drug delivery, and other fields. The mass production and wide application of SiNPs increases the risk of human exposure to SiNPs. In the workplace and environment, SiNPs mainly enter the human body through the respiratory tract and reach the lungs; therefore, the lungs are the most important and most toxicologically affected target organ of SiNPs. An increasing number of studies have shown that SiNP exposure can cause severe lung toxicity. However, studies on the toxicity of SiNPs in ex vivo and in vivo settings are still in the exploratory phase. The molecular mechanisms underlying the lung toxicity of SiNPs are varied and not yet fully understood. As a result, this review summarizes the possible mechanisms of SiNP-induced lung toxicity, such as oxidative stress, endoplasmic reticulum stress, mitochondrial damage, and cell death. Moreover, this study provides a summary of the progression of diseases caused by SiNPs, thereby establishing a theoretical basis for future studies on the mechanisms of SiNP-induced lung toxicity.
Collapse
Affiliation(s)
- Li-Hong Ao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun-Geng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Ru Tian
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hua Zhao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jun Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jia-Qi Ban
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
4
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
5
|
Ma L, Han Z, Yin H, Tian J, Zhang J, Li N, Ding C, Zhang L. Characterization of Cathepsin B in Mediating Silica Nanoparticle-Induced Macrophage Pyroptosis via an NLRP3-Dependent Manner. J Inflamm Res 2022; 15:4537-4545. [PMID: 35966002 PMCID: PMC9374095 DOI: 10.2147/jir.s371536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Silica nanoparticles (SiNPs) are one of the most widely used inorganic nanomaterials, and exposure to SiNP has been demonstrated to induce pulmonary inflammation, primarily promoted by the NLRP3-mediated macrophage pyroptosis. However, mechanisms underlying the activation of NLRP3 signaling are complex, and whether cathepsin B (CTSB), an enzyme released by the ruptured lysosome, could trigger NLRP3 assembly is controversial. Methods To further characterize the role of CTSB in silica-induced pyroptosis, we conducted this study by establishing SiNP exposure models in vitro. The morphological features of SiNPs were exhibited by the SEM and TEM, and the effects of SiNPs’ internalization on macrophages were examined by the TEM and immunofluorescent staining. Moreover, Western blot was performed to detect the expression of proteins related to pyroptosis and CTSB after blocking the expression of NLRP3 and CTSB. Results We found that SiNPs internalization caused the rupture of macrophage membrane and promoted the aging of cells with increased intracellular vacuoles. Also, the expression of NLRP3, ASC, Caspase-1, GSDMD, Pro-IL-1β, IL-1β, and CTSB increased under the stimulation of SiNP, which could be suppressed by additional treatment with MCC950, an NLRP3-specific inhibitor. Besides, we found SiNP joint treatment with leupeptin, a CTSB inhibitor, could inhibit the expression of CTSB, but it had no effect on the expression of NLRP3, ASC, and Caspase-1, and the process of macrophage pyroptosis was also not affected. Conclusion SiNP exposure induces rupture of macrophages and the release of lysosomal CTSB, but CTSB fails to specifically act on the NLRP3 inflammasome to induce pyroptosis which is causally linked to lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Lan Ma
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Zhengpu Han
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Haoyu Yin
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Jiaqi Tian
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Chunjie Ding
- School of Public Health, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| |
Collapse
|