1
|
Maurya S, Tripathi S, Arora T, Singh A. Adropin ameliorates reproductive dysfunctions in letrozole-induced PCOS mouse. Sci Rep 2025; 15:8659. [PMID: 40082514 PMCID: PMC11906834 DOI: 10.1038/s41598-025-93215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of infertility in reproductive-age women, and its etiology and exact treatment are not yet established. Adropin is a unique hepatokine involved in maintaining energy homeostasis, and its level has been reported to decline in serum and follicular fluid of PCOS women. Thus, present study was designed to investigate the effect of adropin on hormonal and reproductive abnormalities in PCOS mice. PCOS was induced in adult mice by administering letrozole (6 mg/kg body weight) orally for 21 days. PCOS mice were subsequently treated with adropin (450 nmol/kg body weight) for 15 days. Adropin treatment drastically decreased serum testosterone by suppressing the ovarian expression of 17β-HSD in PCOS mice. It also improved the follicular proliferation and survival by enhancing the ovarian expression of PCNA and BCL2 and suppressing the BAX, cleaved caspase 3, and TUNEL-positive cells in PCOS mice. Most of the effects of adropin are comparable to metformin (current PCOS treatment). Notably, adropin shows more efficacy than metformin in treating reproductive abnormalities in PCOS mice, as evidenced by early regularization of cyclicity and enhanced ovarian expression of 3β-HSD and aromatase proteins. Thus, adropin may be an alternative therapeutic option for managing PCOS.
Collapse
Affiliation(s)
- Shweta Maurya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashank Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Ajit Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Ma X, Wang M, Wang J, Han X, Yang X, Zhang H, Zhong D, Qiu S, Yu S, Wang L, Pan Y. Hypoxia-Inducible Factor 1α Affects Yak Oocyte Maturation and Early Embryonic Development by Regulating Autophagy. Antioxidants (Basel) 2024; 13:840. [PMID: 39061908 PMCID: PMC11273763 DOI: 10.3390/antiox13070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In animal assisted reproductive technology, the production of high-quality oocytes is crucial. The yak, having lived in the Qinghai-Tibet Plateau for an extended period, has reproductive cells that are regulated by hypoxia-inducible factor 1α (HIF-1α). This study aimed to investigate the impact of HIF-1α on yak oocyte maturation and early embryonic development in vitro through the regulation of autophagy. The in vitro maturation process of yak oocytes involved the addition of the HIF-1α inducer DFOM and the inhibitor LW6 to examine their effects on yak oocyte maturation, early embryonic development, cell autophagy, cytochrome P450s (CYP450s) enzyme expression, and cumulus diffusion factors. The findings revealed that DFOM significantly upregulated the expression of HIF-1α, resulting in increased the cumulus diffusion area, elevated first polar body expulsion rate of oocytes, enhanced mitochondrial and actin levels, decreased ROS production, and reduced early apoptosis levels of oocytes. Moreover, DFOM promoted the expression of autophagy-related proteins, CYP450s enzymes, and cumulus diffusion factors, thereby enhancing oocyte maturation and early embryonic development. Conversely, LW6 exhibited opposite effects. The inhibition of autophagy levels with 3-MA during DFOM treatment yielded similar outcomes. Furthermore, reducing autophagy led to increased apoptosis levels at all stages of early embryonic development, as well as a significant decrease in total cell number and ICM/TE ratio of blastocysts. Studies have shown that during the in vitro maturation of yak oocytes, HIF-1α can affect the cumulus expansion area of oocytes by regulating autophagy, the first polar body excretion rate, mitochondrial level, actin level, ROS and early apoptosis level, the CYP450s enzyme, and the expression of cumulus expansion factors, thereby improving the in vitro maturation and early embryonic development of yak oocytes. These findings offer valuable insights into the reproductive regulation mechanism of yaks in hypoxic environments and suggest potential strategies for the advancement of yak assisted reproductive technology.
Collapse
Affiliation(s)
- Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Xiaoqing Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Donglan Zhong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| |
Collapse
|
3
|
Hou X, Ling Z, Guo Y, Su Y, Wang H, Li H, Lu Y, Chen X, Ji C, Shen R. Peptide derived from RAGE efficiently improves oocyte development through attenuating oxidative stress in oocytes of mice with polycystic ovary syndrome. FASEB J 2024; 38:e23553. [PMID: 38470398 DOI: 10.1096/fj.202302038rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder in reproductive-aged women that frequently leads to infertility due to poor oocyte quality. In this study, we identified a new active peptide (advanced glycation end products receptors RAGE344-355 ) from PCOS follicular fluid using mass spectrometry. We found that supplementing PCOS-like mouse oocytes with RAGE344-355 attenuated both meiotic defects and oxidative stress levels, ultimately preventing developmental defects. Additionally, our results suggest that RAGE344-355 may interact with eEF1a1 to mitigate oxidative meiotic defects in PCOS-like mouse oocytes. These findings highlight the potential for further clinical development of RAGE344-355 as a potent supplement and therapeutic option for women with PCOS. This research addresses an important clinical problem and offers promising opportunities for improving oocyte quality in PCOS patients.
Collapse
Affiliation(s)
- Xiaojing Hou
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghui Ling
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaping Guo
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Su
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Hanbin Wang
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Hang Li
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxia Lu
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojiao Chen
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Shen
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Hu S, Xu M, Cui Z, Xiao Y, Liu C, Liu R, Zhang G. Probing the molecular mechanism of interaction between polystyrene nanoplastics and catalase by multispectroscopic techniques. Chem Biol Interact 2023; 382:110648. [PMID: 37495201 DOI: 10.1016/j.cbi.2023.110648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Nanoplastics are emerging pollutants that pose a potential threat to the environment and organisms and are widely distributed in environmental samples and food chains. The accumulation of polystyrene nanoplastics (PS-NPs) in an organism can cause oxidative stress. Currently, toxicity studies of PS-NPs mainly focus on the individual and cellular levels, whereas few studies have been conducted on the molecular mechanisms of the interaction between PS-NPs and catalase (CAT). Based on this, CAT was chosen as the target receptor for molecular toxicity research to reveal the interaction mechanism at the molecular level between PS-NPs and CAT by using various spectroscopic means and enzyme activity detection methods. The results indicated that PS-NPs destroyed the secondary structure of CAT, causing its protein skeleton to loosen and unfold, increasing the content of α-helices, decreasing the content of β-sheets, and exposing the position of the heme group. After exposure to PS-NPs, the internal fluorophore of CAT underwent fluorescence sensitization, resulting in a micelle-like structure, which enhanced the hydrophobicity of aromatic amino acids but did not change their polarity. In addition, the aggregation state of CAT was altered upon binding to PS-NPs, and the volume was further increased. Finally, these structural changes led to a gradual decrease in CAT activity. This study presents a comprehensive assessment of the toxicity of PS-NPs at the molecular level, which can provide more experimental support for the study of the biotoxicological efficacy of PS-NPs.
Collapse
Affiliation(s)
- Shuncheng Hu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Mengchen Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Zhaohao Cui
- Qingdao Ecological Environment Monitoring Center, Qingdao, 266003, PR China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guomin Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| |
Collapse
|