1
|
Zhao YQ, Tang YY, Hu JP, Huang YZ, Wan K, Zhang MH, Li JL, Zhu GD, Tang JX. An aquaporin and an aquaglyceroporin have roles in low temperature adaptation of mosquitoes (Anopheles sinensis). INSECT SCIENCE 2024; 31:1743-1755. [PMID: 38511329 DOI: 10.1111/1744-7917.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 03/22/2024]
Abstract
Mosquitoes (Anopheles sinensis), widely geographically distributed in Asia including China, are the primary vector of the malaria parasite Plasmodium vivax and other parasitic diseases such as Malayan filariasis. An. sinensis can survive through low winter temperatures. Aquaporin channels are found in all life forms, where they facilitate environmental adaptation by allowing rapid trans-cellular movement of water (classical aquaporins) or water and solutes such as glycerol (aquaglyceroporins). Here, we identified and characterized 2 aquaporin (AQP) homologs in An. sinensis: AsAQP2 (An. sinensis aquaglyceroporin) and AsAQP4 (An. sinensis aquaporin). When expressed in frog (Xenopus laevis) oocytes, AsAQP2 transported water, glycerol, and urea; AsAQP4 transported only water. Water permeation through AsAQP2 and AsAQP4 was inhibited by mercuric chloride. AsAQP2 expression was slightly higher in adult female mosquitoes than in males, and AsAQP4 expression was significantly higher in adult males. The 2 AsAQPs were highly expressed in Malpighian tubules and midgut. AsAQP2 and AsAQP4 expression was up-regulated by blood feeding compared with sugar feeding. At freezing point (0 °C), the AsAQP4 expression level increased and An. sinensis survival time reduced compared with those at normal temperature (26 °C). At low temperature (8 °C), the AsAQP2 and AsAQP4 expression levels decreased and survival time was significantly longer compared with those at 26 °C. These results suggest that AsAQP2 and AsAQP4 have roles in water homeostasis during blood digestion and in low temperature adaptation of A. sinensis. Together, our results show that the 2 AQPs are important for mosquito diuresis after blood feeding and when exposed to low temperatures.
Collapse
Affiliation(s)
- Yong-Qiao Zhao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Ying Tang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Ju-Ping Hu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Yu-Zheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Kai Wan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Mei-Hua Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Ju-Lin Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Guo-Ding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Xia Tang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Štětina T, Koštál V. Extracellular freezing induces a permeability transition in the inner membrane of muscle mitochondria of freeze-sensitive but not freeze-tolerant Chymomyza costata larvae. Front Physiol 2024; 15:1358190. [PMID: 38384799 PMCID: PMC10880108 DOI: 10.3389/fphys.2024.1358190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background: Many insect species have evolved the ability to survive extracellular freezing. The search for the underlying principles of their natural freeze tolerance remains hampered by our poor understanding of the mechanistic nature of freezing damage itself. Objectives: Here, in search of potential primary cellular targets of freezing damage, we compared mitochondrial responses (changes in morphology and physical integrity, respiratory chain protein functionality, and mitochondrial inner membrane (IMM) permeability) in freeze-sensitive vs. freeze-tolerant phenotypes of the larvae of the drosophilid fly, Chymomyza costata. Methods: Larvae were exposed to freezing stress at -30°C for 1 h, which is invariably lethal for the freeze-sensitive phenotype but readily survived by the freeze-tolerant phenotype. Immediately after melting, the metabolic activity of muscle cells was assessed by the Alamar Blue assay, the morphology of muscle mitochondria was examined by transmission electron microscopy, and the functionality of the oxidative phosphorylation system was measured by Oxygraph-2K microrespirometry. Results: The muscle mitochondria of freeze-tolerant phenotype larvae remained morphologically and functionally intact after freezing stress. In contrast, most mitochondria of the freeze-sensitive phenotype were swollen, their matrix was diluted and enlarged in volume, and the structure of the IMM cristae was lost. Despite this morphological damage, the electron transfer chain proteins remained partially functional in lethally frozen larvae, still exhibiting strong responses to specific respiratory substrates and transferring electrons to oxygen. However, the coupling of electron transfer to ATP synthesis was severely impaired. Based on these results, we formulated a hypothesis linking the observed mitochondrial swelling to a sudden loss of barrier function of the IMM.
Collapse
Affiliation(s)
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
3
|
Štětina T, Koštál V. Mortality caused by extracellular freezing is associated with fragmentation of nuclear DNA in larval haemocytes of two drosophilid flies. J Exp Biol 2023; 226:jeb246456. [PMID: 37846596 DOI: 10.1242/jeb.246456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
The great complexity of extracellular freezing stress, involving mechanical, osmotic, dehydration and chemical perturbations of the cellular milieu, hampers progress in understanding the nature of freezing injury and the mechanisms to cope with it in naturally freeze-tolerant insects. Here, we show that nuclear DNA fragmentation begins to occur in larval haemocytes of two fly species, Chymomyza costata and Drosophila melanogaster, before or at the same time as the sub-zero temperature is reached that causes irreparable freezing injury and mortality in freeze-sensitive larval phenotypes. However, when larvae of the freeze-tolerant phenotype (diapausing-cold acclimated-hyperprolinemic) of C. costata were subjected to severe freezing stress in liquid nitrogen, no DNA damage was observed. Artificially increasing the proline concentration in freeze-sensitive larvae of both species by feeding them a proline-enriched diet resulted in a decrease in the proportion of nuclei with fragmented DNA during freezing stress. Our results suggest that proline accumulated in diapausing C. costata larvae during cold acclimation may contribute to the protection of nuclear DNA against fragmentation associated with freezing stress.
Collapse
Affiliation(s)
- Tomáš Štětina
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 370505 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 370505 České Budějovice, Czech Republic
| |
Collapse
|
4
|
Gill LT, Kennedy JR, Marshall KE. Proteostasis in ice: the role of heat shock proteins and ubiquitin in the freeze tolerance of the intertidal mussel, Mytilus trossulus. J Comp Physiol B 2023; 193:155-169. [PMID: 36593419 DOI: 10.1007/s00360-022-01473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
The bay mussel, Mytilus trossulus, is an animal that can survive extracellular ice formation. Depending on air and ocean temperatures, freeze tolerant intertidal organisms, like M. trossulus, may freeze and thaw many times during the winter. Freezing can cause protein denaturation, leading to an induction of the heat shock response with expression of chaperone proteins like the 70 kDa heat shock protein (HSP70), and an increase in ubiquitin-conjugated proteins. There has been little work on the mechanisms of freeze tolerance in intertidal species, limiting our understanding of this survival strategy. Additionally, this limited research has focused solely on the effects of single freezing events, but the act of repeatedly crossing the freezing threshold may present novel physiological or biochemical stressors that have yet to be discovered. Mytilus are important ecosystem engineers and provide habitat for other intertidal species, thus understanding their physiology under thermal extremes is important for preserving shoreline health. We predicted that repeated freeze exposures would increase mortality, upregulate HSP70 expression, and increase ubiquitin conjugates in mussels, relative to single, prolonged freeze exposures. Mytilus trossulus from Vancouver, Canada were repeatedly frozen for a combination of 1 × 8 h, 2 × 4 h, or 4 × 2 h. We then compared mortality, HSP70 expression, and the quantity of ubiquitin-conjugated proteins across experimental groups. We found a single 8-h freeze caused significantly more mortality than repeated freeze-thaw cycles. We also found that HSP70 and ubiquitinated protein was upregulated exclusively after freeze-thaw cycles, suggesting that freeze-thaw cycles offer a period of damage repair between freezes. This indicates that freeze-thaw cycles, which happen naturally in the intertidal, are crucial for M. trossulus survival in sub-zero temperatures.
Collapse
Affiliation(s)
- Lauren T Gill
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Jessica R Kennedy
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Slaninova E, Obruca S, Kocherbitov V, Sedlacek P. On the bioprotective effects of 3-hydroxybutyrate: Thermodynamic study of binary 3HB-water systems. Biophys J 2023; 122:460-469. [PMID: 36617191 PMCID: PMC9941717 DOI: 10.1016/j.bpj.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Microorganisms must face various inconvenient conditions; therefore, they developed several approaches for protection. Such a strategy also involves the accumulation of compatible solutes, also called osmolytes. It has been proved that the monomer unit 3-hydroxybutyrate (3HB), which is present in sufficient concentration in poly(3-hydroxybutyrate) (PHB)-accumulating cells, serves as a chemical chaperone protecting enzymes against heat and oxidative stress and as a cryoprotectant for enzymes, bacterial cells, and yeast. The stress robustness of the cells is also strongly dependent on the behavior and state of intracellular water, especially during stress exposure. For a better understanding of the protective mechanism and effect of strongly hydrophilic 3HB in solutions at a wide range of temperatures, a binary phase diagram of system sodium 3HB (Na3HB)-water in equilibrium and the state diagrams showing the glass transitions in the system were constructed. To investigate the activity of water in various compositions of the Na3HB/water system, three experimental techniques have been used (dynamic water sorption analysis, water activity measurements, and sorption calorimetry). First, Na3HB proved its hydrophilic nature, which is very comparable with known compatible solutes (trehalose). Results of differential scanning calorimetry demonstrated that Na3HB is also highly effective in depressing the freezing point and generating a large amount of nonfrozen water (1.35 g of water per gram of Na3HB). Therefore, Na3HB represents a very effective cryoprotectant that can be widely used for numerous applications.
Collapse
Affiliation(s)
- Eva Slaninova
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Vitaly Kocherbitov
- Biomedical Science, Faculty of Health & Society, Malmö University, Malmö, Sweden.
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
6
|
Abstract
Winter provides many challenges for insects, including direct injury to tissues and energy drain due to low food availability. As a result, the geographic distribution of many species is tightly coupled to their ability to survive winter. In this review, we summarize molecular processes associated with winter survival, with a particular focus on coping with cold injury and energetic challenges. Anticipatory processes such as cold acclimation and diapause cause wholesale transcriptional reorganization that increases cold resistance and promotes cryoprotectant production and energy storage. Molecular responses to low temperature are also dynamic and include signaling events during and after a cold stressor to prevent and repair cold injury. In addition, we highlight mechanisms that are subject to selection as insects evolve to variable winter conditions. Based on current knowledge, despite common threads, molecular mechanisms of winter survival vary considerably across species, and taxonomic biases must be addressed to fully appreciate the mechanistic basis of winter survival across the insect phylogeny.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA;
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Morgan-Richards M, Marshall CJ, Biggs PJ, Trewick SA. Insect Freeze-Tolerance Downunder: The Microbial Connection. INSECTS 2023; 14:89. [PMID: 36662017 PMCID: PMC9860888 DOI: 10.3390/insects14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Insects that are freeze-tolerant start freezing at high sub-zero temperatures and produce small ice crystals. They do this using ice-nucleating agents that facilitate intercellular ice growth and prevent formation of large crystals where they can damage tissues. In Aotearoa/New Zealand the majority of cold adapted invertebrates studied survive freezing at any time of year, with ice formation beginning in the rich microbiome of the gut. Some freeze-tolerant insects are known to host symbiotic bacteria and/or fungi that produce ice-nucleating agents and we speculate that gut microbes of many New Zealand insects may provide ice-nucleating active compounds that moderate freezing. We consider too the possibility that evolutionary disparate freeze-tolerant insect species share gut microbes that are a source of ice-nucleating agents and so we describe potential transmission pathways of shared gut fauna. Despite more than 30 years of research into the freeze-tolerant mechanisms of Southern Hemisphere insects, the role of exogenous ice-nucleating agents has been neglected. Key traits of three New Zealand freeze-tolerant lineages are considered in light of the supercooling point (temperature of ice crystal formation) of microbial ice-nucleating particles, the initiation site of freezing, and the implications for invertebrate parasites. We outline approaches that could be used to investigate potential sources of ice-nucleating agents in freeze-tolerant insects and the tools employed to study insect microbiomes.
Collapse
Affiliation(s)
- Mary Morgan-Richards
- Wildlife & Ecology Group, School of Natural Sciences, Massey University Manawatu, Palmerston North 4410, New Zealand
| | - Craig J. Marshall
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Patrick J. Biggs
- Molecular Biosciences, School of Natural Sciences, Massey University Manawatu, Palmerston North 4410, New Zealand
| | - Steven A. Trewick
- Wildlife & Ecology Group, School of Natural Sciences, Massey University Manawatu, Palmerston North 4410, New Zealand
| |
Collapse
|
8
|
Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress. Proc Natl Acad Sci U S A 2022; 119:e2211744119. [PMID: 36191219 PMCID: PMC9564827 DOI: 10.1073/pnas.2211744119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most multicellular organisms are freeze sensitive, but the ability to survive freezing of the extracellular fluids evolved in several vertebrate ectotherms, some plants, and many insects. Here, we test the coupled hypotheses that are perpetuated in the literature: that irreversible denaturation of proteins and loss of biological membrane integrity are two ultimate molecular mechanisms of freezing injury in freeze-sensitive insects and that seasonally accumulated small cryoprotective molecules (CPs) stabilize proteins and membranes against injury in freeze-tolerant insects. Using the drosophilid fly, Chymomyza costata, we show that seven different soluble enzymes exhibit no or only partial loss of activity upon lethal freezing stress applied in vivo to whole freeze-sensitive larvae. In contrast, the enzymes lost activity when extracted and frozen in vitro in a diluted buffer solution. This loss of activity was fully prevented by adding low concentrations of a wide array of different compounds to the buffer, including C. costata native CPs, other metabolites, bovine serum albumin (BSA), and even the biologically inert artificial compounds HistoDenz and Ficoll. Next, we show that fat body plasma membranes lose integrity when frozen in vivo in freeze-sensitive but not in freeze-tolerant larvae. Freezing fat body cells in vitro, however, resulted in loss of membrane integrity in both freeze-sensitive and freeze-tolerant larvae. Different additives showed widely different capacities to protect membrane integrity when added to in vitro freezing media. A complete rescue of membrane integrity in freeze-tolerant larvae was observed with a mixture of proline, trehalose, and BSA.
Collapse
|
9
|
Sieger J, Brümmer F, Ahn H, Lee G, Kim S, Schill RO. Reduced ageing in the frozen state in the tardigrade
Milnesium inceptum
(Eutardigrada: Apochela). J Zool (1987) 2022. [DOI: 10.1111/jzo.13018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Sieger
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| | - F. Brümmer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| | - H. Ahn
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - G. Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - S. Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - R. O. Schill
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| |
Collapse
|
10
|
Ma W, Zhao X, Yin C, Jiang F, Du X, Chen T, Zhang Q, Qiu L, Xu H, Joe Hull J, Li G, Sung W, Li F, Lin Y. A chromosome‐level genome assembly reveals the genetic basis of cold tolerance in a notorious rice insect pest,
Chilo suppressalis. Mol Ecol Resour 2019; 20:268-282. [DOI: 10.1111/1755-0998.13078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Weihua Ma
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests Institute of Insect Sciences Zhejiang University Hangzhou Zhejiang China
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests Institute of Insect Sciences Zhejiang University Hangzhou Zhejiang China
| | - Fan Jiang
- College of Informatics Huazhong Agricultural University Wuhan Hubei China
| | - Xiaoyong Du
- College of Informatics Huazhong Agricultural University Wuhan Hubei China
| | - Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
| | - Lin Qiu
- College of Plant Protection Hunan Agricultural University Changsha Hunan China
| | - Hongxing Xu
- Institute of Plant Protection and Microbiology Zhejiang Academy of Agricultural Sciences Hangzhou Zhejiang China
| | - J. Joe Hull
- Department of Agriculture U.S. Agricultural Research Service U.S. Arid Land Agricultural Research Center Maricopa AZ USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
- College of Informatics Huazhong Agricultural University Wuhan Hubei China
| | - Wing‐Kin Sung
- College of Informatics Huazhong Agricultural University Wuhan Hubei China
- Department of Computer Science National University of Singapore Singapore Singapore
- Department of Computational and Systems Biology Genome Institute of Singapore Singapore Singapore
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests Institute of Insect Sciences Zhejiang University Hangzhou Zhejiang China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement National Centre of Plant Gene ResearchHuazhong Agricultural University Wuhan Hubei China
| |
Collapse
|
11
|
Rozsypal J, Toxopeus J, Berková P, Moos M, Šimek P, Koštál V. Fat body disintegration after freezing stress is a consequence rather than a cause of freezing injury in larvae of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2019; 115:12-19. [PMID: 30928312 DOI: 10.1016/j.jinsphys.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/05/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Extracellular freezing of insect body water may cause lethal injury either by direct mechanical stress exerted by growing ice crystals on cells and tissues or, indirectly, by deleterious physico-chemical effects linked to freeze-induced cell dehydration. Here we present results showing that the macroscopic damage (cell ruptures, tissue disintegration) to fat body of Drosophila melanogaster is not directly caused by mechanical forces linked to growth of ice crystals but rather represents a secondary consequence of other primary freeze injuries occurring at subcellular or microscopic levels. Larvae of D. melanogaster were acclimated to produce variants ranging from freeze susceptible to freeze tolerant. Then, larvae were exposed to supercooling and freezing stresses at different subzero temperatures. The larval survival and macroscopic damage to fat body tissue was scored in 1632 larvae exposed to cold stress. In most cases, fat body damage was not evident immediately following cold stress but developed later. This suggests that the fat body disintegration is a consequence rather than a cause of cold injury. Analysis of fat body membrane phospholipids revealed that increased freeze tolerance was associated with increased relative proportion of phosphatidylethanolamines (PEs) at the expense of phosphatidylcholines (PCs). The PE/PC ratio increased from 1.08 in freeze-susceptible larvae to 2.10 in freeze-tolerant larvae. The potential effects of changing PE/PC ratio on phospholipid bilayer stability upon supercooling and freezing stress are discussed.
Collapse
Affiliation(s)
- Jan Rozsypal
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Jantina Toxopeus
- University of Colorado, Denver, Department of Integrative Biology, Denver, CO, USA
| | - Petra Berková
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Martin Moos
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Vladimír Koštál
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic.
| |
Collapse
|
12
|
Des Marteaux LE, Štětina T, Koštál V. Insect fat body cell morphology and response to cold stress is modulated by acclimation. ACTA ACUST UNITED AC 2018; 221:jeb.189647. [PMID: 30190314 DOI: 10.1242/jeb.189647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022]
Abstract
Mechanistic understanding about the nature of cellular cryoinjury and mechanisms by which some animals survive freezing while others do not is currently lacking. Here, we exploited the broadly manipulable freeze tolerance of larval malt flies (Chymomyza costata) to uncover cell and tissue morphological changes associated with freeze mortality. Diapause induction, cold acclimation and dietary proline supplementation generate malt fly variants ranging from weakly to extremely freeze tolerant. Using confocal microscopy and immunostaining of the fat body, Malpighian tubules and anterior midgut, we described tissue and cytoskeletal (F-actin and α-tubulin) morphologies among these variants after exposure to various cold stresses (from chilling at -5°C to extreme freezing at -196°C), and upon recovery from cold exposure. Fat body tissue appeared to be the most susceptible to cryoinjury: freezing caused coalescence of lipid droplets, loss of α-tubulin structure and apparent aggregation of F-actin. A combination of diapause and cold acclimation substantially lowered the temperature at which these morphological disruptions occurred. Larvae that recovered from a freezing challenge repaired F-actin aggregation but not lipid droplet coalescence or α-tubulin structure. Our observations indicate that lipid coalescence and damage to α-tubulin are non-lethal forms of freeze injury, and suggest that repair or removal (rather than protection) of actin proteins is a potential mechanism of acquired freeze tolerance.
Collapse
Affiliation(s)
- Lauren E Des Marteaux
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic
| | - Tomáš Štětina
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
13
|
Toxopeus J, Sinclair BJ. Mechanisms underlying insect freeze tolerance. Biol Rev Camb Philos Soc 2018; 93:1891-1914. [DOI: 10.1111/brv.12425] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jantina Toxopeus
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| | - Brent J. Sinclair
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| |
Collapse
|
14
|
Abstract
ABSTRACT
Temperate, polar and alpine insects generally do not feed over winter and hence must manage their energy stores to fuel their metabolism over winter and to meet the energetic demands of development and reproduction in the spring. In this Review, we give an overview of the accumulation, use and conservation of fat reserves in overwintering insects and discuss the ways insects modify fats to facilitate their selective consumption or conservation. Many insects are in diapause and have depressed metabolic rates over winter; together with low temperatures, this means that lipid stores are likely to be consumed predominantly in the autumn and spring, when temperatures are higher but insects remain dormant. Although there is ample evidence for a shift towards less-saturated lipids in overwintering insects, switches between the use of carbohydrate and lipid stores during winter have not been well-explored. Insects usually accumulate cryoprotectants over winter, and the resulting increase in haemolymph viscosity is likely to reduce lipid transport. For freeze-tolerant insects (which withstand internal ice), we speculate that impaired oxygen delivery limits lipid oxidation when frozen. Acetylated triacylglycerols remain liquid at low temperatures and interact with water molecules, providing intriguing possibilities for a role in cryoprotection. Similarly, antifreeze glycolipids may play an important role in structuring water and ice during overwintering. We also touch on the uncertain role of non-esterified fatty acids in insect overwintering. In conclusion, lipids are an important component of insect overwintering energetics, but there remain many uncertainties ripe for detailed exploration.
Collapse
Affiliation(s)
- Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Katie E. Marshall
- Department of Biology, University of Oklahoma, Norman, OK 73609, USA
| |
Collapse
|
15
|
Ferveur JF, Cortot J, Rihani K, Cobb M, Everaerts C. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults. PeerJ 2018; 6:e4318. [PMID: 29456884 PMCID: PMC5813593 DOI: 10.7717/peerj.4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs) depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1) experimentally selected desiccation-resistant lines, (2) transgenic flies with altered desaturase expression and (3) natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.
Collapse
Affiliation(s)
- Jean-Francois Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Karen Rihani
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
16
|
Rozsypal J, Moos M, Šimek P, Koštál V. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J Exp Biol 2018; 221:jeb.170464. [DOI: 10.1242/jeb.170464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/14/2018] [Indexed: 01/20/2023]
Abstract
Some insects rely on the strategy of freeze tolerance for winter survival. During freezing, extracellular body water transitions from the liquid to solid phase and cells undergo freeze-induced dehydration. Here we present results of a thermal analysis (from differential scanning calorimetry) of ice fraction dynamics during gradual cooling after inoculative freezing in variously acclimated larvae of two drosophilid flies, Drosophila melanogaster and Chymomyza costata. Although the species and variants ranged broadly between 0 and close to 100% survival of freezing, there were relatively small differences in ice fraction dynamics. For instance, the maximum ice fraction (IFmax) ranged between 67.9 and 77.7% total body water (TBW). The C. costata larvae showed statistically significant phenotypic shifts in parameters of ice fraction dynamics (melting point and IFmax) upon entry into diapause, cold-acclimation, and feeding on a proline-augmented diet. These differences were mostly driven by colligative effects of accumulated proline (ranging between 6 and 487 mmol.kg−1 TBW) and other metabolites. Our data suggest that these colligative effects per se do not represent a sufficient mechanistic explanation for high freeze tolerance observed in diapausing, cold-acclimated C. costata larvae. Instead, we hypothesize that accumulated proline exerts its protective role via a combination of mechanisms. Specifically, we found a tight association between proline-induced stimulation of glass transition in partially-frozen body liquids (vitrification) and survival of cryopreservation in liquid nitrogen.
Collapse
Affiliation(s)
- Jan Rozsypal
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005 České Budějovice, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005 České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005 České Budějovice, Czech Republic
| |
Collapse
|
17
|
Characterizing Intracellular Ice Formation of Lymphoblasts Using Low-Temperature Raman Spectroscopy. Biophys J 2017. [PMID: 28636921 DOI: 10.1016/j.bpj.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Raman microspectroscopy was used to quantify freezing response of cells to various cooling rates and solution compositions. The distribution pattern of cytochrome c in individual cells was used as a measure of cell viability in the frozen state and this metric agreed well with the population-averaged viability and trypan blue staining experiments. Raman imaging of cells demonstrated that intracellular ice formation (IIF) was common and did not necessarily result in cell death. The amount of intracellular ice as well as ice crystal size played a role in determining whether or not ice inside the cell was a lethal event. Intracellular ice crystals were colocated to the sections of cell membrane in close proximity to extracellular ice. Increasing the distance between extracellular ice and cell membrane decreased the incidence of IIF. Reducing the effective stiffness of the cell membrane by disrupting the actin cytoskeleton using cytochalasin D increased the amount of IIF. Strong intracellular osmotic gradients were observed when IIF was present. These observations support the hypothesis that interactions between the cell membrane and extracellular ice result in IIF. Raman spectromicroscopy provides a powerful tool for observing IIF and understanding its role in cell death during freezing, and enables the development, to our knowledge, of new and improved cell preservation protocols.
Collapse
|
18
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Thorne MAS, Seybold A, Marshall C, Wharton D. Molecular snapshot of an intracellular freezing event in an Antarctic nematode. Cryobiology 2017; 75:117-124. [PMID: 28082102 DOI: 10.1016/j.cryobiol.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
Abstract
The Antarctic nematode, Panagrolaimus sp. DAW1 (formerly called Panagrolaimus davidi), is the best documented example of an organism able to survive intracellular ice formation in all of its compartments. Not only is it able to survive such extreme physiological disruption, but it is able to produce progeny once thawed from such a state. In addition, under slower rates, or less extreme degrees, of cooling, its body remains unfrozen and the vapour pressure difference between the supercooled body fluids and the surrounding ice leads to a process termed cryoprotective dehydration. In contrast to a fairly large body of work in building up our molecular understanding of cryoprotective dehydration, no comparable work has been undertaken on intracellular freezing. This paper describes an experiment subjecting cultures of Panagrolaimus sp. DAW1 to a range of temperatures including a rapid descent to -10 °C, in a medium just prior to, and after, freezing. Through deep sequencing of RNA libraries we have gained a snapshot of which genes are highly abundant when P. sp. DAW1 is undergoing an intracellular freezing event. The onset of freezing correlated with a high production of genes involved in cuticle formation and subsequently, after 24 h in a frozen state, protease production. In addition to the mapping of RNA sequencing, we have focused on a select set of genes arising both from the expression profiles, as well as implicated from other cold tolerance studies, to undertake qPCR. Among the most abundantly represented transcripts in the RNA mapping is the zinc-metalloenzyme, neprilysin, which also shows a particularly strong upregulated signal through qPCR once the nematodes have frozen.
Collapse
Affiliation(s)
| | - Anna Seybold
- Department of Biochemistry, and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Craig Marshall
- Department of Biochemistry, and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - David Wharton
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Raymond MR, Wharton DA. The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed. J Exp Biol 2016; 219:2060-5. [DOI: 10.1242/jeb.137190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022]
Abstract
A few species of nematodes can survive extensive intracellular freezing throughout all their tissues, an event that is usually thought to be fatal to cells. How are they able to survive in this remarkable way? The pattern and distribution of ice formed, after freezing at -10°C, can be observed using freeze substitution and transmission electron microscopy, which preserves the former position of ice as white spaces. We compared the pattern and distribution of ice formed in a nematode that survives intracellular freezing well (Panagrolaimus sp. DAW1), one that survives poorly (Panagrellus redivivus) and one with intermediate levels of survival (Plectus murrayi). We also examined Panagrolaimus sp. in which the survival of freezing had been compromised by starvation. Levels of survival were as expected and the use of vital dyes indicated cellular damage in those that survived poorly (starved Panagrolaimus sp. and P. murrayi). In fed Panagrolaimus sp. the intracellular ice spaces were small and uniform, whilst in P. redivivus and starved Panagrolaimus sp. there were some large spaces that may be causing cellular damage. The pattern and distribution of ice formed was different in P. murrayi, with a greater number of individuals having no ice or only small intracellular ice spaces. Control of the size of the ice formed is thus important for the survival of intracellular freezing in nematodes.
Collapse
Affiliation(s)
- Méliane R. Raymond
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - David A. Wharton
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
21
|
Marshall KE, Thomas RH, Roxin A, Chen EKY, Brown JCL, Gillies ER, Sinclair BJ. Seasonal accumulation of acetylated triacylglycerols by a freeze-tolerant insect. ACTA ACUST UNITED AC 2015; 217:1580-7. [PMID: 24790101 DOI: 10.1242/jeb.099838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Most animals store energy as long-chain triacylglycerols (lcTAGs). Trace amounts of acetylated triacylglycerols (acTAGs) have been reported in animals, but are not accumulated, likely because they have lower energy density than lcTAGs. Here we report that acTAGs comprise 36% of the neutral lipid pool of overwintering prepupae of the goldenrod gall fly, Eurosta solidaginis, while only 17% of the neutral lipid pool is made up of typical lcTAGs. These high concentrations of acTAGs, present only during winter, appear to be synthesized by E. solidaginis and are not found in other freeze-tolerant insects, nor in the plant host. The mixture of acTAGs found in E. solidaginis has a significantly lower melting point than equivalent lcTAGs, and thus remains liquid at temperatures at which E. solidaginis is frozen in the field, and depresses the melting point of aqueous solutions in a manner unusual for neutral lipids. We note that accumulation of acTAGs coincides with preparation for overwintering and the seasonal acquisition of freeze tolerance. This is the first observation of accumulation of acTAGs by an animal, and the first evidence of dynamic interconversion between acTAGs and lcTAGs during development and in response to stress.
Collapse
Affiliation(s)
- Katie E Marshall
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Stokich B, Osgood Q, Grimm D, Moorthy S, Chakraborty N, Menze MA. Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose. Cryobiology 2014; 69:281-90. [DOI: 10.1016/j.cryobiol.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
|
23
|
The overwintering biology of the acorn weevil, Curculio glandium in southwestern Ontario. J Therm Biol 2014; 44:103-9. [DOI: 10.1016/j.jtherbio.2014.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/21/2022]
|
24
|
Sinclair BJ. Linking energetics and overwintering in temperate insects. J Therm Biol 2014; 54:5-11. [PMID: 26615721 DOI: 10.1016/j.jtherbio.2014.07.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/27/2022]
Abstract
Overwintering insects cannot feed, and energy they take into winter must therefore fuel energy demands during autumn, overwintering, warm periods prior to resumption of development in spring, and subsequent activity. Insects primarily consume lipids during winter, but may also use carbohydrate and proteins as fuel. Because they are ectotherms, the metabolic rate of insects is temperature-dependent, and the curvilinear nature of the metabolic rate-temperature relationship means that warm temperatures are disproportionately important to overwinter energy use. This energy use may be reduced physiologically, by reducing the slope or elevation of the metabolic rate-temperature relationship, or because of threshold changes, such as metabolic suppression upon freezing. Insects may also choose microhabitats or life history stages that reduce the impact of overwinter energy drain. There is considerable capacity for overwinter energy drain to affect insect survival and performance both directly (via starvation) or indirectly (for example, through a trade-off with cryoprotection), but this has not been well-explored. Likewise, the impact of overwinter energy drain on growing-season performance is not well understood. I conclude that overwinter energetics provides a useful lens through which to link physiology and ecology and winter and summer in studies of insect responses to their environment.
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
25
|
|
26
|
The ability of the Antarctic nematode Panagrolaimus davidi to survive intracellular freezing is dependent upon nutritional status. J Comp Physiol B 2012; 183:181-8. [DOI: 10.1007/s00360-012-0697-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/25/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
|
27
|
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol 2012; 2:2151-202. [DOI: 10.1002/cphy.c110055] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Storey KB, Storey JM. Insect cold hardiness: metabolic, gene, and protein adaptation1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-011] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Winter survival for thousands of species of insects relies on adaptive strategies for cold hardiness. Two basic mechanisms are widely used (freeze avoidance by deep supercooling and freeze tolerance where insects endure ice formation in extracellular fluid spaces), whereas additional strategies (cryoprotective dehydration, vitrification) are also used by some polar species in extreme environments. This review assesses recent research on the biochemical adaptations that support insect cold hardiness. We examine new information about the regulation of cryoprotectant biosynthesis, mechanisms of metabolic rate depression, role of aquaporins in water and glycerol movement, and cell preservation strategies (chaperones, antioxidant defenses and metal binding proteins, mitochondrial suppression) for survival over the winter. We also review the new information coming from the use of genomic and proteomic screening methods that are greatly widening the scope for discovery of genes and proteins that support winter survival.
Collapse
Affiliation(s)
- Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Janet M. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
29
|
Boardman L, Terblanche JS, Sinclair BJ. Transmembrane ion distribution during recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera: Arctiidae). JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1154-1162. [PMID: 21575641 DOI: 10.1016/j.jinsphys.2011.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 05/30/2023]
Abstract
During extracellular freezing, solutes in the haemolymph are concentrated, resulting in osmotic dehydration of the cells, which must be reversed upon thawing. Here, we used freeze tolerant Pyrrharctia isabella (Lepidoptera: Arctiidae) larvae to examine the processes of ion redistribution after thawing. To investigate the effect of the intensity of cold exposure on ion redistribution after thawing, we exposed caterpillars to -14°C, -20°C or -30°C for 35h. To investigate the effect of duration of cold exposure on ion redistribution after thawing, we exposed the caterpillars to -14°C for up to 6 weeks while sampling several time points. The concentrations of Na(+), K(+), Mg(2+) and Ca(2+) were measured after thawing in the haemolymph, fat body, muscle, midgut tissue and hindgut tissue. Being frozen for long durations (>3 weeks) or at low temperatures (-30°C) both result in 100% mortality, although different ions and tissues appear to be affected by each treatment. Both water distribution and ion content changes were detected after thawing, with the largest effects seen in the fat body and midgut tissue. Magnesium homeostasis appears to be vital for post-freeze survival in these larvae. The movement of ions during thawing lagged behind the movement of water, and ion homeostasis was not restored within the same time frame as water homeostasis. Failure to regain ion homeostasis after thawing is therefore implicated in mortality of freeze tolerant insects.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | |
Collapse
|
30
|
CBP turns fifty. Comp Biochem Physiol B Biochem Mol Biol 2010. [DOI: 10.1016/j.cbpb.2009.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Mommsen TP, Nilsson GE, Walsh PJ. CBP turns fifty. Comp Biochem Physiol A Mol Integr Physiol 2010. [DOI: 10.1016/j.cbpa.2009.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Mommsen TP, Nilsson GE, Walsh PJ. CBP turns fifty. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:10-1. [PMID: 19878738 DOI: 10.1016/j.cbpc.2009.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|