1
|
Wu DY, Han XZ, Li T, Sun BJ, Qin XY. How incubation temperature affects hatchling performance in reptiles: an integrative insight based on plasticity in metabolic enzyme. Curr Zool 2024; 70:195-203. [PMID: 38726248 PMCID: PMC11078047 DOI: 10.1093/cz/zoad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/29/2023] [Indexed: 05/12/2024] Open
Abstract
Evaluating the effects of temperature variations on animals plays an important role in understanding the threat of climate warming. The effects of developmental temperature on offspring performance are critical in evaluating the effects of warming temperatures on the fitness of oviparous species, but the physiological and biochemical basis of this developmental plasticity is largely unknown. In this study, we incubated eggs of the turtle Pelodiscus sinensis at low (24 °C), medium (28 °C), and high (32 °C) temperatures, and evaluated the effects of developmental temperature on offspring fitness, and metabolic enzymes in the neck and limb muscles of hatchlings. The hatchlings from eggs incubated at the medium temperature showed better fitness-related performance (righting response and swimming capacity) and higher activities of metabolic enzymes (hexokinase, HK; lactate dehydrogenase, LDH) than hatchlings from the eggs incubated at high or low temperatures. In addition, the swimming speed and righting response were significantly correlated with the HK activities in limb (swimming speed) and neck (righting response) muscles, suggesting that the developmental plasticity of energy metabolic pathway might play a role in determining the way incubation temperature affects offspring phenotypes. Integrating the fitness-related performance and the activities of metabolic enzymes, we predict that the P. sinensis from high latitude would not face the detrimental effects of climate warming until the average nest temperatures reach 32 °C.
Collapse
Affiliation(s)
- Dan-Yang Wu
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing-Zhi Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Teng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Yan Qin
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
2
|
Gerhardt P, Begall S, Frädrich C, Renko K, Heinrich A, Köhrle J, Henning Y. Low thyroxine serves as an upstream regulator of ecophysiological adaptations in Ansell's mole-rats. Front Endocrinol (Lausanne) 2024; 15:1329083. [PMID: 38567302 PMCID: PMC10985354 DOI: 10.3389/fendo.2024.1329083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction About 10% of all rodent species have evolved a subterranean way of life, although life in subterranean burrows is associated with harsh environmental conditions that would be lethal to most animals living above ground. Two key adaptations for survival in subterranean habitats are low resting metabolic rate (RMR) and core body temperature (Tb). However, the upstream regulation of these traits was unknown thus far. Previously, we have reported exceptionally low concentrations of the thyroid hormone (TH) thyroxine (T4), and peculiarities in TH regulating mechanisms in two African mole-rat species, the naked mole-rat and the Ansell's mole-rat. Methods In the present study, we treated Ansell's mole-rats with T4 for four weeks and analyzed treatment effects on the tissue and whole organism level with focus on metabolism and thermoregulation. Results We found RMR to be upregulated by T4 treatment but not to the extent that was expected based on serum T4 concentrations. Our data point towards an extraordinary capability of Ansell's mole-rats to effectively downregulate TH signaling at tissue level despite very high serum TH concentrations, which most likely explains the observed effects on RMR. On the other hand, body weight was decreased in T4-treated animals and Tb was upregulated by T4 treatment. Moreover, we found indications of the hypothalamus-pituitary-adrenal axis potentially influencing the treatment effects. Conclusion Taken together, we provide the first experimental evidence that the low serum T4 concentrations of Ansell's mole-rats serve as an upstream regulator of low RMR and Tb. Thus, our study contributes to a better understanding of the ecophysiological evolution of the subterranean lifestyle in African mole-rats.
Collapse
Affiliation(s)
- Patricia Gerhardt
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Caroline Frädrich
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Alexandra Heinrich
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josef Köhrle
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Pan D, Shi Y, Huang M, Li X, Wang Z, Zhang Y, Sun H, Wang Z. Physiological indices and liver gene expression related to glucose supply in Brandt's vole (Lasiopodomys brandtii) exhibit species- and oxygen concentration-specific responses to hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110911. [PMID: 37898361 DOI: 10.1016/j.cbpb.2023.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Brandt's vole (Lasiopodomys brandtii) is a species with hypoxia tolerance, and glucose serves as the primary energy substrate under hypoxia. However, the glucose supply in Brandt's voles under hypoxia has not been studied. This study aimed to investigate characteristics in physiological indices and liver gene expression associated with glucose supply in Brandt's voles under hypoxia. Serum glucose of Brandt's voles remained stable under 10% O2, increased under 7.5% O2, and decreased under 5% O2. Serum lactate increased under 10% O2, decreased under 7.5% O2, increased at 6 h and decreased at 12 h under 5% O2. Liver glycogen increased under 10% O2, remained constant under 7.5% O2, and reduced under 5% O2. Pepck and G6pase expression associated with gluconeogenesis decreased under 10% O2, while Pepck expression decreased and G6pase expression increased under 7.5% and 5% O2. Regarding genes related to glycogen metabolism, Gys expression decreased at all oxygen concentrations, Phk expression increased under 5% O2, and Gp expression increased under 7.5% and 5% O2. The alterations in glucose, lactate, liver glycogen, and gene expression related to glycogenolysis in Kunming mice (Mus musculus, control species) are similar to discovery of Brandt's voles under 7.5% O2, but gene expression involved in gluconeogenesis and glycogen synthesis increased. The findings suggest that Brandt's voles are more tolerant to hypoxia than Kunming mice, and their physiological indices and liver gene expression related to glucose supply exhibit species- and oxygen concentration-specific responses to hypoxia. This research offers novel insights for studying hypoxia tolerance of Brandt's voles.
Collapse
Affiliation(s)
- Dan Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Zishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Yifeng Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China; Centre for Nutritional Ecology, Zhengzhou University, Zhengzhou, Henan Province, PR China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
4
|
Ren S, Zhang L, Tang X, Zhao Y, Cheng Q, Speakman JR, Zhang Y. Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167776. [PMID: 37848151 DOI: 10.1016/j.scitotenv.2023.167776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most wild animals follow Bergmann's rule and grow in body size as cold stress increases. However, the underlying thermogenic strategies and their relationship with the gut microbiota have not been comprehensively elucidated. Herein, we used the plateau pikas as a model to investigate body mass, thermogenic capacity, host transcriptome, gut microbiota and metabolites collected from seven sites ranging from 3100 to 4700 m on the Qinghai-Tibetan Plateau (QTP) in summer and winter to test the seasonal thermogenesis strategy in small herbivorous mammals. The results showed that the increase in pika body mass with altitude followed Bergmann's rule in summer and an inverted parabolic shape was observed in winter. However, physiological parameters and transcriptome profiles indicated that the thermogenic capacity of pikas increased with altitude in summer and decreased with altitude in winter. The abundance of Firmicutes declined, whereas that of Bacteroidetes significantly increased with altitude in summer. Phenylalanine, tyrosine, and proline were enriched in summer, whereas carnitine and succinate were enriched in winter. Spearman's correlation analysis revealed significant positive correlations between Prevotella, Bacteroides, Ruminococcus, Alistipes and Akkermansia and metabolites of amino acids, pika physiological parameters, and transcriptome profiles. Moreover, metabolites of amino acids further showed significant positive correlations with pika physiological parameters and transcriptome profiles. Our study highlights that the changes in body mass and thermogenic capacity with altitude distinctly differentiate small herbivorous mammals between summer and winter on the QTP, and that the gut microbiota may regulate host thermogenesis through its metabolites.
Collapse
Affiliation(s)
- Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China.
| |
Collapse
|
5
|
Wang B, Zhang XY, Yuan S, Fu HP, Wang CZ, Wang DH. Genetic Diversity of a Heat Activated Channel-TRPV1 in Two Desert Gerbil Species with Different Heat Sensitivity. Int J Mol Sci 2023; 24:ijms24119123. [PMID: 37298074 DOI: 10.3390/ijms24119123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Heat sensation and tolerance are crucial for determining species' survival and distribution range of small mammals. As a member of the transmembrane proteins, transient receptor potential vanniloid 1 (TRPV1) is involved in the sensation and thermoregulation of heat stimuli; however, the associations between animal's heat sensitivity and TRPV1 in wild rodents are less studied. Here, we found that Mongolian gerbils (Meriones unguiculatus), a rodent species living in Mongolia grassland, showed an attenuated sensitivity to heat compared with sympatrically distributed mid-day gerbils (M. meridianus) based on a temperature preference test. To explain this phenotypical difference, we measured the TRPV1 mRNA expression of two gerbil species in the hypothalamus, brown adipose tissue, and liver, and no statistical difference was detected between two species. However, according to the bioinformatics analysis of TRPV1 gene, we identified two single amino acid mutations on two TRPV1 orthologs in these two species. Further Swiss-model analyses of two TRPV1 protein sequences indicated the disparate conformations at amino acid mutation sites. Additionally, we confirmed the haplotype diversity of TRPV1 in both species by expressing TRPV1 genes ectopicly in Escherichia coli system. Taken together, our findings supplemented genetic cues to the association between the discrepancy of heat sensitivity and the functional differentiation of TRPV1 using two wild congener gerbils, promoting the comprehension of the evolutionary mechanisms of the TRPV1 gene for heat sensitivity in small mammals.
Collapse
Affiliation(s)
- Bing Wang
- State key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ying Zhang
- State key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Yuan
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - He-Ping Fu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chen-Zhu Wang
- State key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Hua Wang
- State key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Pan D, Wang J, Li M, Qiao C, Zhang Y, Shao T, Sun H, Wang Z. Changes in gene expression and enzyme activity related to glucose metabolism in the livers of Brandt's voles (Lasiopodomys brandtii) exposed to hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111384. [PMID: 36738876 DOI: 10.1016/j.cbpa.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Brandt's vole (Lasiopodomys brandtii) is a hypoxia-tolerant species, and the metabolic characteristics of hypoxia-tolerant species have become a focus of recent research. However, insights into the anaerobic and aerobic metabolism of the livers of Brandt's voles under hypoxia remain limited. In this study, Brandt's voles and hypoxia-intolerant Kunming mice (Mus musculus, control species) were exposed to hypoxia conditions (Brandt's voles, 10% and 7.5% O2; Kunming mice, 10% O2) for 24 h, and changes in gene expression and enzyme activity related to anaerobic and aerobic metabolism in the livers were evaluated. Phosphofructokinase 1 (PFK1), phosphofructokinase 2 (PFK2), pyruvate kinase muscle (PKM), hexokinase 2 (HK2), and lactate dehydrogenase (LDH) related to anaerobic metabolism in the livers of Brandt's voles were increased under 7.5% O2. Regarding gene expression and enzyme activity for aerobic metabolism in Brandt's voles under 7.5% and 10% O2, pyruvate dehydrogenase kinase 1 (PDK1) expression was up-regulated, and succinate dehydrogenase (SDH) activity was decreased. In the livers of Kunming mice, gene expression related to anaerobic and aerobic metabolism was increased at the late stage of 10% O2, and SDH activity was enhanced at 6 h and reduced at 18 h. In addition, PFK1,PKM, PDK1 expression and SDH activity in Brandt's voles were significantly correlated with HIF-1a expression. PFK1, PKM, LDHand PDK1 expression in Kunming mice were significantly correlated with HIF-1a expression. These findings indicate that the livers of Brandt's voles have a certain tolerance to hypoxia, and metabolic changes play important roles in hypoxia tolerance.
Collapse
Affiliation(s)
- Dan Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Mengke Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Congcong Qiao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Yifeng Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Tian Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Hong Sun
- Centre for Nutritional Ecology, Zhengzhou University, Zhengzhou, Henan Province, PR China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
7
|
Liao S, Tan S, Jiang M, Wen J, Liu J, Cao J, Li M, Zhao Z. Temperature determines the shift of thermal neutral zone and influences thermogenic capacity in striped hamsters. Integr Zool 2023; 18:353-371. [PMID: 36056589 DOI: 10.1111/1749-4877.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermoneutral zone (TNZ) reflects the adaptation of mammals to their natural habitat. However, it remains unclear how TNZ shifts in response to variations in ambient temperature. To test the hypothesis that ambient temperature plays a key role in determining TNZ variations between seasons, we measured metabolic rate, body temperature, and cytochrome c oxidase (COX) activity of several visceral organs in striped hamsters (Cricetulus barabensis) either acclimated to semi-natural conditions over a year, or subjected to a gradual decrease in mean temperature from 30 ± 1°C to -15 ± 1°C. The TNZ range in striped hamsters differed seasonally, with a wider TNZ and a lower lower-critical temperature in winter compared to summer. The hamsters showed a considerable leftward shift of lower-critical temperature from 30°C to 20°C after the ambient temperature of acclimation from 30°C down to -15°C, whereas the upper-critical temperature of TNZ remained fixed at 32.5°C. The resting metabolic rate in thermoneutral zone (RMRt), nonshivering thermogenesis (NST), and COX activity of brown adipose tissue, liver, skeletal muscle, brain, and kidneys, increased significantly in hamsters acclimated at lower ambient temperatures. Following acute exposure to 5°C and -15°C, hamsters acclimated to 32.5°C had significantly lower maximal NST and lower serum thyroid tri-iodothyronine (T3 ) levels compared to those kept at 23°C. These findings suggest that acclimation to the upper-critical temperature of TNZ impairs the hamsters' thermogenic capacity to cope with extreme cold temperature. Reduced ambient temperature was mainly responsible for the leftward shift of TNZ in striped hamsters, which reflects the adaptation to cold environments.
Collapse
Affiliation(s)
- Shasha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Song Tan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Meizhi Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jinsong Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ming Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhijun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.,Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| |
Collapse
|
8
|
Brzęk P, Roussel D, Konarzewski M. Mice selected for a high basal metabolic rate evolved larger guts but not more efficient mitochondria. Proc Biol Sci 2022; 289:20220719. [PMID: 35858057 PMCID: PMC9277295 DOI: 10.1098/rspb.2022.0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intra-specific variation in both the basal metabolic rate (BMR) and mitochondrial efficiency (the amount of ATP produced per unit of oxygen consumed) has profound evolutionary and ecological consequences. However, the functional mechanisms responsible for this variation are not fully understood. Mitochondrial efficiency is negatively correlated with BMR at the interspecific level but it is positively correlated with performance capacity at the intra-specific level. This discrepancy is surprising, as theories explaining the evolution of endothermy assume a positive correlation between BMR and performance capacity. Here, we quantified mitochondrial oxidative phosphorylation activity and efficiency in two lines of laboratory mice divergently selected for either high (H-BMR) or low (L-BMR) levels of BMR. H-BMR mice had larger livers and kidneys (organs that are important predictors of BMR). H-BMR mice also showed higher oxidative phosphorylation activity in liver mitochondria but this difference can be hypothesized to be a direct effect of selection only if the heritability of this trait is low. However, mitochondrial efficiency in all studied organs did not differ between the two lines. We conclude that the rapid evolution of BMR can reflect changes in organ size rather than mitochondrial properties, and does not need to be accompanied obligatorily by changes in mitochondrial efficiency.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, UMR 5023 LEHNA, CNRS, ENTPE, Villeurbanne, France
| | - Marek Konarzewski
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
9
|
Tang ZR, Chen SY, Lu W, Zhang HD, Li M, Liu JS. Morphological and physiological correlates of among- individual variation in basal metabolic rate in two passerine birds. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111160. [PMID: 35124186 DOI: 10.1016/j.cbpa.2022.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Basal metabolic rate (BMR) has been shown to be a highly phenotypic flexibility trait within species. A significant proportion of an individual's energy budget is accounted for by BMR, hence among-individual variation in this trait may affect other energetic processes, as well as fitness. In this study, we measured BMR, organ mass, mitochondrial respiration capacities and cytochrome c oxidase (COX) activities in muscle and liver and circulating levels of plasma triiodothyronine (T3) in Chinese bulbuls (Pycnonotus sinensis) and Eurasian tree sparrows (Passer montanus). Our results showed that heart and kidney mass was positively correlated with BMR in Chinese bulbuls, whereas liver and kidney mass was positively correlated with BMR in Eurasian tree sparrows. Regarding metabolic biochemical markers of tissues, state 4 respiration and COX activity in the muscles of the Chinese bulbuls was correlated with BMR, while state 4 respiration in the muscle and liver was correlated with BMR in Eurasian tree sparrows. T3 was significantly and positively correlated with BMR in Chinese bulbuls and Eurasian tree sparrows. Consistent with the above results, our findings suggest that T3 levels play an important role in modulating BMR in Chinese bulbuls and Eurasian tree sparrows. Moreover, individual variation in BMR can be explained partly by morphological and physiological mechanisms.
Collapse
Affiliation(s)
- Zhong-Ru Tang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Shen-Yue Chen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Wei Lu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Hao-Di Zhang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ming Li
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Wen J, Bo T, Zhao Z, Wang D. Role of transient receptor potential vanilloid-1 in behavioral thermoregulation of the Mongolian gerbil Meriones unguiculatus. Integr Zool 2021; 17:608-618. [PMID: 34498418 DOI: 10.1111/1749-4877.12587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ambient temperature considerably affects the physiology and behavior of mammals. Thermosensory and thermoregulatory abilities play an important role in the response to changing ambient temperature in endotherms. However, the molecular mechanisms of behavioral thermoregulation remain poorly understood. Transient receptor potential vanilloid-1 (TRPV1) is activated by changes in ambient temperature and is involved in acute thermoregulation. Here, we aimed to determine whether TRPV1 is involved in behavioral thermoregulation in wild rodents by conducting 2 experiments. In the first, 42 adult Mongolian gerbils (Meriones unguiculatus; 14 per treatment) were randomly assigned to 3 housing temperatures (4, 23, and 36°C) for 4 weeks. In the second, 20 gerbils (10 per treatment) were randomly injected with capsaicin (TRPV1 agonist) or AMG517 (TRPV1 antagonist). The results showed a significant decrease in food intake and non-shivering thermogenesis in the gerbils housed at 36°C. Additionally, there was a significant increase in the preference of gerbils housed at 4°C to low temperatures. The expression of TRPV1 protein in the brown adipose tissue (BAT) and liver was significantly positively correlated with that of protein kinase A (PKA). The expression of TRPV1 and PKA proteins in the BAT was positively correlated with the temperature preference of the gerbils. The gerbils injected with capsaicin preferred significantly lower temperatures than the control group gerbils. These findings suggest that TRPV1 and PKA are involved in behavioral thermoregulation in Mongolian gerbils.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Wu SH, Li HB, Li GL, Qi YJ, Zhang J, Wang BY. Panax ginseng root, not leaf, can enhance thermogenic capacity and mitochondrial function in mice. PHARMACEUTICAL BIOLOGY 2020; 58:374-384. [PMID: 32366153 PMCID: PMC7241452 DOI: 10.1080/13880209.2020.1756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 03/09/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Context: Panax ginseng C. A. Meyer (Araliaceae) root and leaf have always been considered in the traditional theory as hot and cold properties, respectively.Objective: To clarify the hot and cold properties of ginseng root and leaf from a thermodynamic viewpoint.Materials and methods: Thirty ICR male mice were randomly assigned to control (water), ginseng root group (GRP) and ginseng leaf group (GLP) with a concentration of 0.075 g/mL; the volume was 0.1 mL/10 g (body mass) per day by intragastric administration for 20 days. Ultra-Performance Liquid Chromatography (UPLC) was used to determine quality control through seven ginsenosides contained in ginseng root and leaf. Rest metabolic rate (RMR) and energy expenditure were monitored every 9 days by TSE System. At the 20th day, serum T3 or T4, liver or brown adipose tissue (BAT) mitochondrial respiration were investigated.Results: The quality control of GRP and GLP were within requirements of 2015 China Pharmacopoeia. The RMR (mLO2/h) in GLP (47.95 ± 4.20) was significantly lower than control (52.10 ± 4.79) and GRP (55.35 ± 4.48). Mitochondrial protein concentration and respiration were significantly increased in GRP (BAT, 79.12 ± 2 .08 mg/g, 239.89 ± 10.24 nmol O2/min/g tissue; Liver, 201.02 ± 10.89, 202.44 ± 3.24) and decreased in GLP (BAT, 53.42 ± 3.48, 153.49 ± 5.58; Liver, 138.69 ± 5.69, 104.50 ± 6.25) compared with control.Conclusions: The hot and cold properties of ginseng root and leaf are correlated with thermogenic capacity and mitochondrial function of BAT and liver, which deserve to further research.
Collapse
Affiliation(s)
- Su-hui Wu
- He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Han-bing Li
- He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Gen-Lin Li
- Basic Medical College, He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Yue-juan Qi
- He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Juan Zhang
- Basic Medical College, He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Bai-yan Wang
- Basic Medical College, He-Nan University of Chinese Medicine, Zheng-Zhou, China
| |
Collapse
|
12
|
Boratyński JS, Iwińska K, Szafrańska PA, Chibowski P, Bogdanowicz W. Continuous growth through winter correlates with increased resting metabolic rate but does not affect daily energy budgets due to torpor use. Curr Zool 2020; 67:131-145. [PMID: 33854531 PMCID: PMC8026158 DOI: 10.1093/cz/zoaa047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022] Open
Abstract
Small mammals that are specialists in homeothermic thermoregulation reduce their self-maintenance costs of normothermy to survive the winter. By contrast, heterothermic ones that are considered generalists in thermoregulation can lower energy expenditure by entering torpor. It is well known that different species vary the use of their strategies to cope with harsh winters in temperate zones; however, little is still known about the intraspecific variation within populations and the associated external and internal factors. We hypothesized that yellow-necked mice Apodemus flavicollis decrease their resting metabolic rate (RMR) from autumn to winter, and then increase it during spring. However, since the alternative for seasonal reduction of RMR could be the development of heterothermy, we also considered the use of this strategy. We measured body mass (mb), RMR, and body temperature (Tb) of mice during 2 consecutive years. In the 1st year, mice decreased whole animal RMR in winter, but did not do so in the 2nd year. All mice entered torpor during the 2nd winter, whereas only a few did so during the first one. Mice showed a continuous increase of mb, which was steepest during the 2nd year. The relationship between RMR and mb varied among seasons and years most likely due to different mouse development stages. The mb gain at the individual level was correlated positively with RMR and heterothermy. This indicates that high metabolism in winter supports the growth of smaller animals, which use torpor as a compensatory mechanism. Isotope composition of mice hair suggests that in the 1st year they fed mainly on seeds, while in the 2nd, they likely consumed significant amounts of less digestible herbs. The study suggests that the use of specialist or generalist thermoregulatory strategies can differ with environmental variation and associated differences in developmental processes.
Collapse
Affiliation(s)
- Jan S Boratyński
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Karolina Iwińska
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland.,Faculty of Biology, University of Białystok, Białystok, Poland
| | | | - Piotr Chibowski
- Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warszawa, Poland
| | - Wiesław Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
13
|
The physiological and molecular mechanisms to maintain water and salt homeostasis in response to high salt intake in Mongolian gerbils (Meriones unguiculatus). J Comp Physiol B 2020; 190:641-654. [PMID: 32556536 DOI: 10.1007/s00360-020-01287-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/19/2022]
Abstract
Desert rodents are faced with many challenges such as high dietary salt in their natural habitats and they have evolved abilities to conserve water and tolerate salt. However, the physiological and molecular mechanisms involved in water and salt balances in desert rodents are unknown. We hypothesized that desert rodents regulated water and salt balances by altering the expression of AQP2 and α-ENaC in the kidney. Mongolian gerbils (Meriones unguiculatus), a desert species, were acclimated to drinking water with different salt contents: (0, control; 4% NaCl, moderate salt, MS; 8% NaCl, high salt, HS) for 4 weeks. The gerbils drinking salty water had lower body mass, food intake, water intake, metabolic water production and urine volume. The HS gerbils increased the expression of arginine vasopressin (AVP) in the hypothalamus, and also enhanced the expression of AQP2 and cAMP/PKA/CREB signaling pathway in the kidney. In addition, these gerbils reduced serum aldosterone levels and α-ENaC expression in the kidney. Creatinine clearance was lower in the HS group than that in the control group, but serum and urine creatinine levels did not change. These data indicate that desert rodents rely on AVP-dependent upregulation of AQP2 and aldosterone-dependent downregulation of α-ENaC in the kidney to promote water reabsorption and sodium excretion under high salt intake.
Collapse
|
14
|
Guo YY, Hao S, Zhang M, Zhang X, Wang D. Aquaporins, evaporative water loss and thermoregulation in heat-acclimated Mongolian gerbils (Meriones unguiculatus). J Therm Biol 2020; 91:102641. [PMID: 32716882 DOI: 10.1016/j.jtherbio.2020.102641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Evaporative water loss is an essential strategy to maintain stable body temperature in heat-exposed rodents. However, the thermoregulatory role and adjustment of evaporative heat loss capacity is unclear during prolonged heat exposure. Here, we studied the role of evaporative water loss in thermoregulation in Mongolian gerbils during heat acclimation. After 3 weeks of heat acclimation, gerbils exhibited a lower body temperature than the controls, and no difference in evaporative losses of water from the lung or saliva spreading compared with the controls. Heat acclimation did not alter the expression of aquaporin-1 and aquaporin-5 in the lungs and the expression of aquaporin-5 in the salivary glands. The expression of aquaporin-2 in the kidneys was kept stable, while the expression of aquaporin-1 in the kidneys was down-regulated. In addition, resting metabolic rate and non-shivering thermogenesis of heat-acclimated gerbils were reduced to 51% and 55% of the control group, respectively. Taken together, heat-acclimated Mongolian gerbils can reduce the metabolic thermogenesis without enhancing the evaporative water loss capacity for thermoregulation.
Collapse
Affiliation(s)
- Yang-Yang Guo
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoyan Hao
- Tianjin Normal University, Tianjin, 300387, China
| | - Meng Zhang
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueying Zhang
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Xu DL, Xu MM, Wang DH. Effect of temperature on antioxidant defense and innate immunity in Brandt's voles. Zool Res 2019; 40:305-316. [PMID: 31310064 PMCID: PMC6680122 DOI: 10.24272/j.issn.2095-8137.2019.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/22/2019] [Indexed: 11/23/2022] Open
Abstract
Ambient temperature is an important factor influencing many physiological processes, including antioxidant defense and immunity. In the present study, we tested the hypothesis that antioxidant defense and immunity are suppressed by high and low temperature treatment in Brandt's voles (Lasiopodomys brandtii). Thirty male voles were randomly assigned into different temperature groups (4, 23, and 32 °C, n=10 for each group), with the treatment course lasting for 27 d. Results showed that low temperature increased gross energy intake (GEI) and liver, heart, and kidney mass, but decreased body fat mass and dry carcass mass. With the decline in temperature, hydrogen peroxide (H2O2) concentration, which is indicative of reactive oxygen species (ROS) levels, increased in the liver, decreased in the heart, and was unchanged in the kidney, testis, and small intestine. Lipid peroxidation indicated by malonaldehyde (MDA) content in the liver, heart, kidney, testis, and small intestine did not differ among groups, implying that high and low temperature did not cause oxidative damage. Similarly, superoxide dismutase (SOD) and catalase (CAT) activities and total antioxidant capacity (T-AOC) in the five tissues did not respond to low or high temperature, except for elevation of CAT activity in the testis upon cold exposure. Bacteria killing capacity, which is indicative of innate immunity, was nearly suppressed in the 4 °C group in contrast to the 23 °C group, whereas spleen mass and white blood cells were unaffected by temperature treatment. The levels of testosterone, but not corticosterone, were influenced by temperature treatment, though neither were correlated with innate immunity, H2O2 and MDA levels, or SOD, CAT, and T-AOC activity in any detected tissues. Overall, these results showed that temperature had different influences on oxidative stress, antioxidant enzymes, and immunity, which depended on the tissues and parameters tested. Up-regulation or maintenance of antioxidant defense might be an important mechanism for voles to survive highly variable environmental temperatures.
Collapse
Affiliation(s)
- De-Li Xu
- College of Life Sciences, Qufu Normal University, Qufu Shandong 273165, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Wang Y, Shan S, Zhang H, Dong B, Zheng W, Liu J. Physiological and Biochemical Thermoregulatory Responses in Male Chinese Hwameis to Seasonal Acclimatization: Phenotypic Flexibility in a Small Passerine. Zool Stud 2019; 58:e6. [PMID: 31966307 PMCID: PMC6759861 DOI: 10.6620/zs.2019.58-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/24/2019] [Indexed: 11/18/2022]
Abstract
Many small birds living in regions with seasonal fluctuations and ambient temperatures typically respond to cold by increasing metabolic thermogenesis, internal organ mass and the oxidative capacity of certain tissues. In this study, we investigated seasonal adjustments in body mass, resting metabolic rate (RMR), evaporative water loss (EWL), the mass of selected internal organs, and two indicators of cellular aerobic respiration (mitochondrial state-4 respiration and cytochrome c oxidase activity) in Chinese hwamei (Garrulax canorus) that had been captured in summer or winter from Wenzhou, China. RMR and EWL were higher in winter than in summer. State-4 respiration in the heart, liver, kidneys and pectoral muscle, as well as cytochrome c oxidase activity in the liver, kidneys and pectoral muscle were also higher in winter than summer. In addition, there was a positive correlation between RMR and EWL, and between RMR and indicators of cellular metabolic activity in the heart, liver, kidneys and pectoral muscle. This phenotypic flexibility in physiological and biochemical thermoregulatory responses may be important to the hwamei's ability to survive the unpredictable, periodic, cold temperatures commonly experienced in Wenzhou in winter.
Collapse
Affiliation(s)
- Ying Wang
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
| | - Shuangshuang Shan
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
| | - Haodi Zhang
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
| | - Beibei Dong
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
| | - Weihong Zheng
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
- Zhejiang Provincial Key Lab for Subtropical Water
Environment and Marine Biological Resources Protection, Wenzhou 325035,
China
| | - Jinsong Liu
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
- Zhejiang Provincial Key Lab for Subtropical Water
Environment and Marine Biological Resources Protection, Wenzhou 325035,
China
| |
Collapse
|
17
|
Khakisahneh S, Zhang XY, Nouri Z, Hao SY, Chi QS, Wang DH. Thyroid hormones mediate metabolic rate and oxidative, anti-oxidative balance at different temperatures in Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:101-109. [PMID: 30476595 DOI: 10.1016/j.cbpc.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Oxidative damage is a potential physiological cost of thermoregulation during seasonal adjustments to air temperature (Ta) in small mammals. Here, we hypothesized that Ta affects serum thyroid hormone levels and these hormones can mediate the changes in metabolic rate and oxidative damage. Mongolian gerbils (Meriones unguiculatus) were acclimated at different Tas (5 °C, 23 °C and 37 °C) for 3 weeks. Serum tri-iodothyronine (T3) levels increased at 5 °C but decreased at 37 °C compared to the control (23 °C). Protein carbonyls increased in liver at 37 °C compared with control, however, lipid damage (malonaldehyde, MDA) in both serum and liver was unrelated to Ta. After the effects of different Tas on thyroid hormone levels and oxidative damage markers were determined, we further investigate whether thyroid hormones mediated metabolic rate and oxidative damage. Another set of gerbils received 0.0036% L-thyroxin (hyperthyroid), 0.04% Methylimazol (hypothyroid) or water (control). Hypothyroid group showed a 34% reduction in resting metabolic rate (RMR) also 42% and 26% increases in MDA and liver protein carbonyl respectively, whereas hyperthyroid group had higher RMR, liver mass and superoxide dismutase (SOD) compared to control. Serum T3 or T3/T4 levels were correlated positively with RMR, liver mass, and SOD, but negatively with MDA and uncoupling protein 2 (UCP2). We concluded that high Ta induced hypothyroidism, decreased RMR and increased oxidative damage, whereas low Ta induced hyperthyroidism, increased RMR and unchanged oxidative damage. These data supported our hypothesis that thyroid hormones can be a cue to mediate metabolic rate and different aspects of oxidative and antioxidant activities at different Tas.
Collapse
Affiliation(s)
- Saeid Khakisahneh
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zahra Nouri
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shao-Yan Hao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Thermal biology of two sympatric gerbil species: The physiological basis of temporal partitioning. J Therm Biol 2018; 74:241-248. [DOI: 10.1016/j.jtherbio.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 11/18/2022]
|
19
|
Cao P, Sun BJ, Wang LW, Liang W, Du WG. Proximate mechanisms of earlier hatching in parasitic cuckoos: yolk energy and embryonic metabolism. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Genoud M, Isler K, Martin RD. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol Rev Camb Philos Soc 2017; 93:404-438. [PMID: 28752629 DOI: 10.1111/brv.12350] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12-20% larger than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes.
Collapse
Affiliation(s)
- Michel Genoud
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland.,Division of Conservation Biology, Institute of Ecology and Evolution, Department of Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| | - Robert D Martin
- Integrative Research Center, The Field Museum, Chicago, IL, 60605-2496, U.S.A.,Institute of Evolutionary Medicine, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| |
Collapse
|
21
|
Shi Y, Wang D. Implication of metabolomic profiles to wide thermoneutral zone in Mongolian gerbils (Meriones unguiculatus). Integr Zool 2017; 11:282-94. [PMID: 26749160 DOI: 10.1111/1749-4877.12179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mongolian gerbils (Meriones unguiculatus) have evolved a wide thermoneutral zone (26.5-38.9 °C) and high upper critical temperature, and appear to have a high tolerance for heat exposure. Here, we use a metabolomic approach to measure global metabolite profiles for gerbils between lower (27 °C) and upper critical temperatures (38 °C) to investigate the role of metabolomic characterization in maintaining basal metabolic rates within a wide thermoneutral zone. We found that in serum and liver, 14 and 19 metabolites were significantly altered, respectively. In the aerobic respiration-related tricarboxylic cycle (TCA), 5 intermediates (isocitric acid, cis-aconitic acid, α-ketoglutaric acid, fumaric acid and malic acid) were increased in serum in 38 °C animals; however, no such increase was found in the liver. A stable level of hepatic TCA cycle intermediates may be related to the steady state of aerobic respiration at 38 °C. Metabolomic results also revealed that acute heat exposure caused increased oxidative stress and low molecular weight antioxidants in Mongolian gerbils. Increased methionine and 2-hydroxybutyrate suggest an accelerated synthesis of glutathione. Increased urate and its precursors, inosine and hypoxanthine, were detected at 38 °C. Glucuronate, threonate and oxalate involved in ascorbate synthesis and degradation were increased in serum at 38 °C. In conclusion, although dramatic metabolomic variation was found, a stable hepatic TCA cycle may contribute to maintaining a constant basal metabolic rate within a wide thermoneutral zone in Mongolian gerbils.
Collapse
Affiliation(s)
- Yaolong Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Hu SN, Zhu YY, Lin L, Zheng WH, Liu JS. Temperature and photoperiod as environmental cues affect body mass and thermoregulation in Chinese bulbuls, Pycnonotus sinensis. ACTA ACUST UNITED AC 2017; 220:844-855. [PMID: 28082615 DOI: 10.1242/jeb.143842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/13/2016] [Indexed: 11/20/2022]
Abstract
Seasonal changes in temperature and photoperiod are important environmental cues used by small birds to adjust their body mass (Mb) and thermogenesis. However, the relative importance of these cues with respect to seasonal adjustments in Mb and thermogenesis is difficult to distinguish. In particular, the effects of temperature and photoperiod on energy metabolism and thermoregulation are not well known in many passerines. To address this problem, we measured the effects of temperature and photoperiod on Mb, energy intake, resting metabolic rate (RMR), organ mass and physiological and biochemical markers of metabolic activity in the Chinese bulbul (Pycnonotus sinensis). Groups of Chinese bulbuls were acclimated in a laboratory to the following conditions: (1) warm and long photoperiod, (2) warm and short photoperiod, (3) cold and long photoperiod, and (4) cold and short photoperiod, for 4 weeks. The results indicate that Chinese bulbuls exhibit adaptive physiological regulation when exposed to different temperatures and photoperiods. Mb, RMR, gross energy intake and digestible energy intake were higher in cold-acclimated than in warm-acclimated bulbuls, and in the short photoperiod than in the long photoperiod. The resultant flexibility in energy intake and RMR allows Chinese bulbuls exposed to different temperatures and photoperiods to adjust their energy balance and thermogenesis accordingly. Cold-acclimated birds had heightened state-4 respiration and cytochrome c oxidase activity in their liver and muscle tissue compared with warm-acclimated birds indicating the cellular mechanisms underlying their adaptive thermogenesis. Temperature appears to be a primary cue for adjusting energy budget and thermogenic ability in Chinese bulbuls; photoperiod appears to intensify temperature-induced changes in energy metabolism and thermoregulation.
Collapse
Affiliation(s)
- Shi-Nan Hu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ying-Yang Zhu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Lin Lin
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Wei-Hong Zheng
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.,Department of Biology, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China .,Department of Biology, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China
| |
Collapse
|
23
|
Rimbach R, Pillay N, Schradin C. Both thyroid hormone levels and resting metabolic rate decrease in African striped mice when food availability decreases. ACTA ACUST UNITED AC 2016; 220:837-843. [PMID: 27994044 DOI: 10.1242/jeb.151449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023]
Abstract
In response to variation in food availability and ambient temperature (Ta), many animals show seasonal adaptations in their physiology. Laboratory studies showed that thyroid hormones are involved in the regulation of metabolism, and their regulatory function is especially important when the energy balance of an individual is compromised. However, little is known about the relationship between thyroid hormones and metabolism in free-living animals and animals inhabiting seasonal environments. Here, we studied seasonal changes in triiodothyronine (T3) levels, resting metabolic rate (RMR) and two physiological markers of energy balance (blood glucose and ketone bodies) in 61 free-living African striped mice (Rhabdomys pumilio) that live in an semi-arid environment with food shortage during the dry season. We predicted a positive relationship between T3 levels and RMR. Further, we predicted higher T3 levels, blood glucose levels and RMR, but lower ketone body concentrations, during the moist season when food availability is high compared with summer when food availability is low. RMR and T3 levels were negatively related in the moist season but not in the dry season. Both RMR and T3 levels were higher in the moist than in the dry season, and T3 levels increased with increasing food availability. In the dry season, blood glucose levels were lower but ketone body concentrations were higher, indicating a change in substrate use. Seasonal adjustments in RMR and T3 levels permit a reduction of energy expenditure when food is scarce, and reflect an adaptive response to reduced food availability in the dry season.
Collapse
Affiliation(s)
- Rebecca Rimbach
- University of the Witwatersrand, School of Animal, Plant & Environmental Sciences, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Neville Pillay
- University of the Witwatersrand, School of Animal, Plant & Environmental Sciences, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Carsten Schradin
- University of the Witwatersrand, School of Animal, Plant & Environmental Sciences, Private Bag 3, WITS 2050, Johannesburg, South Africa.,IPHC, UNISTRA, CNRS, 23 rue du Loess, Strasbourg 67200, France
| |
Collapse
|
24
|
Chi QS, Wan XR, Geiser F, Wang DH. Fasting-induced daily torpor in desert hamsters (Phodopus roborovskii). Comp Biochem Physiol A Mol Integr Physiol 2016; 199:71-77. [PMID: 27215346 DOI: 10.1016/j.cbpa.2016.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Daily torpor is frequently expressed in small rodents when facing energetically unfavorable ambient conditions. Desert hamsters (Phodopus roborovskii, ~20g) appear to be an exception as they have been described as homeothermic. However, we hypothesized that they can use torpor because we observed reversible decreases of body temperature (Tb) in fasted hamsters. To test this hypothesis we (i) randomly exposed fasted summer-acclimated hamsters to ambient temperatures (Tas) ranging from 5 to 30°C or (ii) supplied them with different rations of food at Ta 23°C. All desert hamsters showed heterothermy with the lowest mean Tb of 31.4±1.9°C (minimum, 29.0°C) and 31.8±2.0°C (minimum, 29.0°C) when fasted at Ta of 23°C and 19°C, respectively. Below Ta 19°C, the lowest Tb and metabolic rate increased and the proportion of hamsters using heterothermy declined. At Ta 5°C, nearly all hamsters remained normothermic by increasing heat production, suggesting that the heterothermy only occurs in moderately cold conditions, perhaps to avoid freezing at extremely low Tas. During heterothermy, Tbs below 31°C with metabolic rates below 25% of those during normothermia were detected in four individuals at Ta of 19°C and 23°C. Consequently, by definition, our observations confirm that fasted desert hamsters are capable of shallow daily torpor. The negative correlation between the lowest Tbs and amount of food supply shows that heterothermy was mainly triggered by food shortage. Our data indicate that summer-acclimated desert hamsters can express fasting-induced shallow daily torpor, which may be of significance for energy conservation and survival in the wild.
Collapse
Affiliation(s)
- Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Rong Wan
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| | - De-Hua Wang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
25
|
Xing X, Tang GB, Sun MY, Yu C, Song SY, Liu XY, Yang M, Wang DH. Leptin regulates energy intake but fails to facilitate hibernation in fattening Daurian ground squirrels (Spermophilus dauricus). J Therm Biol 2016; 57:35-43. [PMID: 27033037 DOI: 10.1016/j.jtherbio.2016.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
Body fat storage before hibernation affects the timing of immergence in Daurian ground squirrels (Spermophilus dauricus). Leptin is an adipose signal and plays vital role in energy homeostasis mainly by action in brain. To test the hypothesis that leptin plays a role in facilitating the process of hibernation, squirrels were administrated with recombinant murine leptin (1μg/day) through intracerebroventricular (ICV) injection for 12 days during fattening. From day 7 to 12, animals were moved into a cold room (5±1°C) with constant darkness which functioned as hibernaculum. Energy intake, body mass and core body temperature (Tb) were continuously monitored throughout the course of experiment. Resting metabolic rate (RMR) was measured under both warm and cold conditions. At the end of leptin administration, we measured the serum concentration of hormones related to energy regulation, mRNA expression of hypothalamic neuropeptides and uncoupling protein 1 (UCP1) levels in brown adipose tissue (BAT). Our results showed that during leptin administration, the cumulative food intake and increase of body mass were suppressed while Tb and RMR were unaltered. The proportion of torpid squirrels was not different between two groups. At the end of leptin administration, the expressions of hypothalamic neuropeptide Y and agouti gene-related protein were suppressed. There were no differences in UCP1 mRNA expression or protein content in BAT between groups. Our data suggest that leptin can affect energy intake via hypothalamic neuropeptides, but is not involved in the initiation of hibernation in fattening Daurian ground squirrels.
Collapse
Affiliation(s)
- Xin Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang-Bin Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Ming-Yue Sun
- College of Life Science, Shenyang Normal University, 253 Huanghe North Street, Shenyang 110034, China
| | - Chao Yu
- College of Life Science, Shenyang Normal University, 253 Huanghe North Street, Shenyang 110034, China
| | - Shi-Yi Song
- College of Life Science, Shenyang Normal University, 253 Huanghe North Street, Shenyang 110034, China
| | - Xin-Yu Liu
- College of Life Science, Shenyang Normal University, 253 Huanghe North Street, Shenyang 110034, China
| | - Ming Yang
- College of Life Science, Shenyang Normal University, 253 Huanghe North Street, Shenyang 110034, China.
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China.
| |
Collapse
|
26
|
Ye MH, Nan YL, Ding MM, Hu JB, Liu Q, Wei WH, Yang SM. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti). Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:19-26. [PMID: 26850644 DOI: 10.1016/j.cbpb.2016.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/17/2022]
Abstract
This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles.
Collapse
Affiliation(s)
- Man-Hong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yan-Lei Nan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Meng-Meng Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jun-Bang Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Qian Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Wan-Hong Wei
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
27
|
Xu MM, Wang DH. Water deprivation up-regulates urine osmolality and renal aquaporin 2 in Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol A Mol Integr Physiol 2016; 194:37-44. [PMID: 26806059 DOI: 10.1016/j.cbpa.2016.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/16/2016] [Accepted: 01/16/2016] [Indexed: 01/30/2023]
Abstract
To better understand how desert rodents adapt to water scarcity, we examined urine osmolality, renal distribution and expression of aquaporins (AQPs) in Mongolian gerbils (Meriones unguiculatus) during 7 days of water deprivation (WD). Urine osmolality of the gerbils during WD averaged 7503 mOsm kg(-1). Renal distributions of AQP1, AQP2, and AQP3 were similar to that described in other rodents. After the 7 day WD, renal AQP2 was up-regulated, while resting metabolic rate and total evaporative water loss decreased by 43% and 36%, respectively. Our data demonstrated that Mongolian gerbils showed high urine concentration, renal AQPs expression and body water conservation to cope with limited water availability, which may be critical for their survival during dry seasons in cold deserts.
Collapse
Affiliation(s)
- Meng-Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Lou MF, Zhang XY, Fu RS, Wang DH. Effects of dietary fiber content on energetics in nonreproductive and reproductive Brandt’s voles (Lasiopodomys brandtii). CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food quality can affect many physiological characteristics in small mammals. Reproduction is a highly energy-demanding period especially for the females to produce and feed their offspring. We hypothesized that energy intake was constrained at different levels in nonreproductive and reproductive females and thus they adopted diverse energy strategies in response to diet changes. Here, we tested the effects of low fiber diet (3.5% vs. 12.4%) on energy intake and thermogenesis in nonreproductive and reproductive Brandt’s voles (Lasiopodomys brandtii (Radde, 1861)), a herbivorous species. We found that the voles decreased food intake while keeping a stable digestible energy intake (DEI) in response to the low fiber diet, but DEI was increased in reproductive voles at peak lactation. Uncoupling protein 1 content in brown adipose tissue decreased in nonreproductive voles, but was stable in reproductive voles on the low fiber diet. Litter mass on day 18 of age tended to increase in the low fiber group compared with that in the control group. Our findings demonstrate that the voles have a target intake to maintain energy balance when diet composition changes and energy intake may be constrained at a high level for the reproductive voles to improve their offspring’s fitness.
Collapse
Affiliation(s)
- Mei-Fang Lou
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- College of Life Science, Shandong Normal University, Ji’nan 250014, People’s Republic of China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Rong-Shu Fu
- College of Life Science, Shandong Normal University, Ji’nan 250014, People’s Republic of China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
29
|
Environmental metabolomics reveal geographic variation in aerobic metabolism and metabolic substrates in Mongolian gerbils (Meriones unguiculatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 14:42-52. [PMID: 25817427 DOI: 10.1016/j.cbd.2015.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 01/23/2023]
Abstract
Mongolian gerbils (Meriones unguiculatus) have a large-scale distribution in northern China. Geographic physiological variations which related to energy and water metabolism are critical to animals' local adaptation and distribution. However, the underlying biochemical mechanism of such variation and its role in adaptation remains largely unknown. We used GC-MS metabolomics approach to investigate the biochemical adaptation of Mongolian gerbils from xeric (desert), transition (desert steppe) and mesic (typical steppe) environments. Gerbils in desert population had lower resting metabolic rate (RMR) and total evaporative water loss (TEWL) than mesic population. Serum metabolomics revealed that concentrations of five tricarboxylic acid cycle intermediates (citrate, cis-aconitate, α-ketoglutarate, fumarate and malate) were lower in desert population than mesic population. Gastrocnemius metabolomics and citrate synthase activity analysis showed a lower concentration of citrate and lower citrate synthase activity in desert population. These findings suggest that desert dwelling gerbils decrease RMR and TEWL via down-regulation of aerobic respiration. Gastrocnemius metabolomics also revealed that there were higher concentrations of glucose and glycolytic intermediates, but lower concentrations of lipids, amino acids and urea in desert population than mesic population. This geographic variation in metabolic substrates may enhance metabolic water production per oxygen molecule for desert population while constraining aerobic respiration to reduce RMR and TEWL.
Collapse
|
30
|
Sun BJ, Li T, Gao J, Ma L, Du WG. High incubation temperatures enhance mitochondrial energy metabolism in reptile embryos. Sci Rep 2015; 5:8861. [PMID: 25749301 PMCID: PMC4352865 DOI: 10.1038/srep08861] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/05/2015] [Indexed: 01/23/2023] Open
Abstract
Developmental rate increases exponentially with increasing temperature in ectothermic animals, but the biochemical basis underlying this thermal dependence is largely unexplored. We measured mitochondrial respiration and metabolic enzyme activities of turtle embryos (Pelodiscus sinensis) incubated at different temperatures to identify the metabolic basis of the rapid development occurring at high temperatures in reptile embryos. Developmental rate increased with increasing incubation temperatures in the embryos of P. sinensis. Correspondingly, in addition to the thermal dependence of mitochondrial respiration and metabolic enzyme activities, high-temperature incubation further enhanced mitochondrial respiration and COX activities in the embryos. This suggests that embryos may adjust mitochondrial respiration and metabolic enzyme activities in response to developmental temperature to achieve high developmental rates at high temperatures. Our study highlights the importance of biochemical investigations in understanding the proximate mechanisms by which temperature affects embryonic development.
Collapse
Affiliation(s)
- Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Teng Li
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jing Gao
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
31
|
Wu MX, Zhou LM, Zhao LD, Zhao ZJ, Zheng WH, Liu JS. Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:113-9. [DOI: 10.1016/j.cbpa.2014.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 11/15/2022]
|
32
|
Welcker J, Speakman JR, Elliott KH, Hatch SA, Kitaysky AS. Resting and daily energy expenditures during reproduction are adjusted in opposite directions in free‐living birds. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12321] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jorg Welcker
- Norwegian Polar Institute Fram Centre N‐9296 Tromsø Norway
- Institute of Arctic Biology University of Alaska Fairbanks Irving 311Fairbanks Alaska 99775 USA
| | - John R. Speakman
- Institute of Biological and Environmental Sciences University of AberdeenTillydrone Avenue Aberdeen AB24 2TZ UK
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences 1 West Beichen RoadChaoyang Beijing China
| | - Kyle H. Elliott
- Department of Biological Sciences University of Manitoba Winnipeg ManitobaR3T 2N2 Canada
| | - Scott A. Hatch
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage Alaska99508 USA
| | - Alexander S. Kitaysky
- Institute of Arctic Biology University of Alaska Fairbanks Irving 311Fairbanks Alaska 99775 USA
| |
Collapse
|
33
|
Lipidomics Reveals Mitochondrial Membrane Remodeling Associated with Acute Thermoregulation in a Rodent with a Wide Thermoneutral Zone. Lipids 2014; 49:715-30. [DOI: 10.1007/s11745-014-3900-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
|
34
|
Hegab IM, Wang A, Yin B, Yang S, Wanhong W. Behavioral and neuroendocrine response of Brandt's voles, Lasiopodomys brandtii, to odors of different species. EUR J WILDLIFE RES 2013. [DOI: 10.1007/s10344-013-0790-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Elliott KH, Welcker J, Gaston AJ, Hatch SA, Palace V, Hare JF, Speakman JR, Anderson WG. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds. Biol Open 2013; 2:580-6. [PMID: 23789108 PMCID: PMC3683160 DOI: 10.1242/bio.20134358] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/26/2013] [Indexed: 11/28/2022] Open
Abstract
Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR) in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR) in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia). Because BMR and daily energy expenditure (DEE) are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR). RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.
Collapse
Affiliation(s)
- Kyle H Elliott
- Department of Biological Sciences, University of Manitoba , Winnipeg, MB R3T 2N2 , Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Welcker J, Chastel O, Gabrielsen GW, Guillaumin J, Kitaysky AS, Speakman JR, Tremblay Y, Bech C. Thyroid hormones correlate with basal metabolic rate but not field metabolic rate in a wild bird species. PLoS One 2013; 8:e56229. [PMID: 23437096 PMCID: PMC3577771 DOI: 10.1371/journal.pone.0056229] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
Abstract
Thyroid hormones (TH) are known to stimulate in vitro oxygen consumption of tissues in mammals and birds. Hence, in many laboratory studies a positive relationship between TH concentrations and basal metabolic rate (BMR) has been demonstrated whereas evidence from species in the wild is scarce. Even though basal and field metabolic rates (FMR) are often thought to be intrinsically linked it is still unknown whether a relationship between TH and FMR exists. Here we determine the relationship between the primary thyroid hormone triiodothyronine (T3) with both BMR and FMR in a wild bird species, the black-legged kittiwake (Rissa tridactyla). As predicted we found a strong and positive relationship between plasma concentrations of T3 and both BMR and mass-independent BMR with coefficients of determination ranging from 0.36 to 0.60. In contrast there was no association of T3 levels with either whole-body or mass-independent FMR (R(2) =0.06 and 0.02, respectively). In accordance with in vitro studies our data suggests that TH play an important role in modulating BMR and may serve as a proxy for basal metabolism in wild birds. However, the lack of a relationship between TH and FMR indicates that levels of physical activity in kittiwakes are largely independent of TH concentrations and support recent studies that cast doubt on a direct linkage between BMR and FMR.
Collapse
|
37
|
Zheng WH, Lin L, Liu JS, Xu XJ, Li M. Geographic variation in basal thermogenesis in little buntings: relationship to cellular thermogenesis and thyroid hormone concentrations. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:483-90. [PMID: 23246502 DOI: 10.1016/j.cbpa.2012.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/29/2012] [Accepted: 12/08/2012] [Indexed: 11/15/2022]
Abstract
Acclimatization to different ambient conditions is an essential prerequisite for survival of small passerine birds. Long-distance migration and winter acclimatization induce similar physiological and biochemical adjustments in passerines. To understand metabolic adaptations, the resting metabolic rate (RMR), the thermogenic properties of mitochondria in liver and muscle, and the activity of thyroid hormones were examined in field-captured little buntings (Emberiza pusilla) between Southeastern (Wenzhou) and Northeastern (Qiqihar) China from March to May in 2008 during their migration. Twelve birds were trapped from March to April in Wenzhou region, Zhejiang Province (27°29'N, 120°51'E) and eleven birds originated from April to May in Qiqihar region, Heilongjiang Province (47°29'N, 124°02'E). We found that RMRs of little buntings were significantly higher in Qiqihar than in Wenzhou. Consistently, mitochondrial state-4 respiration capacities and cytochrome c oxidase activities (COX) in liver and muscle, and circulating levels of plasma triiodothyronine (T(3)) of little buntings were also significantly higher in Qiqihar than in Wenzhou. Variation in metabolic biochemical markers of liver and muscle, such as state-4 respiration and COX, and variation in thyroid hormone levels were correlated with variation in RMR. There was also a positive relationship between T(3) and metabolic biochemical markers. Little buntings mainly coped with a cold environment by enhancing thermogenic capacities through enhanced respiratory enzyme activities and plasma T(3). These results support the view that the primary means by which small birds meet energetic challenges of cold conditions is through metabolic adjustments.
Collapse
Affiliation(s)
- Wei-Hong Zheng
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | | | | | | | | |
Collapse
|
38
|
Liu XY, Xu DL, Wang DH. High body weight associated with impaired nonshivering thermogenesis but improved glucose tolerance in Mongolian gerbils (Meriones unguiculatus). J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Zhang XY, Yang HD, Zhang Q, Wang Z, Wang DH. Increased feeding and food hoarding following food deprivation are associated with activation of dopamine and orexin neurons in male Brandt's voles. PLoS One 2011; 6:e26408. [PMID: 22046281 PMCID: PMC3203142 DOI: 10.1371/journal.pone.0026408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Small mammals usually face energetic challenges, such as food shortage, in the field. They have thus evolved species-specific adaptive strategies for survival and reproductive success. In the present study, we examined male Brandt's voles (Lasiopodomys brandtii) for their physiological, behavioral, and neuronal responses to food deprivation (FD) and subsequent re-feeding. Although 48 hr FD induced a decrease in body weight and the resting metabolic rate (RMR), such decreases did not reach statistical significance when compared to the control males that did not experience FD. During the first 2 hr of re-feeding following 48 hr FD, voles showed higher levels of feeding than controls. However, when permitted to hoard food, FD voles showed an increase in food hoarding, rather than feeding, compared to the controls. Further, both feeding and food hoarding induced an increase in neuronal activation, measured by Fos-ir, in a large number of brain areas examined. Interestingly, feeding and food hoarding also induced an increase in the percentage of tyrosine hydroxylase immunoreactive (TH-ir) cells that co-expressed Fos-ir in the ventral tegmental area (VTA), whereas both FD and feeding induced an increase in the percentage of orexin-ir cells that co-expressed Fos-ir in the lateral hypothalamus (LH). Food hoarding also increased orexin-ir/Fos-ir labeling in the LH. Together, our data indicate that food-deprived male Brandt's voles display enhanced feeding or food hoarding dependent upon an environmental setting. In addition, changes in central dopamine and orexin activities in selected brain areas are associated with feeding and hoarding behaviors following FD and subsequent re-feeding.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Di Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|