1
|
Meena SN, Wajs-Bonikowska A, Girawale S, Imran M, Poduwal P, Kodam KM. High-Throughput Mining of Novel Compounds from Known Microbes: A Boost to Natural Product Screening. Molecules 2024; 29:3237. [PMID: 38999189 PMCID: PMC11243205 DOI: 10.3390/molecules29133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Advanced techniques can accelerate the pace of natural product discovery from microbes, which has been lagging behind the drug discovery era. Therefore, the present review article discusses the various interdisciplinary and cutting-edge techniques to present a concrete strategy that enables the high-throughput screening of novel natural compounds (NCs) from known microbes. Recent bioinformatics methods revealed that the microbial genome contains a huge untapped reservoir of silent biosynthetic gene clusters (BGC). This article describes several methods to identify the microbial strains with hidden mines of silent BGCs. Moreover, antiSMASH 5.0 is a free, accurate, and highly reliable bioinformatics tool discussed in detail to identify silent BGCs in the microbial genome. Further, the latest microbial culture technique, HiTES (high-throughput elicitor screening), has been detailed for the expression of silent BGCs using 500-1000 different growth conditions at a time. Following the expression of silent BGCs, the latest mass spectrometry methods are highlighted to identify the NCs. The recently emerged LAESI-IMS (laser ablation electrospray ionization-imaging mass spectrometry) technique, which enables the rapid identification of novel NCs directly from microtiter plates, is presented in detail. Finally, various trending 'dereplication' strategies are emphasized to increase the effectiveness of NC screening.
Collapse
Affiliation(s)
- Surya Nandan Meena
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Anna Wajs-Bonikowska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Łódz University of Technology, Stefanowskiego Street 2/22, 90-537 Łódz, Poland
| | - Savita Girawale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Md Imran
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Preethi Poduwal
- Department of Biotechnology, Dhempe College of Arts and Science, Miramar, Goa 403001, India;
| | - Kisan M. Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| |
Collapse
|
2
|
Nidhi S, Tripathi P, Tripathi V. Phylogenetic Analysis of Anti-CRISPR and Member Addition in the Families. Mol Biotechnol 2023; 65:273-281. [PMID: 36109427 DOI: 10.1007/s12033-022-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
CRISPR-Cas is a widespread anti-viral adaptive immune system in the microorganisms. Viruses living in bacteria or some phages carry anti-CRISPR proteins to evade immunity by CRISPR-Cas. The anti-CRISPR proteins are prevalent in phages capable of lying dormant in a CRISPR-carrying host, while their orthologs frequently found in virulent phages. Here, we propose a probabilistic strategy of ancestral sequence reconstruction (ASR) and Hidden Markov Model (HMM) profile search to fish out sequences of anti-CRISPR proteins from environmental metagenomic, human microbiome metagenomic, human microbiome reference genome, and NCBI's non-redundant databases. Our results revealed that the metagenome database dark matter might contain anti-CRISPR encoding genes.
Collapse
Affiliation(s)
- Sweta Nidhi
- Department of Genomics and Bioinformatics, Aix-Marseille University, 13007, Marseille, France
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India.
| |
Collapse
|
3
|
Ziko L, AbdelRaheem O, Nabil M, Aziz RK, Siam R. Bioprospecting the microbiome of Red Sea Atlantis II brine pool for peptidases and biosynthetic genes with promising antibacterial activity. Microb Cell Fact 2022; 21:109. [PMID: 35655185 PMCID: PMC9161539 DOI: 10.1186/s12934-022-01835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background The search for novel antimicrobial agents is crucial as antibiotic-resistant pathogens continue to emerge, rendering the available antibiotics no longer effective. Likewise, new anti-cancer drugs are needed to combat the emergence of multi-drug resistant tumors. Marine environments are wealthy sources for natural products. Additionally, extreme marine environments are interesting niches to search for bioactive natural compounds. In the current study, a fosmid library of metagenomic DNA isolated from Atlantis II Deep Lower Convective Layer (ATII LCL), was functionally screened for antibacterial activity as well as anticancer effects. Results Two clones exhibited antibacterial effects against the marine Bacillus Cc6 strain, namely clones 102-5A and 88-1G and they were further tested against eleven other challenging strains, including six safe relatives of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), a safe relative to Mycobacterium tuberculosis and four resistant clinical isolates. Clone 88-1G resulted in clear zones of inhibition against eight bacterial strains, while clone 102-5A resulted in zones of inhibition against five bacterial strains. The whole cell lysates of clone 88-1G showed 15% inhibition of Mtb ClpP protease -Mycobacterium tuberculosis drug target-, while whole cell lysates of clone 102-5A showed 19% inhibition of Mtb ClpP protease. Whole cell lysates from the selected clones exhibited anticancer effects against MCF-7 breast cancer cells (cell viability at 50% v/v was 46.2% ± 9.9 for 88-1G clone and 38% ± 7 for 102-5A clone), U2OS osteosarcoma cells (cell viability at 50% v/v was 64.6% ± 12.3 for 88-1G clone and 28.3% ± 1.7 for 102-5A clone) and 1BR hTERT human fibroblast cells (cell viability at 50% v/v was 74.4% ± 5.6 for 88-1G clone and 57.6% ± 8.9 for 102-5A clone). Sequencing of 102-5A and 88-1G clones, and further annotation detected putative proteases and putative biosynthetic genes in clones 102-5A and 88-1G, respectively. Conclusions The ATII LCL metagenome hosts putative peptidases and biosynthetic genes that confer antibiotic and anti-cancer effects. The tested clones exhibited promising antibacterial activities against safe relative strains to ESKAPE pathogens and Mycobacterium tuberculosis. Thus, searching the microbial dark matter of extreme environments is a promising approach to identify new molecules with pharmaceutical potential use. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01835-z.
Collapse
Affiliation(s)
- Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, 11865, New Administrative Capital, Egypt.,Department of Biology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Omnia AbdelRaheem
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Marina Nabil
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.,Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, 11617, Cairo, Egypt
| | - Rania Siam
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt. .,University of Medicine and Health Sciences, Basseterre, West Indies, Saint Kitts and Nevis.
| |
Collapse
|
4
|
Thiele-Bruhn S. The role of soils in provision of genetic, medicinal and biochemical resources. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200183. [PMID: 34365823 PMCID: PMC8349636 DOI: 10.1098/rstb.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Intact, 'healthy' soils provide indispensable ecosystem services that largely depend on the biotic activity. Soil health is connected with human health, yet, knowledge of the underlying soil functioning remains incomplete. This review highlights selected services, i.e. (i) soil as a genetic resource and hotspot of biodiversity, forming the basis for providing (ii) biochemical resources and (iii) medicinal services and goods. Soils harbour an unrivalled biodiversity of organisms, especially microorganisms. Some of the abilities of autochthonous microorganisms and their relevant enzymes serve (i) to improve natural soil functions and in particular plant growth, e.g. through beneficial plant growth-promoting, symbiotic and mycorrhizal microorganisms, (ii) to act as biopesticides, (iii) to facilitate biodegradation of pollutants for soil bioremediation and (iv) to yield enzymes or chemicals for industrial use. Soils also exert direct effects on human health. Contact with soil enriches the human microbiome, affords protection against allergies and promotes emotional well-being. Medicinally relevant are soil substrates such as loams, clays and various minerals with curative effects as well as pharmaceutically active organic chemicals like antibiotics that are formed by soil microorganisms. By contrast, irritating minerals, soil dust inhalation and misguided soil ingestion may adversely affect humans. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People.
Collapse
Affiliation(s)
- Sören Thiele-Bruhn
- Soil Science, University of Trier, Behringstrasse 21, D-54286 Trier, Germany
| |
Collapse
|
5
|
Nan F, Jiang J, Wu S, Zhang Y, Qiu J, Qiao B, Li S, Xin Z. A Novel VIII Carboxylesterase with High Hydrolytic Activity Against Ampicillin from a Soil Metagenomic Library. Mol Biotechnol 2019; 61:892-904. [PMID: 31664703 DOI: 10.1007/s12033-019-00220-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A novel carboxylesterase gene, named dlfae4, was discovered and sequenced from a soil metagenomic library. The dlfae4 gene was composed of 1017 base pairs encoding 338 amino acid residues with a predicted molecular mass of 37.2 kDa. DLFae4 exhibited strong hydrolytic activity towards methyl ferulate under optimum pH and temperature conditions (pH 8.6, 50 °C) and displayed remarkable thermostability, with residual activity as high as 50% after incubation for 3 h at 60 °C. A family VIII esterase DLFae4 was found to contain a typical serine residue within the S-X-X-K motif, which serves as a catalytic nucleophile in class C β-lactamases and family VIII esterases. As a consequence of its high sequence similarity with β-lactamases, DLFae4 exhibited significant hydrolytic activity towards ampicillin. In addition, DLFae4 was found to be the first known member of family VIII carboxylesterases with phthalate-degrading ability. Site-directed mutagenesis studies revealed that Ser11, Lys14, and Tyr121 residues play an essential catalytic role in DLFae4. These new findings, which are of great importance for further in-depth research and engineering development of carboxylesterases, should advance the implementation of biotechnological applications.
Collapse
Affiliation(s)
- Fang Nan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junwei Jiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shenglu Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yueqi Zhang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiarong Qiu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Beibei Qiao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shan Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
6
|
Identification of a Novel Feruloyl Esterase by Functional Screening of a Soil Metagenomic Library. Appl Biochem Biotechnol 2018; 187:424-437. [DOI: 10.1007/s12010-018-2832-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/27/2018] [Indexed: 01/10/2023]
|
7
|
Keshri V, Panda A, Levasseur A, Rolain JM, Pontarotti P, Raoult D. Phylogenomic Analysis of β-Lactamase in Archaea and Bacteria Enables the Identification of Putative New Members. Genome Biol Evol 2018; 10:1106-1114. [PMID: 29672703 PMCID: PMC5905574 DOI: 10.1093/gbe/evy028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 01/09/2023] Open
Abstract
β-lactamases are enzymes which are commonly produced by bacteria and which degrade the β-lactam ring of β-lactam antibiotics, namely penicillins, cephalosporins, carbapenems, and monobactams, and inactivate these antibiotics. We performed a rational and comprehensive investigation of β-lactamases in different biological databases. In this study, we constructed hidden Markov model profiles as well as the ancestral sequence of four classes of β-lactamases (A, B, C, and D), which were used to identify potential β-lactamases from environmental metagenomic (1206), human microbiome metagenomic (6417), human microbiome reference genome (1310), and NCBI's nonredundant databases (44101). Our analysis revealed the existence of putative β-lactamases in the metagenomic databases, which appeared to be similar to the four different molecular classes (A-D). This is the first report on the large-scale phylogenetic diversity of new members of β-lactamases, and our results revealed that metagenomic database dark-matter contains β-lactamase-like antibiotic resistance genes.
Collapse
Affiliation(s)
- Vivek Keshri
- Evolution Biologique et Modélisation, I2M, UMR-CNRS 7373, Aix-Marseille Université, France
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, France
| | - Arup Panda
- Evolution Biologique et Modélisation, I2M, UMR-CNRS 7373, Aix-Marseille Université, France
| | - Anthony Levasseur
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, France
| | - Pierre Pontarotti
- Evolution Biologique et Modélisation, I2M, UMR-CNRS 7373, Aix-Marseille Université, France
- CNRS, IRD, APHM, MEPHI, IHU Méditerranée Infection (Evolutionary Biology Team), Aix-Marseille Université, France
| | - Didier Raoult
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, France
| |
Collapse
|
8
|
Cohen LJ, Han S, Huang YH, Brady SF. Identification of the Colicin V Bacteriocin Gene Cluster by Functional Screening of a Human Microbiome Metagenomic Library. ACS Infect Dis 2018; 4:27-32. [PMID: 28810737 DOI: 10.1021/acsinfecdis.7b00081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The forces that shape human microbial ecology are complex. It is likely that human microbiota, similarly to other microbiomes, use antibiotics as one way to establish an ecological niche. In this study, we use functional metagenomics to identify human microbial gene clusters that encode for antibiotic functions. Screening of a metagenomic library prepared from a healthy patient stool sample led to the identification of a family of clones with inserts that are 99% identical to a region of a virulence plasmid found in avian pathogenic Escherichia coli. Characterization of the metagenomic DNA sequence identified a colicin V biosynthetic cluster as being responsible for the observed antibiotic effect of the metagenomic clone against E. coli. This study presents a scalable method to recover antibiotic gene clusters from humans using functional metagenomics and highlights a strategy to study bacteriocins in the human microbiome which can provide a resource for therapeutic discovery.
Collapse
Affiliation(s)
- Louis J. Cohen
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1069, New York, New York 10029, United States
| | - Sun Han
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1069, New York, New York 10029, United States
| | - Yun-Han Huang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
9
|
Bacterial natural product biosynthetic domain composition in soil correlates with changes in latitude on a continent-wide scale. Proc Natl Acad Sci U S A 2017; 114:11615-11620. [PMID: 29078342 DOI: 10.1073/pnas.1710262114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although bacterial bioactive metabolites have been one of the most prolific sources of lead structures for the development of small-molecule therapeutics, very little is known about the environmental factors associated with changes in secondary metabolism across natural environments. Large-scale sequencing of environmental microbiomes has the potential to shed light on the richness of bacterial biosynthetic diversity hidden in the environment, how it varies from one environment to the next, and what environmental factors correlate with changes in biosynthetic diversity. In this study, the sequencing of PCR amplicons generated using primers targeting either ketosynthase domains from polyketide biosynthesis or adenylation domains from nonribosomal peptide biosynthesis was used to assess biosynthetic domain composition and richness in soils collected across the Australian continent. Using environmental variables collected at each soil site, we looked for environmental factors that correlated with either high overall domain richness or changes in the domain composition. Among the environmental variables we measured, changes in biosynthetic domain composition correlate most closely with changes in latitude and to a lesser extent changes in pH. Although it is unclear at this time the exact mix of factors that may drive the relationship between biosynthetic domain composition and latitude, from a practical perspective the identification of a latitudinal basis for differences in soil metagenome biosynthetic domain compositions should help guide future natural product discovery efforts.
Collapse
|
10
|
Kinfu BM, Jahnke M, Janus M, Besirlioglu V, Roggenbuck M, Meurer R, Vojcic L, Borchert M, Schwaneberg U, Chow J, Streit WR. Recombinant RNA Polymerase from Geobacillus
sp. GHH01 as tool for rapid generation of metagenomic RNAs using in vitro technologies. Biotechnol Bioeng 2017; 114:2739-2752. [DOI: 10.1002/bit.26436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Birhanu M. Kinfu
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| | - Maike Jahnke
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| | - Mareike Janus
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| | | | | | | | | | | | | | - Jennifer Chow
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| | - Wolfgang R. Streit
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| |
Collapse
|
11
|
Cheng J, Romantsov T, Engel K, Doxey AC, Rose DR, Neufeld JD, Charles TC. Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences. PLoS One 2017; 12:e0172545. [PMID: 28273103 PMCID: PMC5342196 DOI: 10.1371/journal.pone.0172545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
The techniques of metagenomics have allowed researchers to access the genomic potential of uncultivated microbes, but there remain significant barriers to determination of gene function based on DNA sequence alone. Functional metagenomics, in which DNA is cloned and expressed in surrogate hosts, can overcome these barriers, and make important contributions to the discovery of novel enzymes. In this study, a soil metagenomic library carried in an IncP cosmid was used for functional complementation for β-galactosidase activity in both Sinorhizobium meliloti (α-Proteobacteria) and Escherichia coli (γ-Proteobacteria) backgrounds. One β-galactosidase, encoded by six overlapping clones that were selected in both hosts, was identified as a member of glycoside hydrolase family 2. We could not identify ORFs obviously encoding possible β-galactosidases in 19 other sequenced clones that were only able to complement S. meliloti. Based on low sequence identity to other known glycoside hydrolases, yet not β-galactosidases, three of these ORFs were examined further. Biochemical analysis confirmed that all three encoded β-galactosidase activity. Lac36W_ORF11 and Lac161_ORF7 had conserved domains, but lacked similarities to known glycoside hydrolases. Lac161_ORF10 had neither conserved domains nor similarity to known glycoside hydrolases. Bioinformatic and structural modeling implied that Lac161_ORF10 protein represented a novel enzyme family with a five-bladed propeller glycoside hydrolase domain. By discovering founding members of three novel β-galactosidase families, we have reinforced the value of functional metagenomics for isolating novel genes that could not have been predicted from DNA sequence analysis alone.
Collapse
Affiliation(s)
- Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Katja Engel
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - David R. Rose
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Josh D. Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- * E-mail:
| |
Collapse
|
12
|
Iqbal HA, Low-Beinart L, Obiajulu JU, Brady SF. Natural Product Discovery through Improved Functional Metagenomics in Streptomyces. J Am Chem Soc 2016; 138:9341-4. [PMID: 27447056 PMCID: PMC5469685 DOI: 10.1021/jacs.6b02921] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because the majority of environmental bacteria are not easily culturable, access to many bacterially encoded secondary metabolites will be dependent on the development of improved functional metagenomic screening methods. In this study, we examined a collection of diverse Streptomyces species for the best innate ability to heterologously express biosynthetic gene clusters. We then optimized methods for constructing high quality metagenomic cosmid libraries in the best Streptomyces host. An initial screen of a 1.5 million-membered metagenomic library constructed in Streptomyces albus, the species that exhibited the highest propensity for heterologous expression of gene clusters, led to the identification of the novel natural product metatricycloene (1). Metatricycloene is a tricyclic polyene encoded by a reductive, iterative polyketide-like gene cluster. Related gene clusters found in sequenced genomes appear to encode a largely unexplored collection of structurally diverse, polyene-based metabolites.
Collapse
Affiliation(s)
- Hala A. Iqbal
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Lila Low-Beinart
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Joseph U. Obiajulu
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
13
|
Jeffries JWE, Dawson N, Orengo C, Moody TS, Quinn DJ, Hailes HC, Ward JM. Metagenome Mining: A Sequence Directed Strategy for the Retrieval of Enzymes for Biocatalysis. ChemistrySelect 2016. [DOI: 10.1002/slct.201600515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jack W. E. Jeffries
- Department of Biochemical Engineering; University College London, Bernard Katz Building; Gordon Street London WC1H 0AH UK
| | - Natalie Dawson
- Department of Structural and Molecular Biology; University College London; Gower Street WC1E 6BT UK
| | - Christine Orengo
- Department of Structural and Molecular Biology; University College London; Gower Street WC1E 6BT UK
| | - Thomas S. Moody
- Department of Biocatalysis and Isotope Chemistry; Almac; 20 Seagoe Industrial Estate Craigavon Northern Ireland (UK
| | - Derek J. Quinn
- Department of Biocatalysis and Isotope Chemistry; Almac; 20 Seagoe Industrial Estate Craigavon Northern Ireland (UK
| | - Helen C. Hailes
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - John M. Ward
- Department of Biochemical Engineering; University College London, Bernard Katz Building; Gordon Street London WC1H 0AH UK
| |
Collapse
|
14
|
Uria AR, Zilda DS. Metagenomics-Guided Mining of Commercially Useful Biocatalysts from Marine Microorganisms. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 78:1-26. [PMID: 27452163 DOI: 10.1016/bs.afnr.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Marine microorganisms are a rich reservoir of highly diverse and unique biocatalysts that offer potential applications in food, pharmaceutical, fuel, and cosmetic industries. The fact that only less than 1% of microbes in any marine habitats can be cultured under standard laboratory conditions has hampered access to their extraordinary biocatalytic potential. Metagenomics has recently emerged as a powerful and well-established tool to investigate the vast majority of hidden uncultured microbial diversity for the discovery of novel industrially relevant enzymes from different types of environmental samples, such as seawater, marine sediment, and symbiotic microbial consortia. We discuss here in this review about approaches and methods in metagenomics that have been used and can potentially be used to mine commercially useful biocatalysts from uncultured marine microbes.
Collapse
Affiliation(s)
- A R Uria
- Research and Development Center for Marine and Fisheries Product Processing and Biotechnology, Central Jakarta, Indonesia.
| | - D S Zilda
- Research and Development Center for Marine and Fisheries Product Processing and Biotechnology, Central Jakarta, Indonesia
| |
Collapse
|
15
|
Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 2016; 6:27035. [PMID: 27271534 PMCID: PMC4897644 DOI: 10.1038/srep27035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 12/02/2022] Open
Abstract
DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library.
Collapse
|
16
|
Mootapally CS, Nathani NM, Patel AK, Jakhesara SJ, Joshi CG. Mining of Ruminant Microbial Phytase (RPHY1) from Metagenomic Data of Mehsani Buffalo Breed: Identification, Gene Cloning, and Characterization. J Mol Microbiol Biotechnol 2016; 26:252-60. [DOI: 10.1159/000445321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
Phytases have been widely used as animal feed supplements to increase the availability of digestible phosphorus, especially in monogastric animals fed cereal grains. The present study describes the identification of a full-length phytase gene of <i>Prevotella</i> species present in Mehsani buffalo rumen. The gene, designated as RPHY1, consists of 1,251 bp and is expressed into protein with 417 amino acids. A homology search of the deduced amino acid sequence of the RPHY1 phytase gene in a nonredundant protein database showed that it shares 92% similarity with the histidine acid phosphatase domain. Subsequently, the RPHY1 gene was expressed using a pET32a expression vector in <i>Escherichia coli </i>BL21 and purified using a His60 Ni-NTA gravity column. The mass of the purified RPHY1 was estimated to be approximately 63 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal RPHY1 enzyme activity was observed at 55°C (pH 5) and exhibited good stability at 5°C and within the acidic pH range. Significant inhibition of RPHY1 activity was observed for Mg<sup>2+</sup> and K<sup>+</sup> metal ions, while Ca<sup>2+</sup>, Mn<sup>2+</sup>, and Na<sup>+</sup> slightly inhibited enzyme activity. The RPHY1 phytase was susceptible to SDS, and it was highly stimulated in the presence of EDTA. Overall, the observed comparatively high enzyme activity levels and characteristics of the RPHY1 gene mined from rumen prove its promising candidature as a feed supplement enzyme in animal farming.
Collapse
|
17
|
Nakamura K, Iizuka R, Nishi S, Yoshida T, Hatada Y, Takaki Y, Iguchi A, Yoon DH, Sekiguchi T, Shoji S, Funatsu T. Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform. Sci Rep 2016; 6:22259. [PMID: 26915788 PMCID: PMC4768102 DOI: 10.1038/srep22259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022] Open
Abstract
Environmental microbes are a great source of industrially valuable enzymes with potent and unique catalytic activities. Unfortunately, the majority of microbes remain unculturable and thus are not accessible by culture-based methods. Recently, culture-independent metagenomic approaches have been successfully applied, opening access to untapped genetic resources. Here we present a methodological approach for the identification of genes that encode metabolically active enzymes in environmental microbes in a culture-independent manner. Our method is based on activity-based single-cell sequencing, which focuses on microbial cells showing specific enzymatic activities. First, at the single-cell level, environmental microbes were encapsulated in water-in-oil microdroplets with a fluorogenic substrate for the target enzyme to screen for microdroplets that contain microbially active cells. Second, the microbial cells were recovered and subjected to whole genome amplification. Finally, the amplified genomes were sequenced to identify the genes encoding target enzymes. Employing this method, we successfully identified 14 novel β-glucosidase genes from uncultured bacterial cells in marine samples. Our method contributes to the screening and identification of genes encoding industrially valuable enzymes.
Collapse
Affiliation(s)
- Kazuki Nakamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Iizuka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinro Nishi
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Takao Yoshida
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Yuji Hatada
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Yoshihiro Takaki
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Ayaka Iguchi
- Department of NanoscieWnce and Nanoengineering (ASE Graduate School), Waseda University, 3-4-1 Okubo, Shinju-ku, Tokyo 169-8555, Japan
| | - Dong Hyun Yoon
- Department of NanoscieWnce and Nanoengineering (ASE Graduate School), Waseda University, 3-4-1 Okubo, Shinju-ku, Tokyo 169-8555, Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano &Life Innovation, Waseda University, 513, Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Shuichi Shoji
- Department of NanoscieWnce and Nanoengineering (ASE Graduate School), Waseda University, 3-4-1 Okubo, Shinju-ku, Tokyo 169-8555, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
O'Mahony MM, Henneberger R, Selvin J, Kennedy J, Doohan F, Marchesi JR, Dobson ADW. Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome. Bioengineered 2016; 6:89-98. [PMID: 25692994 PMCID: PMC4601227 DOI: 10.1080/21655979.2015.1018493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B. subtilis DSM10. Further analysis of the deduced amino acid sequence of AbgT revealed moderate homology to esterases, suggesting that the protein may possess hydrolytic activity. Weak lipolytic activity was detected; however the clone did not appear to produce any β-lactamase activity. Phylogenetic analysis revealed the protein is a member of the family VIII group of lipase/esterases and clusters with a number of proteins of metagenomic origin. The abgT gene was sub-cloned into a protein expression vector and when introduced into the abgT transposon mutant clones restored the ability of the clones to inhibit the growth of B. subtilis DSM10, clearly indicating that the abgT gene is involved in the antibacterial activity. While the precise role of this protein has yet to fully elucidated, it may be involved in the generation of free fatty acid with antibacterial properties. Thus functional metagenomic approaches continue to provide a significant resource for the discovery of novel functional proteins and it is clear that hydrolytic enzymes, such as AbgT, may be a potential source for the development of future antimicrobial therapies.
Collapse
Affiliation(s)
- Mark M O'Mahony
- a School of Microbiology and Marine Biotechnology Center; Environmental Research Institute; University College Cork ; Cork , Ireland
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhou J, Lyu Y, Richlen M, Anderson DM, Cai Z. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. CRITICAL REVIEWS IN PLANT SCIENCES 2016; 35:81-105. [PMID: 28966438 PMCID: PMC5619252 DOI: 10.1080/07352689.2016.1172461] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.
Collapse
Affiliation(s)
- Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yihua Lyu
- South China Sea Environment Monitoring Center, State Oceanic Administration, Guangzhou, 510300, P. R. China
| | - Mindy Richlen
- Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., MS 32, Woods Hole, Massachusetts, 02543, USA
| | - Donald M. Anderson
- Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., MS 32, Woods Hole, Massachusetts, 02543, USA
| | - Zhonghua Cai
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
20
|
Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnol Adv 2015; 33:1755-73. [DOI: 10.1016/j.biotechadv.2015.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/19/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022]
|
21
|
Culture-independent discovery of natural products from soil metagenomes. J Ind Microbiol Biotechnol 2015; 43:129-41. [PMID: 26586404 DOI: 10.1007/s10295-015-1706-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022]
Abstract
Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.
Collapse
|
22
|
Giessen TW, Marahiel MA. Rational and combinatorial tailoring of bioactive cyclic dipeptides. Front Microbiol 2015; 6:785. [PMID: 26284060 PMCID: PMC4519757 DOI: 10.3389/fmicb.2015.00785] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023] Open
Abstract
Modified cyclic dipeptides represent a diverse family of microbial secondary metabolites. They display a broad variety of biological and pharmacological activities and have long been recognized as privileged structures with the ability to bind to a wide range of receptors. This is due to their conformationally constrained 2, 5-diketopiperazine (DKP) scaffold and the diverse set of DKP tailoring enzymes present in nature. After initial DKP assembly through different biosynthetic systems modifying enzymes are responsible for installing functional groups crucial for the biological activities of the resulting modified DKPs. They represent a vast and largely untapped enzyme repository very useful for synthetic biology approaches aiming at introducing structural variations into DKP scaffolds. In this review we focus on these DKP modification enzymes found in various microbial secondary metabolite gene clusters. We will give a brief overview of their distribution and highlight a select number of characterized DKP tailoring enzymes before turning to their application potential in combinatorial biosynthesis with the aim of producing molecules with improved or entirely new biological and medicinally relevant properties.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Systems Biology, Harvard Medical School, Boston MA, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston MA, USA
| | - Mohamed A Marahiel
- Department of Chemistry, Philipps-University Marburg Marburg, Germany ; LOEWE Center for Synthetic Microbiology, Philipps-University Marburg Marburg, Germany
| |
Collapse
|
23
|
Reen FJ, Gutiérrez-Barranquero JA, Dobson ADW, Adams C, O’Gara F. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Mar Drugs 2015; 13:2924-54. [PMID: 25984990 PMCID: PMC4446613 DOI: 10.3390/md13052924] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions.
Collapse
Affiliation(s)
- F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - José A. Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mail:
| | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Fergal O’Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
- School of Biomedical Sciences, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
24
|
Lee DH, Choi SL, Rha E, Kim SJ, Yeom SJ, Moon JH, Lee SG. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnol 2015; 15:1. [PMID: 25636680 PMCID: PMC4335783 DOI: 10.1186/s12896-015-0115-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alkaline phosphatase (AP) catalyzes the hydrolytic cleavage of phosphate monoesters under alkaline conditions and plays important roles in microbial ecology and molecular biology applications. Here, we report on the first isolation and biochemical characterization of a thermolabile AP from a metagenome. RESULTS The gene encoding a novel AP was isolated from a metagenomic library constructed with ocean-tidal flat sediments from the west coast of Korea. The metagenome-derived AP (mAP) gene composed of 1,824 nucleotides encodes a polypeptide with a calculated molecular mass of 64 kDa. The deduced amino acid sequence of mAP showed a high degree of similarity to other members of the AP family. Phylogenetic analysis revealed that the mAP is shown to be a member of a recently identified family of PhoX that is distinct from the well-studied classical PhoA family. When the open reading frame encoding mAP was cloned and expressed in recombinant Escherichia coli, the mature mAP was secreted to the periplasm and lacks an 81-amino-acid N-terminal Tat signal peptide. Mature mAP was purified to homogeneity as a monomeric enzyme with a molecular mass of 56 kDa. The purified mAP displayed typical features of a psychrophilic enzyme: high catalytic activity at low temperature and a remarkable thermal instability. The optimal temperature for the enzymatic activity of mAP was 37°C and complete thermal inactivation of the enzyme was observed at 65°C within 15 min. mAP was activated by Ca(2+) and exhibited maximal activity at pH 9.0. Except for phytic acid and glucose 1-phosphate, mAP showed phosphatase activity against various phosphorylated substrates indicating that it had low substrate specificity. In addition, the mAP was able to remove terminal phosphates from cohesive and blunt ends of linearized plasmid DNA, exhibiting comparable efficiency to commercially available APs that have been used in molecular biology. CONCLUSIONS The presented mAP enzyme is the first thermolabile AP found in cold-adapted marine metagenomes and may be useful for efficient dephosphorylation of linearized DNA.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea. .,Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Su-Lim Choi
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea. .,Present address: Su-Lim Choi, Amicogen, Inc., Jinju, Korea.
| | - Eugene Rha
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Soo Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Jae-Hee Moon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea. .,Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
25
|
Isolation of oxygenase genes for indigo-forming activity from an artificially polluted soil metagenome by functional screening using Pseudomonas putida strains as hosts. Appl Microbiol Biotechnol 2015; 99:4453-70. [DOI: 10.1007/s00253-014-6322-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
26
|
Okano H, Hong X, Kanaya E, Angkawidjaja C, Kanaya S. Structural and biochemical characterization of a metagenome-derived esterase with a long N-terminal extension. Protein Sci 2014; 24:93-104. [PMID: 25348365 DOI: 10.1002/pro.2591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 11/08/2022]
Abstract
The genes encoding six novel esterolytic/lipolytic enzymes, termed LC-Est1∼6, were isolated from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. These enzymes greatly vary in size and amino acid sequence. The highest identity between the amino acid sequence of each enzyme and that available from the database varies from 44 to 73%. Of these metagenome-derived enzymes, LC-Est1 is characterized by the presence of a long N-terminal extension (LNTE, residues 26-283) between a putative signal peptide (residues 1-25) and a C-terminal esterase domain (residues 284-510). A putative esterase from Candidatus Solibacter usitatus (CSu-Est) is the only protein, which shows the significant amino acid sequence identity (46%) to the entire region of LC-Est1. To examine whether LC-Est1 exhibits activity and its LNTE is important for activity and stability of the esterase domain, LC-Est1 (residues 26-510), LC-Est1C (residues 284-510), and LC-Est1C* (residues 304-510) were overproduced in E. coli, purified, and characterized. LC-Est1C* was only used for structural analysis. The crystal structure of LC-Est1C* highly resembles that of the catalytic domain of Thermotoga maritima esterase, suggesting that LNTE is not required for folding of the esterase domain. The enzymatic activity of LC-Est1C was lower than that of LC-Est1 by 60%, although its substrate specificity was similar to that of LC-Est1. LC-Est1C was less stable than LC-Est1 by 3.3°C. These results suggest that LNTE of LC-Est1 rather exists as an independent domain but is required for maximal activity and stability of the esterase domain.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 565-0871, Japan
| | | | | | | | | |
Collapse
|
27
|
Okano H, Ozaki M, Kanaya E, Kim JJ, Angkawidjaja C, Koga Y, Kanaya S. Structure and stability of metagenome-derived glycoside hydrolase family 12 cellulase (LC-CelA) a homolog of Cel12A from Rhodothermus marinus. FEBS Open Bio 2014; 4:936-46. [PMID: 25426413 PMCID: PMC4239480 DOI: 10.1016/j.fob.2014.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
Abstract
Ten novel cellulases, LC-CelA–J, were isolated from leaf–branch compost by a metagenomic approach. LC-CelA was characterized. The structure, activity, and stability of LC-CelA were similar to those of Cel12A from Rhodothermus marinus. Glu34-mediated hydrogen bonds and two disulfide bonds contribute to the stabilization of LC-CelA.
Ten genes encoding novel cellulases with putative signal peptides at the N-terminus, termed pre-LC-CelA–J, were isolated from a fosmid library of a leaf–branch compost metagenome by functional screening using agar plates containing carboxymethyl cellulose and trypan blue. All the cellulases except pre-LC-CelG have a 14–29 residue long flexible linker (FL) between the signal peptide and the catalytic domain. LC-CelA without a signal peptide (residues 20–261), which shows 76% amino acid sequence identity to Cel12A from Rhodothermus marinus (RmCel12A), was overproduced in Escherichiacoli, purified and characterized. LC-CelA exhibited its highest activity across a broad pH range (pH 5–9) and at 90 °C, indicating that LC-CelA is a highly thermostable cellulase, like RmCel12A. The crystal structure of LC-CelA was determined at 1.85 Å resolution and is nearly identical to that of RmCel12A determined in a form without the FL. Both proteins contain two disulfide bonds. LC-CelA has a 16-residue FL (residues 20–35), most of which is not visible in the electron density map, probably due to structural disorder. However, Glu34 and Pro35 form hydrogen bonds with the central region of the protein. ΔFL-LC-CelA (residues 36–261) and E34A-LC-CelA with a single Glu34 → Ala mutation were therefore constructed and characterized. ΔFL-LC-CelA and E34A-LC-CelA had lower melting temperatures (Tm) than LC-CelA by 14.7 and 12.0 °C respectively. The Tm of LC-CelA was also decreased by 28.0 °C in the presence of dithiothreitol. These results suggest that Glu34-mediated hydrogen bonds and the two disulfide bonds contribute to the stabilization of LC-CelA.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Ozaki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiko Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Joong-Jae Kim
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Clement Angkawidjaja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan ; International College, Osaka University, 1-30 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Yin X, Ma L, Pei X, Du P, Li C, Xie T, Yu L, Yu L, Wang Q. Creation of Functionally Diverse Chimerical α-Glucosidase Enzymes by Swapping Homologous Gene Fragments Retrieved from Soil DNA. Indian J Microbiol 2014. [DOI: 10.1007/s12088-014-0493-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Mori T, Kamei I, Hirai H, Kondo R. Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. SPRINGERPLUS 2014; 3:365. [PMID: 25077068 PMCID: PMC4112031 DOI: 10.1186/2193-1801-3-365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/08/2014] [Indexed: 11/11/2022]
Abstract
To obtain cellulases that are capable of degrading crystalline cellulose and cedar wood, metagenomic libraries were constructed from raw soil sample which was covered to pile of cedar wood sawdust or from its enrichment cultures. The efficiency of screening of metagenomic library was improved more than 3 times by repeating enrichment cultivation using crystalline cellulose as a carbon source, compared with the library constructed from raw soil. Four cellulase genes were obtained from the metagenomic libraries that were constructed from the total genome extracted from an enrichment culture that used crystalline cellulose as a carbon source. A cellulase gene and a xylanase gene were obtained from the enrichment culture that used unbleached kraft pulp as a carbon source. The culture supernatants of Escherichia coli expressing three clones that were derived from the enrichment culture that used crystalline cellulose showed activity against crystalline cellulose. In addition, these three enzyme solutions generated a reducing sugar from cedar wood powder. From these results, the construction of a metagenomic library from cultures that were repetition enriched using crystalline cellulose demonstrated that this technique is a powerful tool for obtaining cellulases that have activity toward crystalline cellulose.
Collapse
Affiliation(s)
- Toshio Mori
- />Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Ichiro Kamei
- />Department of Forest and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192 Japan
| | - Hirofumi Hirai
- />Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Ryuichiro Kondo
- />Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| |
Collapse
|
30
|
Iqbal HA, Craig JW, Brady SF. Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans. FEMS Microbiol Lett 2014; 354:19-26. [PMID: 24661178 DOI: 10.1111/1574-6968.12431] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/24/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Phenotype-based screening of bacterial metagenomic libraries provides an avenue for the discovery of novel genes, enzymes, and metabolites that have a variety of potential clinical and industrial uses. Here, we report the identification of a functionally diverse collection of antibacterially active enzymes from the phenotypic screening of 700 000 cosmid clones prepared from Arizona soil DNA and hosted in Ralstonia metallidurans. Environmental DNA clones surrounded by zones of growth inhibition in a bacterial overlay assay were found, through bioinformatics and functional analyses, to encode enzymes with predicted peptidase, lipase, and glycolytic activities conferring antibiosis. The antibacterial activities observed in our R. metallidurans-based assay could not be replicated with the same clones in screens using Escherichia coli as a heterologous host, suggesting that the large-scale screening of metagenomic libraries for antibiosis using phylogenetically diverse hosts should be a productive strategy for identifying enzymes with functionally diverse antibacterial activities.
Collapse
Affiliation(s)
- Hala A Iqbal
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
31
|
Wang SD, Guo GS, Li L, Cao LC, Tong L, Ren GH, Liu YH. Identification and characterization of an unusual glycosyltransferase-like enzyme with β-galactosidase activity from a soil metagenomic library. Enzyme Microb Technol 2014; 57:26-35. [DOI: 10.1016/j.enzmictec.2014.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/25/2022]
|
32
|
Gomes ES, Schuch V, de Macedo Lemos EG. Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz J Microbiol 2014; 44:1007-34. [PMID: 24688489 PMCID: PMC3958165 DOI: 10.1590/s1517-83822013000400002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
The discovery of secondary metabolites produced by microorganisms (e.g., penicillin in 1928) and the beginning of their industrial application (1940) opened new doors to what has been the main medication source for the treatment of infectious diseases and tumors. In fact, approximately 80 years after the discovery of the first antibiotic compound, and despite all of the warnings about the failure of the “goose that laid the golden egg,” the potential of this wealth is still inexorable: simply adjust the focus from “micro” to “nano”, that means changing the look from microorganisms to nanograms of DNA. Then, the search for new drugs, driven by genetic engineering combined with metagenomic strategies, shows us a way to bypass the barriers imposed by methodologies limited to isolation and culturing. However, we are far from solving the problem of supplying new molecules that are effective against the plasticity of multi- or pan-drug-resistant pathogens. Although the first advances in genetic engineering date back to 1990, there is still a lack of high-throughput methods to speed up the screening of new genes and design new molecules by recombination of pathways. In addition, it is necessary an increase in the variety of heterologous hosts and improvements throughout the full drug discovery pipeline. Among numerous studies focused on this subject, those on polyketide antibiotics stand out for the large technical-scientific efforts that established novel solutions for the transfer/engineering of major metabolic pathways using transposons and other episomes, overcoming one of the main methodological constraints for the heterologous expression of major pathways. In silico prediction analysis of three-dimensional enzymatic structures and advances in sequencing technologies have expanded access to the metabolic potential of microorganisms.
Collapse
Affiliation(s)
- Elisângela Soares Gomes
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de Jaboticabal, Jaboticabal, SP, Brazil
| | - Viviane Schuch
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de Jaboticabal, Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de Jaboticabal, Jaboticabal, SP, Brazil
| |
Collapse
|
33
|
Bachmann BO, Van Lanen SG, Baltz RH. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 2013; 41:175-84. [PMID: 24342967 DOI: 10.1007/s10295-013-1389-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 01/01/2023]
Abstract
Microbial genome mining is a rapidly developing approach to discover new and novel secondary metabolites for drug discovery. Many advances have been made in the past decade to facilitate genome mining, and these are reviewed in this Special Issue of the Journal of Industrial Microbiology and Biotechnology. In this Introductory Review, we discuss the concept of genome mining and why it is important for the revitalization of natural product discovery; what microbes show the most promise for focused genome mining; how microbial genomes can be mined; how genome mining can be leveraged with other technologies; how progress on genome mining can be accelerated; and who should fund future progress in this promising field. We direct interested readers to more focused reviews on the individual topics in this Special Issue for more detailed summaries on the current state-of-the-art.
Collapse
Affiliation(s)
- Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7300 Stevenson Center, Nashville, TN, 37225, USA,
| | | | | |
Collapse
|
34
|
Isolation and characterization of a novel organic solvent-tolerant and halotolerant esterase from a soil metagenomic library. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Lee MH, Lee SW. Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genomics Inform 2013; 11:114-20. [PMID: 24124406 PMCID: PMC3794083 DOI: 10.5808/gi.2013.11.3.114] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/14/2013] [Accepted: 08/20/2013] [Indexed: 11/22/2022] Open
Abstract
The microbial diversity in soil ecosystems is higher than in any other microbial ecosystem. The majority of soil microorganisms has not been characterized, because the dominant members have not been readily culturable on standard cultivation media; therefore, the soil ecosystem is a great reservoir for the discovery of novel microbial enzymes and bioactivities. The soil metagenome, the collective microbial genome, could be cloned and sequenced directly from soils to search for novel microbial resources. This review summarizes the microbial diversity in soils and the efforts to search for microbial resources from the soil metagenome, with more emphasis on the potential of bioprospecting metagenomics and recent discoveries.
Collapse
Affiliation(s)
- Myung Hwan Lee
- Department of Applied Biology, Dong-A University, Busan 604-714, Korea
| | | |
Collapse
|
36
|
Kang HS, Brady SF. Arimetamycin A: Improving Clinically Relevant Families of Natural Products through Sequence-Guided Screening of Soil Metagenomes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Kang HS, Brady SF. Arimetamycin A: improving clinically relevant families of natural products through sequence-guided screening of soil metagenomes. Angew Chem Int Ed Engl 2013; 52:11063-7. [PMID: 24038656 DOI: 10.1002/anie.201305109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Sequence-tag-guided screening of soil environmental DNA libraries can be used to guide the discovery of new compounds with improved properties. In heterologous expression experiments the eDNA-derived arm cluster encodes arimetamycin A, an anthracycline that is more potent than clinically used natural anthracyclines and retains activity against multidrug-resistant (MDR) cancer cells.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA) http://lab.rockefeller.edu/brady/
| | | |
Collapse
|
38
|
Scanlon TC, Dostal SM, Griswold KE. A high-throughput screen for antibiotic drug discovery. Biotechnol Bioeng 2013; 111:232-43. [PMID: 23955804 DOI: 10.1002/bit.25019] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 11/10/2022]
Abstract
We describe an ultra-high-throughput screening platform enabling discovery and/or engineering of natural product antibiotics. The methodology involves creation of hydrogel-in-oil emulsions in which recombinant microorganisms are co-emulsified with bacterial pathogens; antibiotic activity is assayed by use of a fluorescent viability dye. We have successfully utilized both bulk emulsification and microfluidic technology for the generation of hydrogel microdroplets that are size-compatible with conventional flow cytometry. Hydrogel droplets are ∼25 pL in volume, and can be synthesized and sorted at rates exceeding 3,000 drops/s. Using this technique, we have achieved screening throughputs exceeding 5 million clones/day. Proof-of-concept experiments demonstrate efficient selection of antibiotic-secreting yeast from a vast excess of negative controls. In addition, we have successfully used this technique to screen a metagenomic library for secreted antibiotics that kill the human pathogen Staphylococcus aureus. Our results establish the practical utility of the screening platform, and we anticipate that the accessible nature of our methods will enable others seeking to identify and engineer the next generation of antibacterial biomolecules.
Collapse
Affiliation(s)
- Thomas C Scanlon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 03755
| | | | | |
Collapse
|
39
|
Discovery of a novel esterase subfamily sharing an identified arm sequence (ArmEst) by gene-specific metagenomic PCR. Biotechnol Lett 2013; 35:1937-44. [DOI: 10.1007/s10529-013-1293-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
|
40
|
Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl Environ Microbiol 2013; 79:4551-63. [PMID: 23686272 DOI: 10.1128/aem.01077-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional detection of novel enzymes other than hydrolases from metagenomes is limited since only a very few reliable screening procedures are available that allow the rapid screening of large clone libraries. For the discovery of flavonoid-modifying enzymes in genome and metagenome clone libraries, we have developed a new screening system based on high-performance thin-layer chromatography (HPTLC). This metagenome extract thin-layer chromatography analysis (META) allows the rapid detection of glycosyltransferase (GT) and also other flavonoid-modifying activities. The developed screening method is highly sensitive, and an amount of 4 ng of modified flavonoid molecules can be detected. This novel technology was validated against a control library of 1,920 fosmid clones generated from a single Bacillus cereus isolate and then used to analyze more than 38,000 clones derived from two different metagenomic preparations. Thereby we identified two novel UDP glycosyltransferase (UGT) genes. The metagenome-derived gtfC gene encoded a 52-kDa protein, and the deduced amino acid sequence was weakly similar to sequences of putative UGTs from Fibrisoma and Dyadobacter. GtfC mediated the transfer of different hexose moieties and exhibited high activities on flavones, flavonols, flavanones, and stilbenes and also accepted isoflavones and chalcones. From the control library we identified a novel macroside glycosyltransferase (MGT) with a calculated molecular mass of 46 kDa. The deduced amino acid sequence was highly similar to sequences of MGTs from Bacillus thuringiensis. Recombinant MgtB transferred the sugar residue from UDP-glucose effectively to flavones, flavonols, isoflavones, and flavanones. Moreover, MgtB exhibited high activity on larger flavonoid molecules such as tiliroside.
Collapse
|
41
|
Abstract
Antibiotic-producing microoganisms are a reservoir of drug resistance genes. Studies of the "antibiotic resistome" can inform antimicrobial drug discovery and explain the emergence of multidrug resistant pathogens. In this issue of Chemistry & Biology, Westman and colleagues take an alternative look at the resistome and identify genes that could be used to detoxify the anticancer compound, doxorubicin.
Collapse
|