1
|
Rahman A, Pronoy TUH, Soha K, Auwal A, Hossain MM, Rashel KM, Gofur MR, Rahman MH, Rabi S, Roy TG, Roy N, Khanam JA, Rakib MA, Islam F. In vitro and in vivo anticancer activity of nickel (II) tetraazamacrocyclic diperchlorate complex, [(Ni-Me 8[14]diene)(ClO 4) 2] against ehrlich ascites carcinoma (EAC) and MCF7 cells. Med Oncol 2025; 42:218. [PMID: 40407956 PMCID: PMC12102103 DOI: 10.1007/s12032-025-02762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
Cancer remains a global health burden, with a pressing need for more effective treatments. This study uses a novel compound, Nickel (II) diperchlorate complex of the ligand (L): 3,10-C-meso-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, Me8[14]diene, designated as [Ni(II)L](ClO4)2, to explore its potential as an anticancer agent. Its efficacy was evaluated against Ehrlich Ascites Carcinoma (EAC)-bearing Swiss albino mice by monitoring tumor cell growth inhibition, survival time, tumor mass reduction, and hematological profiles. Additionally, cytotoxicity was investigated in vitro using MCF7 breast cancer cells. The apoptotic potential was evaluated through Hoechst staining, with changes in apoptosis-related gene expression (p53, BCL2, BAX, PARP1, CASP3, CASP8, and CASP9) using RT-qPCR. The test compound's toxicity was evaluated by monitoring hematological, biochemical, and histological changes. The compound exhibited dose-dependent growth inhibition of EAC cells with 88.45% inhibition at a dose of 200 µg/kg (p < 0.01), extended lifespan by 52.63%, reduced tumor weight by 47.83%, and restored hematological parameters in EAC-bearing mice. Cytotoxicity assays yielded LC50 and IC50 values of 23.73 µg/mL and 71.52 µg/mL, respectively. Apoptosis induction was evidenced by cell membrane blebbing, apoptotic body formation, chromosomal condensation, and nuclear fragmentation in MCF7 cells. Significant upregulation of pro-apoptotic genes such as p53, BAX, PARP1, CASP3, CASP8, and CASP9, alongside downregulation of anti-apoptotic gene BCL2, implied activation of the apoptotic pathway in cancer cells, followed by compound treatment. Moreover, no long-term negative impacts on tissue levels or hematological or biochemical markers were noted in the mice. Altogether, [Ni(II)L](ClO4)2 demonstrates promising anticancer activity and could serve as a potential chemotherapeutic agent, pending further studies.
Collapse
Affiliation(s)
- Arifur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kazi Soha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - M Matakabbir Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - K M Rashel
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Royhan Gofur
- Department of Veterinary and Animal Sciences, Rajshahi University, Rajshahi, Bangladesh
| | - M Habibur Rahman
- Department of Chemistry, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Saswata Rabi
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Tapashi Ghosh Roy
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Nitai Roy
- Department of Biochemistry and Molecular Biology, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
2
|
Liu T, Xia F, Zheng Y, Xiao H, Yu Y, Shi J, Wang S, Shi X, He Z, Sun J, Sun B. Steric Hindrance-Engineered Redox-Responsive Disulfide-Bridged Homodimeric Prodrug Nanoassemblies for Spatiotemporally Balanced Cancer Chemotherapy. J Med Chem 2025. [PMID: 40402193 DOI: 10.1021/acs.jmedchem.5c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The rational design of tumor-responsive prodrug nanoassemblies requires precise control over systemic stability and site-specific activation. While α-position disulfide bonds are advantageous for rapid response to redox conditions, they also risk premature drug leakage during circulation. This study introduces a steric hindrance-guided approach to engineer disulfide-bridged podophyllotoxin homodimeric prodrugs for spatiotemporal controlled delivery. By monomethyl or dimethyl substitution of the carbon atoms adjacent to the α-disulfide bond, we can modulate steric hindrance. Excessive hindrance destabilizes the nanoassemblies and slows effective drug release, while moderate hindrance (monomethyl modification) enhances pharmacokinetic properties and promotes selective tumor activation. In vivo studies indicate that monomethyl-modified prodrug nanoassemblies exhibit superior antitumor efficacy and reduced off-target toxicity compared to PPT solution. This work underscores the importance of steric hindrance in optimizing prodrug nanoassembly stability and tumor-specific activation, offering a comprehensive strategy for redox-responsive nanomedicines.
Collapse
Affiliation(s)
- Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fengli Xia
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Pharmacy, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yi Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongying Xiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanhao Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
3
|
Sarwar HMR, Jamshaid M, Masood S, Chaudhry GES, Fatima S, Zahra I, Akhtar A, Tahir MN, Mughal EU, Zafar MN. Water soluble palladium complexes bearing NNN-pincer ligands: synthesis, DFT modeling, cT-DNA interactions and in vitro cytotoxicity studies against breast cancer cell lines. Dalton Trans 2025. [PMID: 40391450 DOI: 10.1039/d5dt00224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
In the pursuit of designing new anticancer pharmaceuticals and enhancing the therapeutic effectiveness of metal-containing compounds, two new Pd(II) pincer complexes, [Pd(o-LMe)Cl](OTf) (5) and [Pd(o-L'Me)Cl](OTf) (6), where o-LMe is (N2Z,N6Z)-N2,N6-bis(1-methylpyridin-2(1H)-ylidene)pyridine-2,6-dicarboxamide and o-L'Me is (N2Z,N6Z)-N2,N6-bis(1,4-dimethylpyridin-2(1H)-ylidene)pyridine-2,6-dicarboxamide, commonly known as pyridylidene amide (PYA) ligands, were successfully synthesized and subjected to characterization through various spectroscopic methodologies. The PYA ligands were generated from proligands, o-H2LMe(OTf)2 (3) and o-H2L'Me(OTf)2 (4), during the complexation reaction. The precursors, 1 (o-H2L) and 2 (o-H2L'), were synthesized by treatment of dipicolinic acid with 2-aminopicoline and 2-amino-4-methylpicoline, respectively, in the presence of triphenyl phosphite followed by methylation to obtain o-H2LMe(OTf)2 (3) and o-H2L'Me(OTf)2 (4). The molecular structure of the palladium complex (5) has been thoroughly analyzed through SC-XRD, revealing a distorted square planar configuration encompassing two five-membered metallacyclic rings. The DFT approach was adopted to meticulously investigate the electronic features, molecular electrostatic potential, and frontier molecular orbitals of the complexes. The nature of the compound's interaction with cT-DNA and the implications of pincer-PYA coordination on the binding affinity of Pd(II) complexes were probed through UV-visible spectrophotometry and viscometry. The results elucidated the intercalative mode of interaction alongside elevated binding parameters for 5 (105 dm3 mol-1) and 6 (104 dm3 mol-1). Molecular docking of complex 5 was performed, which exhibited a strong interaction with DNA and supported the experimental findings. The in vitro cytotoxic effects of the samples were systematically assessed using the MTT protocol on breast cancer (MCF-7 and T47D) and normal (Vero) cell lines. According to the determined IC50 values, Pd(II) complexes demonstrated a prominent influence in augmenting cytotoxicity. The cytotoxicity values associated with these compounds follow a hierarchy of 5 > cisplatin > 6 > 4 > 3 within neoplastic cells. The apoptotic effects of 5 and 6 on the MCF-7 cancer cell line were examined to elucidate the mechanistic pathway responsible for its maximal cytotoxic efficacy.
Collapse
Affiliation(s)
| | - Muhammad Jamshaid
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Sara Masood
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Gul-E-Saba Chaudhry
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Terengganu Malaysia, 21030, Kuala Terengganu, Malaysia
| | - Sameen Fatima
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Itrat Zahra
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Arusa Akhtar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | | | | - M Naveed Zafar
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
4
|
Liu M, Liu H, Yang Y, Xiong X, Zou T. Subcellular Photocatalysis Enables Tumor-Targeted Inhibition of Thioredoxin Reductase I by Organogold(I) Complexes. J Am Chem Soc 2025; 147:15719-15731. [PMID: 40272019 DOI: 10.1021/jacs.5c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Selective inhibition of TrxR1 over TrxR2 is a highly sought-after goal, because the two enzymes play distinct roles in cancer progression. However, achieving targeted inhibition is challenging due to their high homology and identical active site sequence. Herein we report a new subcellular photocatalysis approach for targeted inhibition by controllably activating organogold(I) prodrugs within the cytosol, the exclusive location of TrxR1. The NHC-Au(I)-alkynyl complexes are stable and evenly distributed in the cell; they can meanwhile be efficiently transformed into active NHC-Au(I)-L species (L = labile ligands) via a radical mechanism by photocatalysts released into the cytosol (from endosome/lysosome) upon light irradiation, leading to selective inhibition of TrxR1 without affecting TrxR2. This results in strong cytotoxicity to cancer cells with much higher selectivity than auranofin, a pan TrxR inhibitor that cannot discriminate TrxR1/2, along with potent antitumor activities in multiple zebrafish and mouse models. This subcellular prodrug activation may thus suggest a novel approach to precision targeting using the remarkable spatial control of photocatalysis.
Collapse
Affiliation(s)
- Moyi Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Haitao Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaolin Xiong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Taotao Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Çakır S, Atmaca H, Ilhan S, Türkmen H. Ruthenium(II) arene complexes bearing 1,10-phenanthroline substituted with an imidazolium salt: Synthesis, and cytotoxic activities. J Inorg Biochem 2025; 270:112937. [PMID: 40339267 DOI: 10.1016/j.jinorgbio.2025.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
Researchers are increasingly focusing on developing target-specific, highly cytoselective, lipophilic, water-soluble Ru(II) arene complexes to mitigate the side effects of commercially available platinum-based anticancer drugs. In this context, we present novel Ru(II) arene complexes, (Ru1 and Ru1a-f), which are based on a 1,10-phenanthroline-substituted imidazolium core derivatized with alkyl (butyl(a), octyl(b), dodecyl(c)) or benzyl ((benzyl(d), 2,4,6-trimethylbenzyl(e), pentamethylbenzyl(f)) groups. The structures of these complexes were characterized using 1H, 13C, 19F and, 31P nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy, mass spectrometry and elemental analysis. The cytotoxic activities of Ru1 and Ru1a-f complexes were tested against the cancer cell lines MCF-7 and MDA-MB-231 and normal cell lines, such as MCF-10 A. The cell cycle distribution in the MCF-7 and MDA-MB-231 breast cancer cell lines after 72 h of incubation with IC50 concentration of the complex Ru1c can validly inhibit cell growth in the G2/M phase. Flow cytometry analysis showed that the complex Ru1c induced apoptosis in MCF-7 and MDA-MB-231 breast cancer cells. Additionally, the binding mode of the complex Ru1c with Fish-Salmon DNA was examined using ultraviolet-visible spectroscopy. Interaction of Ru1c complex with bovine serum albumin was analyzed by absorption study. The stability of all complexes in the solvent was assessed using 1H NMR spectroscopy. Additionally, quantitative determination of the total ruthenium level within the cells was performed by inductively coupled plasma mass spectrometry (ICP-MS). Molecular docking was performed to evaluate the interaction residues and docking scores of Ru1c and the reference drug cis‑platinum against CDK1, cyclin B1, Bcl-xL and Bcl-2 proteins.
Collapse
Affiliation(s)
- Sinem Çakır
- Department of Material Science and Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Harika Atmaca
- Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa, Türkiye
| | - Süleyman Ilhan
- Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa, Türkiye
| | - Hayati Türkmen
- Department of Material Science and Engineering, Ege University, Bornova, 35100 Izmir, Türkiye; Department of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye.
| |
Collapse
|
6
|
Michael S, Jeyaraman P, Jancy JV, Muniyandi V, Raman N. Exploring the enzyme inhibitor potential and therapeutic applications of transition metal complexes of Methoxy-Schiff Base via triangular investigation. Int J Biol Macromol 2025; 306:141760. [PMID: 40054814 DOI: 10.1016/j.ijbiomac.2025.141760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Transition metal(II) complexes of (E)-7-methoxy-N-(4-methoxybenzylidene)benzo[d]- thiazole-2-amine Schiff base ligand have been created using benzothiazole derivative. These compounds were characterized by means of conventional spectroscopic and analytical techniques. Furthermore, computational investigations with SWISS ADMET, Density Functional Theory, and molecular docking, authorized the biological efficacy of the complexes. The 3v03 bovine serum albumin protein was also subjected to a molecular docking study. The docking scores and interacting amino acids have been analyzed which reveal that the synthesized compounds interact potently with the protein enzyme. All the metal complexes have a great propensity to attach to Calf Thymus Deoxyribo Nucleic Acid via the intercalation process. The anticancer activity of the synthesized compounds, assessed in vitro using four human cancer cell lines, reveals that Cu(II) complex exhibits the highest activity (lowest IC50 values) against HeLa and MCF-7 cancer cell lines. Compared to the reference cisplatin, all of the complexes exhibit higher IC50 values. Screening assays both in vitro and in vivo corroborate that the complexes exhibit greater activity than the free Schiff base.
Collapse
Affiliation(s)
- Samuel Michael
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Porkodi Jeyaraman
- Post Graduate and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women (Autonomous), Sivakasi, India
| | - Jacqulin Veda Jancy
- Department of Computer and Communication Engineering(Autonomous), Sri Sai Ram Institute of Technology, Chennai 600044, India
| | - Vellaichamy Muniyandi
- Department of Chemistry, Sethu Institute of Technology (Autonomous), Pulloor, Kariapatti 626115, India
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College (Autonomous), Virudhunagar 626001, India.
| |
Collapse
|
7
|
Peng XX, Tan XY, Zhang H, Gao S, Zhang JL. Anti-Neoplastic Gallium-Based PROTAC for PDI Degradation Triggers Autophagy and Immunogenic Cell Death. Chembiochem 2025; 26:e202400900. [PMID: 39964210 DOI: 10.1002/cbic.202400900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Protein disulfide isomerase (PDI), a family of thiol-disulfide oxidoreductases, is one of the most abundant soluble proteins in the endoplasmic reticulum (ER) and is responsible for protein folding. Increasing evidence suggests that PDI is overexpressed in multiple types of cancer, positioning it as a promising target for tumor therapy. We have designed and synthesized a series of gallium complex-based proteolysis targeting chimeras (PROTACs), which exhibited effective targeting and degradation of PDI in vitro. After analyzing the relationship between structure and function, we have identified M-2 as the compound that most efficiently degrades PDI. Our research shows that M-2-induced degradation of PDI can trigger the unfolded protein response, leading to cell autophagy and initiating immunogenic cell death (ICD), as demonstrated in mouse models. This study suggests a potential opportunity for combining PDI targeting and immunotherapy.
Collapse
Affiliation(s)
- Xin-Xin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiang-Yu Tan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
8
|
Liu XM, Li Z, Wang XY, Ding BW, Wang JQ, Qiao X, Feng YK, Hao JH, Xu JY. Self-assembled HO-1i-Pt(IV) nanomedicine targeting p38/MAPK and MDR pathways for cancer chemo-immunotherapy. J Control Release 2025; 379:797-813. [PMID: 39848589 DOI: 10.1016/j.jconrel.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Platinum(II)-based antitumor drugs are widely used in clinics but limited by severe side effects and resistance. Multi-target Platinum(IV) complexes are emerging as ideal alternatives. Heme oxygenase-1 (HO-1) works as a rate-limiting step in heme degradation and is overexpressed in malignant tumors. Herein, HO-1i-based Platinum(IV) prodrugs are prepared and candidate complex 15 is further developed into self-assembled nanoparticles (15-NPs). 15 and 15-NPs significantly increase cytotoxicity, particularly in HepG2 (74.77- and 96.14-fold increases) and A549cisR (38.6- and 47.24-fold increases), while reducing toxicity towards normal cells compared to cisplatin. In vitro experiments show 15 and 15-NPs activated multiple pathways, including p38/MAPK- and MDR-related proteins, achieving multi-target synergistic chemosensitization and anti-resistance, further verified by RNA-sequencing analysis. In vivo tests demonstrate that 15 and 15-NPs efficiently inhibit tumor growth and systemic toxicity, especially 15-NPs with optimal tumor-inhibition rate and survival (80% and 100%), superior to cisplatin (40% and 50%), attributing to its extra endocytosis, EPR effect, and precisely tumor-targeted release besides the advantage of a free HO-1i-Pt(IV) prodrug. Additionally, 15 and 15-NPs distinctly regulate T-cell and macrophage functions, thereby exhibiting a chemoimmuno-combined action. This study highlights that multi-functional Platinum(IV) prodrug target-delivered to tumors via carrier-free nanoparticles may represent an effective modality for improving cancer therapy.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiao-Ya Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Bo-Wen Ding
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jia-Qian Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Kuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Ji-Hui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
9
|
Birara S, Kumar Yadav V, Kumar Jena A, Bhattacharyya S, Metre RK. Antimicrobial Potential of a Formazanate-Based Mercury(II) Complex: In Vitro- and In Silico-Based Insights. Chempluschem 2025; 90:e202400696. [PMID: 39714804 DOI: 10.1002/cplu.202400696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Herein, we present a distorted square pyramidal mercury complex, [HgII(L)Cl] (1), based on a quinoline-substituted formazan ligand LH[3-Cyano-1,5-(quinolin-8-yl)formazan], which was evaluated for its anti-bacterial activity in vitro. Complex 1 was prepared by refluxing 3-Cyano-1,5-(quinolin-8-yl)formazan ligand and mercury chloride(II) in equimolar quantity and was characterized utilizing a range of analytical methods, including single crystal X-ray diffraction (SCXRD) technique. The crystal packing in complex 1 has been elucidated using supramolecular investigations, which have shown the presence of fascinating Hg-Cl⋅⋅⋅Hg intermolecular spodium bonds of the order 3.348 Å. The antimicrobial activity of the formazanate-based mercury(II) complex (1) was assessed against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial pathogens. In addition, the plausible therapeutic target of the formazanate-based mercury(II) complex was determined through in silico pharmacophore-guided rational drug designing approach. Based on the in silico results, a conceivable molecular mechanism of the observed bactericidal action of the newly synthesized [HgII(L)Cl] complex (1) has also been suggested.
Collapse
Affiliation(s)
- Sunita Birara
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| | - Vinay Kumar Yadav
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| | - Abinash Kumar Jena
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
10
|
Nafees M, Hanif M, Muhammad Asif Khan R, Faiz F, Yang P. A Dual Action Platinum(IV) Complex with Self-assembly Property Inhibits Prostate Cancer through Mitochondrial Stress Pathway. ChemMedChem 2024; 19:e202400289. [PMID: 39380183 PMCID: PMC11581420 DOI: 10.1002/cmdc.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Indexed: 10/10/2024]
Abstract
Platinum(IV) prodrugs are highly promising anticancer agents because they can selectively target tumors and minimize the adverse effects associated with their PtII congeners. In this study, we synthesized dual action PtIV complexes by linking oxoplatin with lithocholic acid. The synthesized compounds, designated as PL-I, PL-II, and PL-III, can spontaneously self-assemble in water, resulting in the formation of spherical shape nanoparticles. Among the developed complexes, PL-III appeared to be the most potent compound against all the tested cancer cell lines, with 10 fold higher cytotoxicity compared to cisplatin in PC3 cells. The complex arrests the cell cycle in the S and G2 phases and induces DNA damage. Additional mechanistic investigations demonstrate that PL-III predominantly localizes within the mitochondria and cytoplasm. Consequently, PL-III disrupts mitochondrial membrane potential, increases ROS production, and perturbs mitochondrial bioenergetics in PC3 cells. The complex induces apoptosis through the mitochondrial pathway by upregulating pro-apoptotic protein expression and downregulating anti-apoptotic protein expression from the BCl-2 protein family. These results demonstrate that higher cellular uptake and reduction of PL-III by biological reductants in PC3 cells resulted in a synergistic effect of lithocholic acid and cisplatin, which can be easily observed due to its unique cytotoxic mechanism. This further underscores the significance of dual-action PtIV complexes in enhancing the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Muhammad Nafees
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P.R. China
| | - Muhammad Hanif
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Raja Muhammad Asif Khan
- Department of ChemistrySchool of Natural SciencesNational University of Sciences and Technology (NUST) H-12Islamabad44000Pakistan
| | - Faisal Faiz
- School of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P.R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P.R. China
| |
Collapse
|
11
|
Li W, Li S, Zhu M, Xu G, Man X, Zhang Z, Liang H, Yang F. Developing a Rhodium(III) Complex to Reprogram the Tumor Immune and Metabolic Microenvironments: Overcoming Multidrug Resistance and Metastasis in Non-Small Cell Lung Cancer. J Med Chem 2024; 67:17243-17258. [PMID: 39298516 DOI: 10.1021/acs.jmedchem.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
To effectively inhibit the growth and metastasis of non-small cell lung cancer (NSCLC) and overcome its multidrug resistance (MDR), we designed and synthesized a series of rhodium (Rh, III) 2-benzoylpyridine thiosemicarbazone complexes. Through studying their structure-activity relationships, we identified the Rh(III) complex (Rh4) with excellent cytotoxicity against multidrug-resistant lung cancer cells (A549/ADR cells). Additionally, we successfully constructed an apoferritin (AFt) nanoparticle (NP) delivery system (AFt-Rh4 NPs). Importantly, AFt-Rh4 NPs not only exhibited excellent antitumor and antimetastatic capabilities against multidrug-resistant NSCLC in vivo but also demonstrated enhanced targeting ability and reduced systemic toxicity and adverse effects. Furthermore, we confirmed and elucidated the mechanisms by which Rh4/AFt-Rh4 NPs inhibit tumor metastasis and reverse MDR in NSCLC. This was achieved by reprogramming the immune and metabolic tumor microenvironments through induction of immunogenic cell death and inhibition of dual-energy metabolism.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
- School of Pharmaceutical Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
12
|
Das U, Basu U, Paira P. Recent trends in the design and delivery strategies of ruthenium complexes for breast cancer therapy. Dalton Trans 2024; 53:15113-15157. [PMID: 39219354 DOI: 10.1039/d4dt01482k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As the most frequent and deadly type of cancer in women, breast cancer has a high propensity to spread to the brain, bones, lymph nodes, and lungs. The discovery of cisplatin marked the beginning of the development of anticancer metal-based medications, although the drug's severe side effects have limited its usage in clinical settings. The remarkable antimetastatic and anticancer activity of different ruthenium complexes such as NAMI-A, KP1019, KP1339, etc. reported in the 1980s has bolstered the discovery of ruthenium complexes with various types of ligands for anticancer applications. The review meticulously elucidates the cytotoxic and antimetastatic potential of reported ruthenium complexes against breast cancer cells. Notably, arene-based and cyclometalated ruthenium complexes emerge as standout candidates, showcasing remarkable potency with notably low IC50 values. These findings underscore the promising therapeutic avenues offered by ruthenium-based compounds, particularly in addressing the challenges posed by conventional treatments in refractory or aggressive breast cancer subtypes. Moreover, the review comprehensively integrates a spectrum of ruthenium complexes, spanning traditional metal complexes to nano-based formulations and light-activated variants, underscoring the versatility and adaptability of ruthenium chemistry in breast cancer therapy.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Uttara Basu
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, K K Birla Goa Campus, NH 17B Bypass Road, Goa - 403726, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
13
|
Wang Y, Meng L, Zhao F, Zhao L, Gao W, Yu Q, Chen P, Sun Y. Harnessing External Irradiation for Precise Activation of Metal-Based Agents in Cancer Therapy. Chembiochem 2024; 25:e202400305. [PMID: 38825577 DOI: 10.1002/cbic.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/04/2024]
Abstract
Cancer is a significant global health issue. Platinum-based chemotherapy drugs, including cisplatin, are crucial in clinical anti-cancer treatment. However, these drugs have limitations such as drug resistance, non-specific distribution, and irreversible toxic and side effects. In recent years, the development of metal-based agents has led to the discovery of other anti-cancer effects beyond chemotherapy. Precise spatiotemporal controlled external irradiation can activate metal-based agents at specific sites and play a different role from traditional chemotherapy. These strategies can not only enhance the anti-cancer efficiency, but also show fewer side effects and non-cross-drug resistance, which are ideal approaches to solve the problems caused by traditional platinum-based chemotherapy drugs. In this review, we focus on various metal-based agent-mediated cancer therapies that are activated by three types of external irradiation: near-infrared (NIR) light, ultrasound (US), and X-ray, and give some prospects. We hope that this review will promote the generation of new kinds of metal-based anti-cancer agents.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Liling Meng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Fang Zhao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, China
| | - Limei Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Wei Gao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Qi Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
14
|
Liu XM, Zhu ZZ, He XR, Zou YH, Chen Q, Wang XY, Liu HM, Qiao X, Wang X, Xu JY. NIR Light and GSH Dual-Responsive Upconversion Nanoparticles Loaded with Multifunctional Platinum(IV) Prodrug and RGD Peptide for Precise Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40753-40766. [PMID: 39046129 DOI: 10.1021/acsami.4c08899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Platinum(II) drugs as a first-line anticancer reagent are limited by side effects and drug resistance. Stimuli-responsive nanosystems hold promise for precise spatiotemporal manipulation of drug delivery, with the aim to promote bioavailability and minimize side effects. Herein, a multitargeting octahedral platinum(IV) prodrug with octadecyl aliphatic chain and histone deacetylase inhibitor (phenylbutyric acid, PHB) at axial positions to improve the therapeutic effect of cisplatin was loaded on the upconversion nanoparticles (UCNPs) through hydrophobic interaction. Followed attachment of DSPE-PEG2000 and arginine-glycine-aspartic (RGD) peptide endowed the nanovehicles with high biocompatibility and tumor specificity. The fabricated nanoparticles (UCNP/Pt(IV)-RGD) can be triggered by upconversion luminescence (UCL) irradiation and glutathione (GSH) reduction to controllably release Pt(II) species and PHB, inducing profound cytotoxicity. Both in vitro and in vivo experiments demonstrated that UCNP/Pt(IV)-RGD exhibited remarkable antitumor efficiency, high tumor-targeting specificity, and real-time UCL imaging capacity, presenting an intelligent platinum(IV) prodrug-loaded nanovehicle for UCL-guided dual-stimuli-responsive combination therapy.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhen-Zhen Zhu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin-Rui He
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yun-Hong Zou
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Qian Chen
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Ya Wang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hui-Mei Liu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xu Wang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
15
|
Jagathesan K, Roy S. Recent Development of Transition Metal Complexes as Chemotherapeutic Hypoxia Activated Prodrug (HAP). ChemMedChem 2024; 19:e202400127. [PMID: 38634306 DOI: 10.1002/cmdc.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Hypoxia is a state characterized by low concentration of Oxygen. Hypoxic state is often found in the central region of solid tumors. Hypoxia is associated with abnormal neovascularization resulted in poor blood flow in tissues and increased proliferation of tumor cells, imbalance between O2 supply and O2 consumption in tumor cells, high concentration of proton and strong reducibility. And, these abnormalities enhance the survival potency of the hypoxic tumours and increase the resistance towards chemotherapy and radiotherapy. One of the approach for treating hypoxic region of tumour is to use reducing environment of hypoxic tumours for reducing a molecule (hypoxia activated prodrug, HAP) and as a result the active drug will be released in hypoxic region in a controlled manner from the prodrug and kill the hypoxic tumour. Co(III) and Pt(IV) complexes with monodentate active drug molecule in the axial position can be reduced to Co(II) and Pt(II) moieties and as a result, the axial ligands (active drug) could come out from the metal center and could show its anticancer activity. In this review we have highlighted the research articles where transition metal-based complexes are used as chemotherapeutic hypoxia activated prodrug molecules which are reported in last 5 years.
Collapse
Affiliation(s)
- K Jagathesan
- Dept. of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Sovan Roy
- Dept. of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
16
|
Palmeira-Mello MV, Costa AR, de Oliveira LP, Blacque O, Gasser G, Batista AA. Exploring the potential of ruthenium(II)-phosphine-mercapto complexes as new anticancer agents. Dalton Trans 2024; 53:10947-10960. [PMID: 38895770 DOI: 10.1039/d4dt01191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Analu R Costa
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Leticia P de Oliveira
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Alzir A Batista
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| |
Collapse
|
17
|
Chong H, Liu X, Fang S, Yang X, Zhang Y, Wang T, Liu L, Kan Y, Zhao Y, Fan H, Zhang J, Wang X, Yao H, Yang Y, Gao Y, Zhao Q, Li S, Plymoth M, Xi J, Zhang Y, Wang C, Pang H. Organo-Pt ii Complexes for Potent Photodynamic Inactivation of Multi-Drug Resistant Bacteria and the Influence of Configuration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306936. [PMID: 38298088 PMCID: PMC11005693 DOI: 10.1002/advs.202306936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 02/02/2024]
Abstract
PtII based organometallic photosensitizers (PSs) have emerged as novel potent photodynamic inactivation (PDI) reagents through their enhanced intersystem crossing (ISC) processes. Currently, few PtII PSs have been investigated as antibacterial materials, with relatively poor performances reported and with structure-activity relationships not well described. Herein, a pair of configurational isomers are reported of Bis-BODIPY (4,4-difluoro-boradizaindacene) embedded PtII PSs. The cis-isomer (cis-BBP) displayed enhanced 1O2 generation and better bacterial membrane anchoring capability as compared to the trans-isomer (trans-BBP). The effective PDI concentrations (efficiency > 99.9%) for cis-BBP in Acinetobacter baumannii (multi-drug resistant (MDR)) and Staphylococcus aureus are 400 nM (12 J cm-2) and 100 nM (18 J cm-2), respectively; corresponding concentrations and light doses for trans-BBP in the two bacteria are 2.50 µM (30 J cm-2) and 1.50 µM (18 J cm-2), respectively. The 50% and 90% minimum inhibitory concentration (MIC50 and MIC90) ratio of trans-BBP to cis-BBP is 22.22 and 24.02 in A. baumannii (MDR); 21.29 and 22.36 in methicillin resistant S. aureus (MRSA), respectively. Furthermore, cis-BBP displays superior in vivo antibacterial performance, with acceptable dark and photoinduced cytotoxicity. These results demonstrate cis-BBP is a robust light-assisted antibacterial reagent at sub-micromolecular concentrations. More importantly, configuration of PtII PSs should be an important issue to be considered in further PDI reagents design.
Collapse
Affiliation(s)
- Hui Chong
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Xuanwei Liu
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Siyu Fang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Xiaofei Yang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Yuefei Zhang
- Department of EmergencyAffiliated Hospital of Yangzhou UniversityYangzhouJiangsu225000China
| | - Tianyi Wang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Lin Liu
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Yinshi Kan
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Yueqi Zhao
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Hongying Fan
- Testing Center of Yangzhou UniversityNo. 48 Wenhui East Rd.Yangzhou225009P. R. China
| | - Jingqi Zhang
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xiaoyu Wang
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Hang Yao
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Yi Yang
- Center LaboratoryAffiliated Hospital of Yangzhou UniversityYangzhou225009P. R. China
| | - Yijian Gao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Qi Zhao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Martin Plymoth
- Westmead hospitalSydneyNSW 2145Australia
- Department of Clinical MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Juqun Xi
- Department of PharmacologyInstitute of Translational MedicineSchool of MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesYangzhou225009P. R. China
| | - Yu Zhang
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Chengyin Wang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Huan Pang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| |
Collapse
|
18
|
Li S, Zhang X, Zhao T, Liu N, Zhang Y, Wang P, Yang Z, Huhn T. Synthesis, in vitro antitumor evaluation and structure activity relationship of heptacoordinated amino-bis(Phenolato) Ti(IV) complexes stabilized by 2,6-dipicolinic acid. J Biol Inorg Chem 2024; 29:315-330. [PMID: 38722397 DOI: 10.1007/s00775-024-02059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/22/2024] [Indexed: 05/24/2024]
Abstract
Eighteen novel Ti(IV) complexes stabilized by different chelating amino-bis(phenolato) (ONNO, ONON, ONOO) ligands and 2,6-dipicolinic acid as a second chelator were synthesized with isolated yields ranging from 79 to 93%. Complexes were characterized by 1H and 13C-NMR spectroscopy, as well as by HRMS and X-Ray diffraction analysis. The good to excellent aqueous stability of these Ti(IV) complexes can be modulated by the substitutions on the 2-position of the phenolato ligands. Most of the synthesized Ti(IV) complexes demonstrated potent inhibitory activity against Hela S3 and Hep G2 tumor cells. Among them, the naphthalenyl based Salan type 2j, 2-picolylamine based [ONON] type 2n and N-(2-hydroxyethyl) based [ONOO] type 2p demonstrated up to 40 folds enhanced cytotoxicity compared to cisplatin together with a significantly reduced activity against healthy AML12 cells. The three Ti(IV) complexes exhibited fast cellular uptake by Hela S3 cells and induced almost exclusively apoptosis. 2j could trigger higher level of ROS generation than 2p and 2n.
Collapse
Affiliation(s)
- Shanjia Li
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Xupeng Zhang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Tiankun Zhao
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
| | - Nan Liu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Yong Zhang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Peng Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Zhongduo Yang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Thomas Huhn
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
19
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
20
|
Kostova I. Anticancer Metallocenes and Metal Complexes of Transition Elements from Groups 4 to 7. Molecules 2024; 29:824. [PMID: 38398576 PMCID: PMC10891901 DOI: 10.3390/molecules29040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
With the progression in the field of bioinorganic chemistry, the role of transition metal complexes as the most widely used therapeutics is becoming a more and more attractive research area. The complexes of transition metals possess a great variety of attractive pharmacological properties, including anticancer, anti-inflammatory, antioxidant, anti-infective, etc., activities. Transition metal complexes have proven to be potential alternatives to biologically active organic compounds, especially as antitumor agents. The performance of metal coordination compounds in living systems is anticipated to differ generally from the action of non-metal-containing drugs and may offer unique diagnostic and/or therapeutic opportunities. In this review, the rapid development and application of metallocenes and metal complexes of elements from Groups 4 to 7 in cancer diagnostics and therapy have been summarized. Most of the heavy metals discussed in the current review are newly discovered metals. That is why the use of their metal-based compounds has attracted a lot of attention concerning their organometallic and coordination chemistry. All of this imposes more systematic studies on their biological activity, biocompatibility, and toxicity and presupposes further investigations.
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
21
|
Presenjit, Chaturvedi S, Singh A, Gautam D, Singh K, Mishra AK. An Insight into the Effect of Schiff Base and their d and f Block Metal Complexes on Various Cancer Cell Lines as Anticancer Agents: A Review. Anticancer Agents Med Chem 2024; 24:488-503. [PMID: 38279753 DOI: 10.2174/0118715206280314231201111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.
Collapse
Affiliation(s)
- Presenjit
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Shubhra Chaturvedi
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| | - Akanksha Singh
- Department of Zoology, Swami Shraddhanand College, University of Delhi, 110007, India
| | - Divya Gautam
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Kaman Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Anil Kumar Mishra
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| |
Collapse
|
22
|
Bernkop-Schnürch A, Chavooshi D, Descher HA, Leitner D, Talasz H, Hermann M, Wurst K, Hohloch S, Gust R, Kircher B. Design, Synthesis, Electrochemical, and Biological Evaluation of Fluorescent Chlorido[ N, N'-bis(methoxy/hydroxy)salicylidene-1,2-bis(4-methoxyphenyl)ethylenediamine]iron(III) Complexes as Anticancer Agents. J Med Chem 2023; 66:15916-15925. [PMID: 38013413 PMCID: PMC10726350 DOI: 10.1021/acs.jmedchem.3c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The impact of methoxy and hydroxyl groups at the salicylidene moiety of chlorido[N,N'-bis(methoxy/hydroxy)salicylidene-1,2-bis(4-methoxyphenyl)ethylenediamine]iron(III) complexes was evaluated on human MDA-MB 231 breast cancer and HL-60 leukemia cells. Methoxylated complexes (C1-C3) inhibited proliferation, migration, and metabolic activity in a concentration-dependent manner following the rank order: C2 > C3 > C1. In particular, C2 was highly cytotoxic with an IC50 of 4.2 μM which was 6.6-fold lower than that of cisplatin (IC50 of 27.9 μM). In contrast, hydroxylated complexes C4-C6 were almost inactive up to the highest concentration tested due to lack of cellular uptake. C2 caused a dual mode of cell death, ferroptosis, and necroptosis, whereby at higher concentrations, ferroptosis was the preferred form. Ferroptotic morphology and the presence of ferrous iron and lipid reactive oxygen species proved the involvement of ferroptosis. C2 was identified as a promising lead compound for the design of drug candidates inducing ferroptosis.
Collapse
Affiliation(s)
- Astrid
Dagmar Bernkop-Schnürch
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI−Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Donja Chavooshi
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI−Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Immunobiology
and Stem Cell Laboratory, Department of Internal Medicine V (Hematology
and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Hubert Aaron Descher
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI−Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniel Leitner
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heribert Talasz
- Biocenter,
Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Hermann
- Department
of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Stephan Hohloch
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI−Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Brigitte Kircher
- Immunobiology
and Stem Cell Laboratory, Department of Internal Medicine V (Hematology
and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Tyrolean
Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| |
Collapse
|
23
|
Bai Y, Aodeng G, Ga L, Hai W, Ai J. Research Progress of Metal Anticancer Drugs. Pharmaceutics 2023; 15:2750. [PMID: 38140091 PMCID: PMC10747151 DOI: 10.3390/pharmaceutics15122750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer treatments, including traditional chemotherapy, have failed to cure human malignancies. The main reasons for the failure of these treatments are the inevitable drug resistance and serious side effects. In clinical treatment, only 5 percent of the 50 percent of cancer patients who are able to receive conventional chemotherapy survive. Because of these factors, being able to develop a drug and treatment that can target only cancer cells without affecting normal cells remains a big challenge. Since the special properties of cisplatin in the treatment of malignant tumors were accidentally discovered in the last century, metal anticancer drugs have become a research hotspot. Metal anticancer drugs have unique pharmaceutical properties, such as ruthenium metal drugs with their high selectivity, low toxicity, easy absorption by tumor tissue, excretion, and so on. In recent years, efficient and low-toxicity metal antitumor complexes have been synthesized. In this paper, the scientific literature on platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), and other anticancer complexes was reviewed by referring to a large amount of relevant literature at home and abroad.
Collapse
Affiliation(s)
- Yun Bai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Gerile Aodeng
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| |
Collapse
|
24
|
Roberts KE, Engelbrecht Z, Potgieter K, Meijboom R, Cronjé MJ. Silver(I) Bromide Phosphines Induce Mitochondrial-Mediated Apoptosis in Malignant Human Colorectal Cells. Biomedicines 2023; 11:2794. [PMID: 37893167 PMCID: PMC10604669 DOI: 10.3390/biomedicines11102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Due to its emerging resistance to current therapies, colon cancer remains one of the most difficult types of cancer to treat. Silver, a non-invasive metal, is well-known for its antimicrobial and anti-cancer properties. Two novel silver(I) phosphine complexes, [silver(I) diphenyl-2-pyridylphosphine]Br (1) and [silver(I) is 4-(dimethylamino)phenyldiphenylphosphine]Br (2), were synthesized and characterized by elemental analysis, infrared spectroscopy, and nuclear magnetic resonance (1H, 13C, 31P). To assess the complexes' potentials as antiproliferative agents, experiments were conducted on human colorectal cancer cells (HT-29) in vitro. The evaluation involved the analysis of morphological changes, the performance of an alamarBlue® proliferation assay, and the undertaking of flow cytometric analyses to detect mitochondrial alterations. Complex 1 displayed superior selectivity and significant inhibitory effects on malignant HT-29 cells while exhibiting minimal toxicity towards two non-malignant HEK-293 and MRHF cells. Moreover, after 24 h of treatment, complex 1 (IC50, 7.49 µM) demonstrated higher efficacy in inhibiting cell proliferation compared with complex 2 (IC50, 21.75 µM) and CDDP (IC50, 200.96 µM). Flow cytometric studies indicated that complex 1 induced regulated cell death, likely through mitochondrial-mediated apoptosis. Treatment with complex 1 induced morphological changes indicative of apoptosis, which includes membrane blebbing, PS externalization, increased levels of reactive oxygen species (ROS) and mitochondrial membrane depolarization (ΔΨm). These observations suggest that complex 1 targets the mitochondria and holds promise as a novel metal-based anti-cancer therapeutic for the selective treatment of colorectal cancer.
Collapse
Affiliation(s)
- Kim Elli Roberts
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa; (K.E.R.)
| | - Zelinda Engelbrecht
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa; (K.E.R.)
| | - Kariska Potgieter
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences (APK), University of Johannesburg, Johannesburg 2006, South Africa (R.M.)
| | - Reinout Meijboom
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences (APK), University of Johannesburg, Johannesburg 2006, South Africa (R.M.)
| | - Marianne Jacqueline Cronjé
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa; (K.E.R.)
| |
Collapse
|
25
|
Huang B, Yin Z, Zhou F, Su J. Functional anti-bone tumor biomaterial scaffold: construction and application. J Mater Chem B 2023; 11:8565-8585. [PMID: 37415547 DOI: 10.1039/d3tb00925d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Bone tumors, including primary bone tumors and bone metastases, have been plagued by poor prognosis for decades. Although most tumor tissue is removed, clinicians are still confronted with the dilemma of eliminating residual cancer cells and regenerating defective bone tissue after surgery. Therefore, functional biomaterial scaffolds are considered to be the ideal candidates to bridge defective tissues and restrain cancer recurrence. Through functionalized structural modifications or coupled therapeutic agents, they provide sufficient mechanical strength and osteoinductive effects while eliminating cancer cells. Numerous novel approaches such as photodynamic, photothermal, drug-conjugated, and immune adjuvant-assisted therapies have exhibited remarkable efficacy against tumors while exhibiting low immunogenicity. This review summarizes the progress of research on biomaterial scaffolds based on different functionalization strategies in bone tumors. We also discuss the feasibility and advantages of the combined application of multiple functionalization strategies. Finally, potential obstacles to the clinical translation of anti-tumor bone bioscaffolds are highlighted. This review will provide valuable references for future advanced biomaterial scaffold design and clinical bone tumor therapy.
Collapse
Affiliation(s)
- Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
26
|
Arojojoye AS, Walker B, Dewahare JC, Afrifa MAO, Parkin S, Awuah SG. Circumventing Physicochemical Barriers of Cyclometalated Gold(III) Dithiocarbamate Complexes with Protein-Based Nanoparticle Delivery to Enhance Anticancer Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43607-43620. [PMID: 37698293 PMCID: PMC11264193 DOI: 10.1021/acsami.3c10025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Optimizing the bioavailability of drug candidates is crucial to successful drug development campaigns, especially for metal-derived chemotherapeutic agents. Nanoparticle delivery strategies can be deployed to overcome physicochemical limitations associated with drugs to improve bioavailability, pharmacokinetics, efficacy, and minimize toxicity. Biodegradable albumin nanoconstructs offer pragmatic solutions for drug delivery of metallodrugs with translational benefits in the clinic. In this work, we explored a logical approach to investigate and resolve the physicochemical drawbacks of gold(III) complexes with albumin nanoparticle delivery to improve solubility, enhance intracellular accumulation, circumvent premature deactivation, and enhance anticancer activity. We synthesized and characterized stable gold(III) dithiocarbamate complexes with a variable degree of cyclometalation such as phenylpyridine (C^N) or biphenyl (C^C) Au(III) framework and different alkyl chain lengths. We noted that extended alkyl chain lengths impaired the solubility of these complexes in biological media, thus adversely impacting potency. Encapsulation of these complexes in bovine serum albumin (BSA) reversed solubility limitations and improved cancer cytotoxicity by ∼25-fold. Further speciation and mechanism of action studies demonstrate the stability of the compounds and alteration of mitochondria bioenergetics, respectively. We postulate that this nanodelivery strategy is a relevant approach for translational small-molecule gold drug delivery.
Collapse
Affiliation(s)
| | - Breyanna Walker
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - James C. Dewahare
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
27
|
Balachandran C, Hirose M, Tanaka T, Zhu JJ, Yokoi K, Hisamatsu Y, Yamada Y, Aoki S. Design and Synthesis of Poly(2,2'-Bipyridyl) Ligands for Induction of Cell Death in Cancer Cells: Control of Anticancer Activity by Complexation/Decomplexation with Biorelevant Metal Cations. Inorg Chem 2023; 62:14615-14631. [PMID: 37642721 PMCID: PMC10498496 DOI: 10.1021/acs.inorgchem.3c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Indexed: 08/31/2023]
Abstract
Chelation therapy is a medical procedure for removing toxic metals from human organs and tissues and for the treatment of diseases by using metal-chelating agents. For example, iron chelation therapy is designed not only for the treatment of metal poisoning but also for some diseases that are induced by iron overload, cancer chemotherapy, and related diseases. However, the use of such metal chelators needs to be generally carried out very carefully, because of the side effects possibly due to the non-specific complexation with intracellular metal cations. Herein, we report on the preparation and characterization of some new poly(bpy) ligands (bpy: 2,2'-bipyridyl) that contain one-three bpy ligand moieties and their anticancer activity against Jurkat, MOLT-4, U937, HeLa S3, and A549 cell lines. The results of MTT assays revealed that the tris(bpy) and bis(bpy) ligands exhibit potent activity for inducing the cell death in cancer cells. Mechanistic studies suggest that the main pathway responsible for the cell death by these poly(bpy) ligands is apoptotic cell death. It was also found that the anticancer activity of the poly(bpy) ligands could be controlled by the complexation (anticancer activity is turned OFF) and decomplexation (anticancer activity is turned ON) with biorelevant metal cations. In this paper, these results will be described.
Collapse
Affiliation(s)
- Chandrasekar Balachandran
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Biomedical Sciences, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masumi Hirose
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Tomohiro Tanaka
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Jun Jie Zhu
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kenta Yokoi
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Graduate
School of Pharmaceutical Sciences, Nagoya
City University, 3-1
Tanabe-dori, Nagoya, Aichi 467-8603, Japan
| | - Yasuyuki Yamada
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research
Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Biomedical Sciences, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
28
|
Kumar S, Riisom M, Jamieson SMF, Kavianinia I, Harris PWR, Metzler-Nolte N, Brimble MA, Hartinger CG. On-Resin Conjugation of the Ruthenium Anticancer Agent Plecstatin-1 to Peptide Vectors. Inorg Chem 2023; 62:14310-14317. [PMID: 37611203 DOI: 10.1021/acs.inorgchem.3c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ruthenium piano-stool complexes have been explored for their anticancer activity and some promising compounds have been reported. Herein, we conjugated a derivative of plecstatin-1 to peptides in order to increase their cancer cell targeting ability. For this purpose, plecstatin-1 was modified at the arene ligand to introduce a functional amine handle (3), which resulted in a compound that showed similar activity in an in vitro anticancer activity assay. The cell-penetrating peptide TAT48-60, tumor-targeting neurotensin8-13, and plectin-targeting peptide were functionalized with succinyl or β-Ala-succinyl linkers under standard solid-phase peptide synthesis (SPPS) conditions to spatially separate the peptide backbones from the bioactive metal complexes. These modifications allowed for conjugating precursor 3 to the peptides on resin yielding the desired metal-peptide conjugates (MPCs), as confirmed by high-performance liquid chromatography (HPLC), NMR spectroscopy, and mass spectrometry (MS). The MPCs were studied for their behavior in aqueous solution and under acidic conditions and resembled that of the parent compound plecstatin-1. In in vitro anticancer activity studies in a small panel of cancer cell lines, the TAT-based MPCs showed the highest activity, while the other MPCs were virtually inactive. However, the MPCs were significantly less active than the small molecules plecstatin-1 and 3, which can be explained by the reduced cell uptake as determined by inductively coupled plasma MS (ICP-MS). Although the MPCs did not display potent anticancer activities, the developed conjugation strategy can be extended toward other metal complexes, which may be able to utilize the targeting properties of peptides.
Collapse
Affiliation(s)
- Saawan Kumar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
29
|
Borutzki Y, Skos L, Gerner C, Meier‐Menches SM. Exploring the Potential of Metal-Based Candidate Drugs as Modulators of the Cytoskeleton. Chembiochem 2023; 24:e202300178. [PMID: 37345897 PMCID: PMC10946712 DOI: 10.1002/cbic.202300178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.
Collapse
Affiliation(s)
- Yasmin Borutzki
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Lukas Skos
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| |
Collapse
|
30
|
Bauer T, Alberg I, Zengerling LA, Besenius P, Koynov K, Slütter B, Zentel R, Que I, Zhang H, Barz M. Tuning the Cross-Linking Density and Cross-Linker in Core Cross-Linked Polymeric Micelles and Its Effects on the Particle Stability in Human Blood Plasma and Mice. Biomacromolecules 2023; 24:3545-3556. [PMID: 37449781 PMCID: PMC10428167 DOI: 10.1021/acs.biomac.3c00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Core cross-linked polymeric micelles (CCPMs) are designed to improve the therapeutic profile of hydrophobic drugs, reduce or completely avoid protein corona formation, and offer prolonged circulation times, a prerequisite for passive or active targeting. In this study, we tuned the CCPM stability by using bifunctional or trifunctional cross-linkers and varying the cross-linkable polymer block length. For CCPMs, amphiphilic thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) [pSar-b-pCys(SO2Et)] were employed. While the pCys(SO2Et) chain lengths varied from Xn = 17 to 30, bivalent (derivatives of dihydrolipoic acid) and trivalent (sarcosine/cysteine pentapeptide) cross-linkers have been applied. Asymmetrical flow field-flow fraction (AF4) displayed the absence of aggregates in human plasma, yet for non-cross-linked PM and CCPMs cross-linked with dihydrolipoic acid at [pCys(SO2Et)]17, increasing the cross-linking density or the pCys(SO2Et) chain lengths led to stable CCPMs. Interestingly, circulation time and biodistribution in mice of non-cross-linked and bivalently cross-linked CCPMs are comparable, while the trivalent peptide cross-linkers enhance the circulation half-life from 11 to 19 h.
Collapse
Affiliation(s)
- Tobias
A. Bauer
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Irina Alberg
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Lydia A. Zengerling
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pol Besenius
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bram Slütter
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rudolf Zentel
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ivo Que
- Translational
Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| | - Heyang Zhang
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Matthias Barz
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Dermatology, University Medical Center
of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
31
|
Tsave O, Iordanidou C, Hatzidimitriou A, Yavropoulou MP, Kassi EN, Nasiri-Ansari N, Gabriel C, Salifoglou A. Structural Speciation of Ti(IV)-(α-Hydroxycarboxylic Acid) Complexes in Metabolism-Related (Patho)Physiology-In Vitro Approaches to (Pre)Adipocyte Differentiation and Mineralization. Int J Mol Sci 2023; 24:11865. [PMID: 37511624 PMCID: PMC10380816 DOI: 10.3390/ijms241411865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The prospect of developing soluble and bioavailable Ti(IV) complex forms with physiological substrates, capable of influencing (patho)physiological aberrations, emerges as a challenge in the case of metabolism-related pathologies (e.g., diabetes mellitus 1 and 2). To that end, pH-specific synthetic efforts on binary Ti(IV)-(α-hydroxycarboxylic acid) systems, involving natural physiological chelator ligands (α-hydroxy isobutyric acid, D-quinic acid, 2-ethyl-2-hydroxybutyric acid) in aqueous media, led to the successful isolation of binary crystalline Ti(IV)-containing products. The new materials were physicochemically characterized by elemental analysis, FT-IR, TGA, and X-ray crystallography, revealing in all cases the presence of mononuclear Ti(IV) complexes bearing a TiO6 core, with three bound ligands of variable deprotonation state. Solution studies through electrospray ionization mass spectrometry (ESI-MS) revealed the nature of species arising upon dissolution of the title compounds in water, thereby formulating a solid-state-solution correlation profile necessary for further employment in biological experiments. The ensuing cytotoxicity profile (pre-adipocytes and osteoblasts) of the new materials supported their use in cell differentiation experiments, thereby unraveling their structure-specific favorable effect toward adipogenesis and mineralization through an arsenal of in vitro biological assays. Collectively, well-defined atoxic binary Ti(IV)-hydroxycaboxylato complexes, bearing bound physiological substrates, emerge as competent inducers of cell differentiation, intimately associated with cell maturation, thereby (a) associating the adipogenic (insulin mimetic properties) and osteogenic potential (mineralization) of titanium and (b) justifying further investigation into the development of a new class of multipotent titanodrugs.
Collapse
Affiliation(s)
- Olga Tsave
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Iordanidou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Hatzidimitriou
- Laboratory of Inorganic Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria P Yavropoulou
- Endocrinology Unit, 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva N Kassi
- Endocrinology Unit, 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Catherine Gabriel
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
32
|
Zahra M, Chota A, Abrahamse H, George BP. Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:10931. [PMID: 37446109 DOI: 10.3390/ijms241310931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is a complex and diverse disease characterized by the uncontrolled growth of abnormal cells in the body. It poses a significant global public health challenge and remains a leading cause of death. The rise in cancer cases and deaths is a significant worry, emphasizing the immediate need for increased awareness, prevention, and treatment measures. Photodynamic therapy (PDT) has emerged as a potential treatment for various types of cancer, including skin, lung, bladder, and oesophageal cancer. A key advantage of PDT is its ability to selectively target cancer cells while sparing normal cells. This is achieved by preferentially accumulating photosensitizing agents (PS) in cancer cells and precisely directing light activation to the tumour site. Consequently, PDT reduces the risk of harming surrounding healthy cells, which is a common drawback of conventional therapies such as chemotherapy and radiation therapy. The use of medicinal plants for therapeutic purposes has a long history dating back thousands of years and continues to be an integral part of healthcare in many cultures worldwide. Plant extracts and phytochemicals have demonstrated the ability to enhance the effectiveness of PDT by increasing the production of reactive oxygen species (ROS) and promoting apoptosis (cell death) in cancer cells. This natural approach capitalizes on the eco-friendly nature of plant-based photoactive compounds, offering valuable insights for future research. Nanotechnology has also played a pivotal role in medical advancements, particularly in the development of targeted drug delivery systems. Therefore, this review explores the potential of utilizing photosensitizing phytochemicals derived from medicinal plants as a viable source for PDT in the treatment of cancer. The integration of green photodynamic therapy with plant-based compounds holds promise for novel treatment alternatives for various chronic illnesses. By harnessing the scientific potential of plant-based compounds for PDT, we can pave the way for innovative and sustainable treatment strategies.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| |
Collapse
|
33
|
K M, B N VH, P R, S D, Durai R. Analytical insights into the detoxification process and characterization of a traditional metallopharmaceutical formulation. RSC Med Chem 2023; 14:1143-1157. [PMID: 37360396 PMCID: PMC10285764 DOI: 10.1039/d3md00123g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023] Open
Abstract
Metallopharmaceuticals possess unique medicinal properties and have been used since ancient times. In spite of the inclusion of several metals and minerals, there is an increased interest in metallo-drugs for clinical and research purposes because of their immense therapeutic efficiency and non-toxic claim, as they are processed in addition to specific poly herbals. Sivanar Amirtham is one of the traditional metallopharmaceuticals used in Siddha medicine to treat various respiratory diseases and other ailments, including antidote therapy for poisonous bites. The present research work attempted to formulate the metallodrug preparation as per the standard protocols, including the detoxification process of the raw materials, followed by the analytical characterization studies to evaluate the physicochemical properties responsible for the stability, quality, and efficacy. The study included the comparative analysis of the raw materials, processed samples, intermediate samples, finished products, and commercial samples to understand the science involved in detoxification and formulation processing. The appropriate product profile was developed based on analysis of the particle size and surface charge by Zeta sizer, morphology and distribution by SEM-EDAX, functional groups and chemical interactions by FTIR, thermal behavior and stability by TG-DSC, crystallinity by XRD, and elemental composition by XPS. The findings of the research could provide scientific proof of evidence to overcome the limitations of the product owing to the standard quality and safety concern of the metal-mineral constituents, such as mercury, sulphur, and arsenic in the polyherbomineral formulation.
Collapse
Affiliation(s)
- Malarvizhi K
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University #214, ASK-II Thanjavur-613401 India
| | - Vedha Hari B N
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University #214, ASK-II Thanjavur-613401 India
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Rajalakshmi P
- Centre for Advanced Research in Indian System of Medicine (CARISM), School of Chemical & Biotechnology, SASTRA Deemed University Thanjavur-613401 India
| | - Devaraj S
- Centre for Energy Storage & Conversion, School of Chemical & Biotechnology, SASTRA Deemed University Thanjavur-613401 India
| | - Ramyadevi Durai
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University #214, ASK-II Thanjavur-613401 India
| |
Collapse
|
34
|
Skoczynska A, Lewinski A, Pokora M, Paneth P, Budzisz E. An Overview of the Potential Medicinal and Pharmaceutical Properties of Ru(II)/(III) Complexes. Int J Mol Sci 2023; 24:ijms24119512. [PMID: 37298471 DOI: 10.3390/ijms24119512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review examines the existing knowledge about Ru(II)/(III) ion complexes with a potential application in medicine or pharmacy, which may offer greater potential in cancer chemotherapy than Pt(II) complexes, which are known to cause many side effects. Hence, much attention has been paid to research on cancer cell lines and clinical trials have been undertaken on ruthenium complexes. In addition to their antitumor activity, ruthenium complexes are under evaluation for other diseases, such as type 2 diabetes, Alzheimer's disease and HIV. Attempts are also being made to evaluate ruthenium complexes as potential photosensitizers with polypyridine ligands for use in cancer chemotherapy. The review also briefly examines theoretical approaches to studying the interactions of Ru(II)/Ru(III) complexes with biological receptors, which can facilitate the rational design of ruthenium-based drugs.
Collapse
Affiliation(s)
- Anna Skoczynska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Mateusz Pokora
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
35
|
Drius G, Bordoni S, Boga C, Monari M, Fiori J, Esposito E, Zalambani C, Pincigher L, Farruggia G, Calonghi N, Micheletti G. Synthesis and Antiproliferative Insights of Lipophilic Ru(II)-Hydroxy Stearic Acid Hybrid Species. Molecules 2023; 28:molecules28104051. [PMID: 37241793 DOI: 10.3390/molecules28104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Metallodrugs represent a combination of multifunctionalities that are present concomitantly and can act differently on diverse biotargets. Their efficacy is often related to the lipophilic features exhibited both by long carbo-chains and the phosphine ligands. Three Ru(II) complexes containing hydroxy stearic acids (HSAs) were successfully synthesized in order to evaluate possible synergistic effects between the known antitumor activity of HSA bio-ligands and the metal center. HSAs were reacted with [Ru(H)2CO(PPh3)3] selectively affording O,O-carboxy bidentate complexes. The organometallic species were fully characterized spectroscopically using ESI-MS, IR, UV-Vis, and NMR techniques. The structure of the compound Ru-12-HSA was also determined using single crystal X-ray diffraction. The biological potency of ruthenium complexes (Ru-7-HSA, Ru-9-HSA, and Ru-12-HSA) was studied on human primary cell lines (HT29, HeLa, and IGROV1). To obtain detailed information about anticancer properties, tests for cytotoxicity, cell proliferation, and DNA damage were performed. The results demonstrate that the new ruthenium complexes, Ru-7-HSA and Ru-9-HSA, possess biological activity. Furthermore, we observed that the Ru-9-HSA complex shows increased antitumor activity on colon cancer cells, HT29.
Collapse
Affiliation(s)
- Giacomo Drius
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Silvia Bordoni
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
- Health Sciences and Technologies Interdepartmental Centre for Industrial Research (CIRI SDV), University of Bologna, 40126 Bologna, Italy
| | - Carla Boga
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Magda Monari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Jessica Fiori
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Erika Esposito
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- IRCCS, Istituto Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - Gabriele Micheletti
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
36
|
Odachowski M, Neven R, Perversi G, Romano D, Slabber CA, Hadiji M, Honing M, Zhao Y, Munro OQ, Blom B. Ionic mononuclear [Fe] and heterodinuclear [Fe,Ru] bis(diphenylphosphino)alkane complexes: Synthesis, spectroscopy, DFT structures, cytotoxicity, and biomolecular interactions. J Inorg Biochem 2023; 242:112156. [PMID: 36801621 DOI: 10.1016/j.jinorgbio.2023.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Iron(II) and Ru(II) half-sandwich compounds encompass some promising pre-clinical anticancer agents whose efficacy may be tuned by structural modification of the coordinated ligands. Here, we combine two such bioactive metal centres in cationic bis(diphenylphosphino)alkane-bridged heterodinuclear [Fe2+, Ru2+] complexes to delineate how ligand structural variations modulate compound cytotoxicity. Specifically, Fe(II) complexes of the type [(η5-C5H5)Fe(CO)2(κ1-PPh2(CH2)nPPh2)]{PF6} (n = 1-5), compounds 1-5, and heterodinuclear [Fe2+, Ru2+] complexes, [(η5-C5H5)Fe(CO)2(μ-PPh2(CH2)nPPh2))(η6-p-cymene)RuCl2]{PF6} (n = 2-5) (compounds 7-10), were synthesized and characterised. The mononuclear complexes were moderately cytotoxic against two ovarian cancer cell lines (A2780 and cisplatin resistant A2780cis) with IC50 values ranging from 2.3 ± 0.5 μM to 9.0 ± 1.4 μM. For 7-10, the cytotoxicity increased with increasing Fe⋅⋅⋅Ru distance, consistent with their DNA affinity. UV-visible spectroscopy suggested the chloride ligands in heterodinuclear 8-10 undergo stepwise substitution by water on the timescale of the DNA interaction experiments, probably affording the species [RuCl(OH2)(η6-p-cymene)(PRPh2)]2+ and [Ru(OH)(OH2)(η6-p-cymene)(PRPh2)]2+ (where PRPh2 has R = [-(CH2)5PPh2-Fe(C5H5)(CO)2]+). One interpretation of the combined DNA-interaction and kinetic data is that the mono(aqua) complex may interact with dsDNA through nucleobase coordination. Heterodinuclear 10 reacts with glutathione (GSH) to form stable mono- and bis(thiolate) adducts, 10-SG and 10-SG2, with no evidence of metal ion reduction (k1 = 1.07 ± 0.17 × 10-1 min-1 and k2 = 6.04 ± 0.59 × 10-3 min-1 at 37 °C). This work highlights the synergistic effect of the Fe2+/Ru2+ centres on both the cytotoxicity and biomolecular interactions of the present heterodinuclear complexes.
Collapse
Affiliation(s)
- Matylda Odachowski
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Robin Neven
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Giuditta Perversi
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Dario Romano
- King Abdullah University of Science and Technology, Department of Chemical Sciences, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cathryn A Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050 Johannesburg, South Africa
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - Maarten Honing
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Yuandi Zhao
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050 Johannesburg, South Africa.
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands.
| |
Collapse
|
37
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
38
|
Liang L, Yang Y, Liu H, Yuan F, Yuan Y, Li W, Huang C, Chen J, Liu Y. Synthesis, characterization, anticancer efficacy evaluation of ruthenium(II) and iridium(III) polypyridyl complexes toward A549 cells. J Biol Inorg Chem 2023; 28:421-437. [PMID: 37097484 DOI: 10.1007/s00775-023-01997-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
A new ligand DFIP (2-(dibenzo[b,d]furan-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its two complexes iridium(III) [Ir(ppy)2(DFIP)](PF6) (ppy = 2-phenylpyridine, Ir1) and ruthenium(II) [Ru(bpy)2(DFIP)](PF6)2 (bpy = 2,2'-bipyridine, Ru1) were synthesized and characterized. The anticancer effects of the two complexes on A549, BEL-7402, HepG2, SGC-7901, HCT116 and normal LO2 cells were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex Ir1 shows high cytotoxic activity on A549, BEL-7402, SGC-7901 and HepG2, Ru1 exhibits moderate anticancer activity toward A549, BEL-7402 and SGC-7901 cells. The IC50 values of Ir1 and Ru1 toward A549 are 7.2 ± 0.1 and 22.6 ± 1.4 μM, respectively. The localization of complexes Ir1 and Ru1 in the mitochondrial, intracellular accumulation of reactive oxygen species (ROS) levels, and the changes of mitochondrial membrane potential (MMP) and cytochrome c (cyto-c) were investigated. Apoptosis and cell cycle were detected by flow cytometry. Immunogenic cell death (ICD) was used to detect the effects of Ir1 and Ru1 on the A549 using a confocal laser scanning microscope. The expression of apoptosis-related proteins was detected by western blotting. Ir1 and Ru1 can increase the intracellular ROS levels and release cyto-c, reduce the MMP, leading to the apoptosis of A549 cells and blocking the A549 cells at the G0/G1 phase. Additionally, the complexes caused a decrease of the expression of polyADP-ribose polymerase (PARP), caspase 3, Bcl-2 (B-cell lymphoma-2), PI3K (phosphoinositide-3 kinase) and upregulated the expression of Bax. All these findings indicated that the complexes exert anticancer efficacy to induce cell death through immunogenic cell death, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China.
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Fang Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
39
|
Mobbili G, Romaldi B, Sabbatini G, Amici A, Marcaccio M, Galeazzi R, Laudadio E, Armeni T, Minnelli C. Identification of Flavone Derivative Displaying a 4'-Aminophenoxy Moiety as Potential Selective Anticancer Agent in NSCLC Tumor Cells. Molecules 2023; 28:molecules28073239. [PMID: 37050002 PMCID: PMC10096842 DOI: 10.3390/molecules28073239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Five heterocyclic derivatives were synthesized by functionalization of a flavone nucleus with an aminophenoxy moiety. Their cytotoxicity was investigated in vitro in two models of human non-small cell lung cancer (NSCLC) cells (A549 and NCI-H1975) by using MTT assay and the results compared to those obtained in healthy fibroblasts as a non-malignant cell model. One of the aminophenoxy flavone derivatives (APF-1) was found to be effective at low micromolar concentrations in both lung cancer cell lines with a higher selective index (SI). Flow cytometric analyses showed that APF-1 induced apoptosis and cell cycle arrest in the G2/M phase through the up-regulation of p21 expression. Therefore, the aminophenoxy flavone-based compounds may be promising cancer-selective agents and could serve as a base for further research into the design of flavone-based anticancer drugs.
Collapse
Affiliation(s)
- Giovanna Mobbili
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Giulia Sabbatini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Adolfo Amici
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Massimo Marcaccio
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy
| | - Tatiana Armeni
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
40
|
Riaz Z, Lee BYT, Stjärnhage J, Movassaghi S, Söhnel T, Jamieson SMF, Shaheen MA, Hanif M, Hartinger CG. Anticancer Ru and Os complexes of N-(4-chlorophenyl)pyridine-2-carbothioamide: Substitution of the labile chlorido ligand with phosphines. J Inorg Biochem 2023; 241:112115. [PMID: 36731369 DOI: 10.1016/j.jinorgbio.2022.112115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Half-sandwich MII(cym)Cl (cym = η6-p-cymene; M = Ru, Os) complexes of pyridinecarbothioamide (PCA) ligands have demonstrated potential as orally active anticancer agents. In order to investigate the impact of the substitution of the labile chlorido ligand with phosphorous donor ligands on the antiproliferative properties, the triphenylphosphine (PPh3) and 1,3,5-triaza-7-phophaadamantane (pta) analogues were prepared and characterized by spectroscopic techniques and the molecular structures of several complexes were determined by X-diffraction analysis. Interestingly, the molecular structures contained the PCA ligand deprotonated, presumably driven by the reduction in overall charge of the complex. Density Functional Theory (DFT) calculations suggested minor energy differences between the protonated and deprotonated forms. The aqueous stability and the reactivity with the amino acids l-histidine and l-cysteine were investigated by 1H NMR spectroscopy of representative examples. The most potent anticancer agents featured Ru or Os centers and a PPh3 ligand and showed IC50 values in the submicromolar range against four cancer cell lines. This suggests that the antiproliferative activity was mainly dependent on the lipophilic properties of the phosphine ligand with PPh3 having a significantly higher clog P value than pta.
Collapse
Affiliation(s)
- Zahid Riaz
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; University of Sargodha, Department of Chemistry, Sargodha 40100, Pakistan
| | - Betty Y T Lee
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Julia Stjärnhage
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Sanam Movassaghi
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Muhammad Hanif
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Christian G Hartinger
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
41
|
Lipiec S, Gurba A, Agnieszczak IM, Szczepankiewicz AA, Szymański P, Taciak P, Szczepaniak R, Szeleszczuk Ł, Nieznanska H, Włodarczyk J, Fichna J, Bialy LP, Mlynarczuk-Bialy I. New gold (III) cyanide complex TGS 121 induces ER stress, proteasome inhibition and death of Ras-hyperactivated cells. Toxicol In Vitro 2023; 88:105556. [PMID: 36681286 DOI: 10.1016/j.tiv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Metal-based agents in cancer therapy, like cisplatin and its derivates, have established clinical applications but also can induce serious side effects. Thus, metallotherapeutic alternatives for platinum derivatives are developed and intensively studied. Platinum is replaced by several transition metals including gold. Especially gold (III) complexes can have the same square-planar structure and are isoelectric with platinum (II). Hence, they are developed as potential anti-cancer drugs. Thus, our group projected and developed a group of novel cyanide-based gold (III) complexes. Within this work, we aimed to characterize the safety and effectivity of one of them, TGS 121. TGS 121 in our preliminary work was selective for Ras-hyperactivated cells. Here we studied the effects of the novel complex in cancerous Ras-3 T3 and non-cancerous NIH-3 T3 cells. The complex TGS 121 turned out to be non-toxic for NIH-3 T3 cells and to induce death and alternations in Ras-hyperactivated cells. We found induction of ER stress, mitochondria swelling, proteasome inhibition, and cell cycle block. Moreover, TGS 121 inhibited cell migration and induced the accumulation of perinuclear organelles that was secondary to proteasome inhibition. Results presented in this report suggest that stable gold-cyanide TGS 121 complex is non-toxic, with a targeted mechanism of action and it is promising in anticancer drug discovery.
Collapse
Affiliation(s)
- Szymon Lipiec
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Izabela M Agnieszczak
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093 Warsaw, Poland
| | - Przemysław Szymański
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | | | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Lukasz P Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Izabela Mlynarczuk-Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland.
| |
Collapse
|
42
|
Ceramella J, Troiano R, Iacopetta D, Mariconda A, Pellegrino M, Catalano A, Saturnino C, Aquaro S, Sinicropi MS, Longo P. Synthesis of Novel N-Heterocyclic Carbene-Ruthenium (II) Complexes, “Precious” Tools with Antibacterial, Anticancer and Antioxidant Properties. Antibiotics (Basel) 2023; 12:antibiotics12040693. [PMID: 37107055 PMCID: PMC10135378 DOI: 10.3390/antibiotics12040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (Ru-NHC) complexes show interesting physico-chemical properties as catalysts and potential in medicinal chemistry, exhibiting multiple biological activities, among them anticancer, antimicrobial, antioxidant, and anti-inflammatory. Herein, we designed and synthesized a new series of Ru-NHC complexes and evaluated their biological activities as anticancer, antibacterial, and antioxidant agents. Among the newly synthesized complexes, RANHC-V and RANHC-VI are the most active against triple-negative human breast cancer cell lines MDA-MB-231. These compounds were selective in vitro inhibitors of the human topoisomerase I activity and triggered cell death by apoptosis. Furthermore, the Ru-NHC complexes’ antimicrobial activity was studied against Gram-positive and -negative bacteria, revealing that all the complexes possessed the best antibacterial activity against the Gram-positive Staphylococcus aureus, at a concentration of 25 µg/mL. Finally, the antioxidant effect was assessed by DPPH and ABTS radicals scavenging assays, resulting in a higher ability for inhibiting the ABTS•+, with respect to the well-known antioxidant Trolox. Thus, this work provides encouraging insights for further development of novel Ru-NHC complexes as potent chemotherapeutic agents endowed with multiple biological properties.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Rubina Troiano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
43
|
Petrenko YP, Khomenko DM, Doroshchuk RO, Raspertova IV, Shova S, Lampeka RD. Synthesis and crystal structure of a new copper(II) complex based on 5-ethyl-3-(pyridin-2-yl)-1,2,4-triazole. Acta Crystallogr E Crystallogr Commun 2023; 79:432-435. [PMID: 37151835 PMCID: PMC10162088 DOI: 10.1107/s2056989023003079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
The title compound, bis-[μ-3-ethyl-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ido]bis[acetato-(di-methyl-formamide)-copper(II)], [Cu2(C9H9N4)2(C2H3O2)2(C3H7NO)2] or [Cu2(L Et)2(OAc)2(dmf)2], is a triazolate complex, which contains two 3-(2-pyrid-yl)-5-ethyl-triazolates (L Et)- in bidentate-bridged coordination modes. Both copper atoms are involved in the formation of a planar six-membered metallocycle Cu-[N-N]2-Cu. The inversion center of the complex is located at the mid-point of the Cu⋯Cu vector. Each CuII atom has a distorted trigonal-bipyramidal environment formed by the three nitro-gen atoms of the deprotonated bridging 3-(2-pyrid-yl)-5-ethyl-triazolate unit, oxygen atoms of the OAc- group and dmf mol-ecule. In the crystal, C-H⋯O hydrogen bonds link the mol-ecules into chains running along the c-axis direction.
Collapse
Affiliation(s)
- Yuliia P. Petrenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
| | - Dmytro M. Khomenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
| | - Roman O. Doroshchuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
| | - Ilona V. Raspertova
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
| | - Sergiu Shova
- "PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., GhicaVoda 41A, 700487 Iasi, Romania
| | - Rostyslav D. Lampeka
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
| |
Collapse
|
44
|
Doğan Ulu Ö, Kuruçay A, Özdemir İ. Water-soluble N-heterocyclic carbene precursors bearing benzimidazole core: synthesis, characterization, in vitro antioxidant and anticancer studies. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
45
|
Wei S, Liang H, Dao A, Xie Y, Cao F, Ren Q, Yadav AK, Kushwaha R, Mandal AA, Banerjee S, Zhang P, Ji S, Huang H. Perturbing tumor cell metabolism with a Ru(II) photo-redox catalyst to reverse the multidrug resistance of lung cancer. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
46
|
U NKP, K JV, K M. Complexation behaviour of piceatannol ligand with Ti(IV) and Zr(IV) metal ions: a combined DFT and deep learning investigation. Struct Chem 2023. [DOI: 10.1007/s11224-023-02153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
47
|
Khater M, Brazier JA, Greco F, Osborn HMI. Anticancer evaluation of new organometallic ruthenium(ii) flavone complexes. RSC Med Chem 2023; 14:253-267. [PMID: 36846373 PMCID: PMC9945865 DOI: 10.1039/d2md00304j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Targeting multiple malignancy features such as angiogenesis, proliferation and metastasis with one molecule is an effective strategy in developing potent anticancer agents. Ruthenium metal complexation to bioactive scaffolds is reported to enhance their biological activities. Herein, we evaluate the impact of Ru chelation on the pharmacological activities of two bioactive flavones (1 and 2) as anticancer candidates. The novel Ru complexes (1Ru and 2Ru) caused a loss of their parent molecules' antiangiogenic activities in an endothelial cell tube formation assay. 1Ru enhanced the antiproliferative and antimigratory activities of its 4-oxoflavone 1 on MCF-7 breast cancer cells (IC50 = 66.15 ± 5 μM and 50% migration inhibition, p < 0.01 at 1 μM). 2Ru diminished 4-thioflavone's (2) cytotoxic activity on MCF-7 and MDA-MB-231 yet significantly enhanced 2's migration inhibition (p < 0.05) particularly on the MDA-MB-231 cell line. The test derivatives also showed non-intercalative interaction with VEGF and c-myc i-motif DNA sequences.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading Whiteknights Reading RG6 6AD UK .,Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre Cairo Egypt
| | - John A. Brazier
- School of Pharmacy, University of ReadingWhiteknightsReadingRG6 6ADUK
| | - Francesca Greco
- School of Pharmacy, University of Reading Whiteknights Reading RG6 6AD UK
| | | |
Collapse
|
48
|
Synthesis, Spectral Characterization, and Biological Activities of Some Metal Complexes Bearing an Unsymmetrical Salen-Type Ligand, (Z)-1-(((2-((E)-(2-Hydroxy-6-methoxybenzylidene)amino)phenyl)amino) methylene) Naphthalen-2(1H)-one. HETEROATOM CHEMISTRY 2023. [DOI: 10.1155/2023/4563958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An unsymmetrical salen-type Schiff base ligand, (Z)-1-(((2-((E)-(2-hydroxy-6-methoxybenzylidene)amino)phenyl)amino)methylene)naphthalen-2(1H)-one, and its Zn(II), Cu(II), Co(II), Mn(II), and Fe(III) complexes were synthesized and characterized by mass (MS), nuclear magnetic resonance (NMR), infrared (IR), ultraviolet-visible (UV-Vis) spectra, and effective magnetic moments. The thermal analyses of the obtained ligand and metal complexes were conducted by thermogravimetric analysis (TGA). Antimicrobial activity of the unsymmetrical Schiff base ligand and its metal complexes were examined for Staphylococcus aureus as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria. In vitro anticancer property of synthetic compounds was estimated against human cancer cell lines, a subline of Hela tumor cell line (KB), and a human liver cancer cell line (HepG-2) as well.
Collapse
|
49
|
Structural, Theoretical Investigations, Hirshfeld Surface Analysis, and Cytotoxicity Profile of a Neocuproine-Co(II)-Based Discrete Homodinuclear Complex. Appl Biochem Biotechnol 2023; 195:871-888. [PMID: 36219332 DOI: 10.1007/s12010-022-04180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
In this work, we aimed to synthesize a new cobalt(II) complex, namely [Co2(μ-HIPA)(NC)2(H2O)3(NO3)]·(NO3)(C2H5OH)(1) (where H3IPA = 5-hydroxy isophthalic acid and NC = 2,9-dimethyl-1,10-phenanthroline or neocuproine), as a promising chemotherapeutic agent. The diffraction (single crystal-XRD and powder-XRD), spectroscopic (FTIR and UV-visible), molar conductance, and thermal techniques were used to characterize complex 1. Single-crystal X-ray diffraction analysis reveals that Co(II) exists in an octahedral geometry, with the ligation of four oxygen atoms, and two nitrogen atoms. Topological analysis of complex 1 reveals 2,6C6 topological type as an underlying net. The plausible intermolecular interactions within complex 1 that control the crystal packing were analyzed by Hirshfeld surface analysis. In vitro cytotoxicity of complex 1 was evaluated against acute myeloid leukemia (THP-1), colorectal (SW480), and prostate (PC-3) cancer cell lines by utilizing an MTT assay. The result shows that complex 1 can inhibit the growth of cancer cells (THP-1, SW480, and PC-3) at lower inhibitory concentration (IC50) values of > 100, 43.6, and 95.1 µM respectively. The morphological changes induced by complex 1 on THP-1 and SW480 cancer cell lines were carried out with acridine orange/ethidium bromide staining methods. Additionally, comprehensive molecular docking studies were performed to understand the potential binding interactions of complex 1 with different bio-macromolecules.
Collapse
|
50
|
Design, synthesis, anticancer activity of new amide derivatives derived from 1,2,3-triazole-benzofuran hybrids: An insights from molecular docking, molecular dynamics simulation and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|