1
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Wood CM, Wang J, Jung EH, Pelster B. The physiological consequences of a very large natural meal in a voracious marine fish, the staghorn sculpin (Leptocottus armatus). J Exp Biol 2023; 226:jeb246034. [PMID: 37675481 DOI: 10.1242/jeb.246034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Little information exists on physiological consequences when wild fish eat natural food. Staghorn sculpins at 10-13°C voluntarily consumed 15.8% of their body mass in anchovies. Gastric clearance was slow with >60% of the meal retained in the stomach at 48 h, and was not complete until 84 h. At 14-24 h post-feeding, pH was depressed by 3 units and Cl- concentration was elevated 2-fold in gastric chyme, reflecting HCl secretion, while in all sections of the intestine, pH declined by 1 pH unit but Cl- concentration remained unchanged. PCO2 and total ammonia concentration were greatly elevated throughout the tract, whereas PNH3 and HCO3- concentration were depressed. Intestinal HCO3- secretion rates, measured in gut sacs in vitro, were also lower in fed fish. Whole-animal O2 consumption rate was elevated approximately 2-fold for 72 h post-feeding, reflecting 'specific dynamic action', whereas ammonia and urea-N excretion rates were elevated about 5-fold. Arterial blood exhibited a modest 'alkaline tide' for about 48 h, but there was negligible excretion of metabolic base to the external seawater. PaCO2 and PaO2 remained unchanged. Plasma total amino acid concentration and total lipid concentration were elevated about 1.5-fold for at least 48 h, whereas small increases in plasma total ammonia concentration, PNH3 and urea-N concentration were quickly attenuated. Plasma glucose concentration remained unchanged. We conclude that despite the very large meal, slow processing with high efficiency minimizes internal physiological disturbances. This differs greatly from the picture provided by previous studies on aquacultured species using synthetic diets and/or force-feeding. Questions remain about the role of the gastro-intestinal microbiome in nitrogen and acid-base metabolism.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jun Wang
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Bernd Pelster
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Hu C, Dai W, Zhu X, Yao H, Lin Z, Dong Y, Lv L. Expression and Functional Analysis of AMT1 Gene Responding to High Ammonia Stress in Razor Clam ( Sinonovacula constricta). Animals (Basel) 2023; 13:ani13101638. [PMID: 37238069 DOI: 10.3390/ani13101638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Ammonium transporter 1 (AMT1), a member of ammonia (NH3/NH4+) transport proteins, has been found to have ammonia transport activity in plants and microorganisms. However, the functional characteristics and molecular mechanisms of AMT1 in mollusks remain unclear. The razor clam (Sinonovacula constricta) is a suitable model species to explore the molecular mechanism of ammonia excretion because of the high concentration of ambient ammonia it is exposed to in the clam-fish-shrimp polyculture system. Here, the expression of AMT1 in S. constricta (Sc-AMT1) in response to high ammonia (12.85 mmol/L NH4Cl) stress was identified by real-time quantitative PCR (qRT-PCR), Western blotting, RNA interference, and immunofluorescence analysis. Additionally, the association between the SNP_g.15211125A > T linked with Sc-AMT1 and ammonia tolerance was validated by kompetitive allele-specific PCR (KASP). A significant upregulated expression of Sc-AMT1 was observed during ammonia exposure, and Sc-AMT1 was found to be localized in the flat cells of gill. Moreover, the interference with Sc-AMT1 significantly upregulated the hemolymph ammonia levels, accompanied by the increased mRNA expression of Rhesus glycoprotein (Rh). Taken together, our findings imply that AMT1 may be a primary contributor to ammonia excretion in S. constricta, which is the basis of their ability to inhabit benthic water with high ammonia levels.
Collapse
Affiliation(s)
- Chenxin Hu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Xiaojie Zhu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Yinghui Dong
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Liyuan Lv
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| |
Collapse
|
4
|
Perry SF, Pan YK, Gilmour KM. Insights into the control and consequences of breathing adjustments in fishes-from larvae to adults. Front Physiol 2023; 14:1065573. [PMID: 36793421 PMCID: PMC9923008 DOI: 10.3389/fphys.2023.1065573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Adjustments of ventilation in fishes to regulate the volume of water flowing over the gills are critically important responses to match branchial gas transfer with metabolic needs and to defend homeostasis during environmental fluctuations in O2 and/or CO2 levels. In this focused review, we discuss the control and consequences of ventilatory adjustments in fish, briefly summarizing ventilatory responses to hypoxia and hypercapnia before describing the current state of knowledge of the chemoreceptor cells and molecular mechanisms involved in sensing O2 and CO2. We emphasize, where possible, insights gained from studies on early developmental stages. In particular, zebrafish (Danio rerio) larvae have emerged as an important model for investigating the molecular mechanisms of O2 and CO2 chemosensing as well as the central integration of chemosensory information. Their value stems, in part, from their amenability to genetic manipulation, which enables the creation of loss-of-function mutants, optogenetic manipulation, and the production of transgenic fish with specific genes linked to fluorescent reporters or biosensors.
Collapse
|
5
|
Huang M, Shang ZH, Wu MX, Zhang LJ, Zhang YL. Regulation of Rhesus glycoprotein-related genes in large-scale loach Paramisgurnus dabryanus during ammonia loading. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114077. [PMID: 36108439 DOI: 10.1016/j.ecoenv.2022.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Waterborne ammonia is one of the crucial issues that limited production and animal health in aquaculture. Ammonia-tolerant varieties are highly desired in intensive fish farming. Screening for the key regulatory genes of ammonia tolerance is essential for variety breeding. According to the previous hypothesis, Rh glycoproteins play an important role in ammonia excretion in teleosts. However, the ammonia defensive mechanisms are not well described at present for large-scale loach (Paramisgurnus dabryanus), a typical air-breathing and commercially important fish in East Asia. Here we show that the transcription of Rh glycoprotein-related genes was significantly affected by ammonia exposure in this species. Probit analysis showed that 96 h-LC50 of NH4Cl at 23 ℃ and pH 7.2 was 92.64 mmol/L. A significant increase of Rhcg expression in gills was observed after 48 h of 60 mmol/L and 36 h of 80 mmol/L NH4Cl exposure, suggesting that Rhcg present on the apical side of the branchial epithelium facilitates NH3 excretion out of gills. A high concentration of acute ammonia exposure induced elevated Rhbg transcript in the gills of large-scale loaches, while a slight change in Rhbg expression was observed in response to lower ammonia, suggesting that transcriptions of Rhbg genes are activated by a considerably high level of ambient ammonia to eliminate excessive endogenous nitrogen. The Rhag mRNA level in gills of large-scale loaches increased markedly with the prolonging of exposure time from 0 to 36 h of ammonia loading, suggesting Rhag localized in gills may be primarily associated with ammonia handling. During 7-21 days of ammonia exposure, the expression of most Rh glycoproteins-related genes in the gills decreased, indicating that the functional role of Rh glycoproteins is not primarily associated with ammonia defense over a long period (more than 7 days). Although a significant transcript of Rhbg was found in the skin of a large-scale loach, the lack of Rhcg and down-regulation of Rhag may indicate that the skin is not an essential location of ammonia excretion, at least when submerged to high levels of ammonia in the environment. In conclusion, Rh glycoproteins localized in gills as ammonia transporters play a momentous role in ammonia detoxification in this species during acute ammonia loading. However, it does not show a positive function during long-term ammonia exposure. Furthermore, the physiological function of Rh glycoproteins localized in the skin is still unclear and deserves further study.
Collapse
Affiliation(s)
- Mei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ze-Hao Shang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Meng-Xiao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Lin-Jiang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
6
|
Aranda-Morales SA, Peña-Marín ES, Jiménez-Martínez LD, Martínez-Burguete T, Martínez-Bautista G, Álvarez-Villagómez CS, De la Rosa-García S, Camarillo-Coop S, Martínez-García R, Guzmán-Villanueva LT, Álvarez-González CA. Expression of ion transport proteins and routine metabolism in juveniles of tropical gar (Atractosteus tropicus) exposed to ammonia. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109166. [PMID: 34411697 DOI: 10.1016/j.cbpc.2021.109166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Tropical gar (Atractosteus tropicus) thrives in aquatic habitats with high levels of total nitrogen (TAN) and unionized ammonia (NH3). However, the tolerance of TAN and NH3, the excretion mechanisms involved, and the effects of these chemicals on routine metabolism are still unknown. Therefore, our objectives were to assess the acute toxicity of TAN and NH3 in A. tropicus juveniles after a 96-h exposure (LC50-96 h) to NH4Cl and after chronic exposure to two concentrations (15% and 30% of LC50-96 h TAN) for 12 days, as well as to evaluate the transcriptional effects associated with Rhesus proteins (rhag, rhbg, rhcg) and ion transporters (NHE, NKA, NKCC, and CFTR) in gills and skin; and to determine the effects of TAN and NH3 on routine metabolism through oxygen consumption (μM g-1 h-1) and gill ventilation frequency (beats min-1). LC50-96 h values were 100.20 ± 11.21 mg/L for TAN and 3.756 ± 0.259 mg/L for NH3. The genes encoding Rhesus proteins and ion transporters in gills and skin showed a differential expression according to TAN concentrations and exposure time. Oxygen consumption on day 12 showed significant differences between treatments with 15% and 30% TAN. Gill ventilation frequency on day 12 was higher in fish exposed to 30% TAN. In conclusion, A. tropicus juveniles are highly tolerant to TAN, showing upregulation of the genes involved in TAN excretion through gills and skin, which affects routine oxygen consumption and energetic cost. These findings are relevant for understanding adaptations in the physiological response of a tropical ancestral air-breathing fish.
Collapse
Affiliation(s)
- Sonia A Aranda-Morales
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Emyr S Peña-Marín
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico; Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, Mexico
| | - Luis D Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Nacajuca-Jalpa de Méndez R/a Rivera Alta, C.P. 86200 Jalpa de Méndez, Tabasco, Mexico
| | - Talhia Martínez-Burguete
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Gil Martínez-Bautista
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Carina S Álvarez-Villagómez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Susana De la Rosa-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Susana Camarillo-Coop
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Rafael Martínez-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Laura T Guzmán-Villanueva
- Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, Mexico; Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional 195. Col. Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Carlos A Álvarez-González
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico.
| |
Collapse
|
7
|
Eom J, Wood CM. Brain and gills as internal and external ammonia sensing organs for ventilatory control in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110896. [PMID: 33444774 DOI: 10.1016/j.cbpa.2021.110896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/25/2022]
Abstract
Ammonia is both a respiratory gas and a toxicant in teleost fish. Hyperventilation is a well-known response to elevations of both external and internal ammonia levels. Branchial neuroepithelial cells (NECs) are thought to serve as internal sensors of plasma ammonia (peripheral chemoreceptors), but little is known about other possible ammonia-sensors. Here, we investigated whether trout possess external sensors and/or internal central chemoreceptors for ammonia. For external sensors, we analyzed the time course of ventilatory changes at the start of exposure to high environmental ammonia (HEA, 1 mM). Hyperventilation developed gradually over 20 min, suggesting that it was a response to internal ammonia elevation. We also directly perfused ammonia solutions (0.01-1 mM) to the external surfaces of the first gill arches. Immediate hypoventilation occurred. For central chemoreceptors, we injected ammonia solutions (0.5-1.0 mM) directly onto the surface of the hindbrain of anesthetized trout. Immediate hyperventilation occurred. This is the first evidence of central chemoreception in teleost fish. We conclude that trout possess both external ammonia sensors, and dual internal ammonia sensors (perhaps for redundancy), but their roles differ. External sensors cause short term hypoventilation, which would help limit toxic waterborne ammonia uptake. When fish cannot avoid HEA, the diffusion of waterborne ammonia into the blood will stimulate both peripheral (NECs) and central (brain) chemoreceptors, resulting in hyperventilation. This hyperventilation will be beneficial in increasing ammonia excretion via the Rh metabolon system in the gills not only after HEA exposure, but also after endogenous ammonia loading from feeding or exercise.
Collapse
Affiliation(s)
- Junho Eom
- Department of Zoology, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
8
|
Porteus C, Kumai Y, Abdallah SJ, Yew HM, Kwong RW, Pan Y, Milsom WK, Perry SF. Respiratory responses to external ammonia in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2021; 251:110822. [DOI: 10.1016/j.cbpa.2020.110822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
|
9
|
Lin LY, Zheng JA, Huang SC, Hung GY, Horng JL. Ammonia exposure impairs lateral-line hair cells and mechanotransduction in zebrafish embryos. CHEMOSPHERE 2020; 257:127170. [PMID: 32497837 DOI: 10.1016/j.chemosphere.2020.127170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (including NH3 and NH4+) is a major pollutant of freshwater environments. However, the toxic effects of ammonia on the early stages of fish are not fully understood, and little is known about the effects on the sensory system. In this study, we hypothesized that ammonia exposure can cause adverse effects on embryonic development and impair the lateral line system of fish. Zebrafish embryos were exposed to high-ammonia water (10, 15, 20, 25, and 30 mM NH4Cl; pH 7.0) for 96 h (0-96 h post-fertilization). The body length, heart rate, and otic vesicle size had significantly decreased with ≥15 mM NH4Cl, while the number and function of lateral-line hair cells had decreased with ≥10 mM NH4Cl. The mechanoelectrical transduction (MET) channel-mediated Ca2+ influx was measured with a scanning ion-selective microelectrode technique to reveal the function of hair cells. We found that NH4+ (≥5 mM NH4Cl) entered hair cells and suppressed the Ca2+ influx of hair cells. Neomycin and La3+ (MET channel blockers) suppressed NH4+ influx, suggesting that NH4+ enters hair cells via MET channels in hair bundles. In conclusion, this study showed that ammonia exposure (≥10 mM NH4Cl) can cause adverse effects in zebrafish embryos, and lateral-line hair cells are sensitive to ammonia exposure.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Jie-An Zheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Shun-Chih Huang
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
10
|
Fehsenfeld S, Wood CM. A potential role for hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) in teleost acid-base and ammonia regulation. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110469. [PMID: 32653509 DOI: 10.1016/j.cbpb.2020.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests the involvement of hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) not only in cardiac and neural function, but also in more general physiological processes including acid-base and ammonia regulation. We have identified four different HCN paralogs/isoforms in the goldfish Carassius auratus (CaHCN1, CaHCN2b, CaHCN4a and CaHCN4b) as likely candidates to contribute to renal, branchial and intestinal acid-base and ammonia regulation in this teleost. Quantitative real-time PCR showed not only high mRNA abundance of all isoforms in heart and brain, but also detectable levels (particularly of CaHCN2b and CaHCN4b) in non-excitable tissues, including gills and kidneys. In response to an internal or external acid-base and/or ammonia disturbance caused by feeding or high environmental ammonia, respectively, we observed differential and tissue-specific changes in mRNA abundance of all isoforms except CaHCN4b. Furthermore, our data suggest that the functions of specific HCN channels are supplemented by certain Rhesus glycoprotein functions to help in the protection of tissues from elevated ammonia levels, or as potential direct routes for ammonia transport in gills, kidney, and gut. The present results indicate important individual roles for each HCN isoform in response to acid-base and ammonia disturbances.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Université du Quebec à Rimouski, Département de biologie, chimie et géographie, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; University of British Columbia, Department of Zoology, 4200 - 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Chris M Wood
- University of British Columbia, Department of Zoology, 4200 - 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Eom J, Fehsenfeld S, Wood CM. Is ammonia excretion affected by gill ventilation in the rainbow trout Oncorhynchus mykiss? Respir Physiol Neurobiol 2020; 275:103385. [DOI: 10.1016/j.resp.2020.103385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023]
|
12
|
Tuong DD, Huong DTT, Phuong NT, Bayley M, Milsom WK. Ventilatory responses of the clown knifefish, Chitala ornata, to arterial hypercapnia remain after gill denervation. J Comp Physiol B 2019; 189:673-683. [PMID: 31552490 DOI: 10.1007/s00360-019-01236-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023]
Abstract
The aim of this study was to corroborate the presence of CO2/H+-sensitive arterial chemoreceptors involved in producing air-breathing responses to aquatic hypercarbia in the facultative air-breathing clown knifefish (Chitala ornata) and to explore their possible location. Progressively increasing levels of CO2 mixed with air were injected into the air-breathing organ (ABO) of one group of intact fish to elevate internal PCO2 and decrease blood pH. Another group of fish in which the gills were totally denervated was exposed to aquatic hypercarbia (pH ~ 6) or arterial hypercapnia in aquatic normocarbia (by injection of acetazolamide to increase arterial PCO2 and decrease blood pH). Air-breathing frequency, gill ventilation frequency, heart rate and arterial PCO2 and pH were recorded during all treatments. The CO2 injections into the ABO induced progressive increases in air-breathing frequency, but did not alter gill ventilation or heart rate. Exposure to both hypercarbia and acetazolamide post-denervation of the gills also produced significant air-breathing responses, but no changes in gill ventilation. While all treatments produced increases in arterial PCO2 and decreases in blood pH, the modest changes in arterial PCO2/pH in the acetazolamide treatment produced the greatest increases in air-breathing frequency. These results strengthen the evidence that internal CO2/H+ sensing is involved in the stimulation of air breathing in clown knifefish and suggest that it involves extra-branchial chemoreceptors possibly situated either centrally or in the air-breathing organ.
Collapse
Affiliation(s)
- Dang Diem Tuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam.
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | | | - Mark Bayley
- Department of Bioscience Zoophysiology, Aarhus University, Aarhus, Denmark
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Eom J, Giacomin M, Clifford AM, Goss GG, Wood CM. Ventilatory sensitivity to ammonia in the Pacific hagfish ( Eptatretus stoutii), a representative of the oldest extant connection to the ancestral vertebrates. ACTA ACUST UNITED AC 2019; 222:jeb.199794. [PMID: 31221739 DOI: 10.1242/jeb.199794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/16/2019] [Indexed: 12/30/2022]
Abstract
Ventilatory sensitivity to ammonia occurs in teleosts, elasmobranchs and mammals. Here, we investigated whether the response is also present in hagfish. Ventilatory parameters (nostril flow, pressure amplitude, velar frequency and ventilatory index, the last representing the product of pressure amplitude and frequency), together with blood and water chemistry, were measured in hagfish exposed to either high environmental ammonia (HEA) in the external sea water or internal ammonia loading by intra-vascular injection. HEA exposure (10 mmol l-1 NH4HCO3 or 10 mmol l-1 NH4Cl) caused a persistent hyperventilation by 3 h, but further detailed analysis of the NH4HCO3 response showed that initially (within 5 min) there was a marked decrease in ventilation (80% reduction in ventilatory index and nostril flow), followed by a later 3-fold increase, by which time plasma total ammonia concentration had increased 11-fold. Thus, hyperventilation in HEA appeared to be an indirect response to internal ammonia elevation, rather than a direct response to external ammonia. HEA-mediated increases in oxygen consumption also occurred. Responses to NH4HCO3 were greater than those to NH4Cl, reflecting greater increases over time in water pH and P NH3 in the former. Hagfish also exhibited hyperventilation in response to direct injection of isotonic NH4HCO3 or NH4Cl solutions into the caudal sinus. In all cases where hyperventilation occurred, plasma total ammonia and P NH3 levels increased significantly, while blood acid-base status remained unchanged, indicating specific responses to internal ammonia elevation. The sensitivity of breathing to ammonia arose very early in vertebrate evolution.
Collapse
Affiliation(s)
- Junho Eom
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0 .,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Marina Giacomin
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Alexander M Clifford
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Greg G Goss
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
14
|
Exercise improves growth, alters physiological performance and gene expression in common carp (Cyprinus carpio). Comp Biochem Physiol A Mol Integr Physiol 2018; 226:38-48. [DOI: 10.1016/j.cbpa.2018.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
|
15
|
Abstract
Respiratory chemoreceptors in vertebrates are specialized cells that detect chemical changes in the environment or arterial blood supply and initiate autonomic responses, such as hyperventilation or changes in heart rate, to improve O2 uptake and delivery to tissues. These chemoreceptors are sensitive to changes in O2, CO2 and/or H+. In fish and mammals, respiratory chemoreceptors may be additionally sensitive to ammonia, hypoglycemia, and numerous other stimuli. Thus, chemoreceptors that affect respiration respond to different types of stimuli (or modalities) and are considered to be "polymodal". This review discusses the polymodal nature of respiratory chemoreceptors in vertebrates with a particular emphasis on chemoreceptors of the carotid body and pulmonary epithelium in mammals, and on neuroepithelial cells in water- and air-breathing fish. A major goal will be to examine the evidence for putative polymodal chemoreceptors in fish within the context of studies on mammalian models, for which polymodal chemoreceptors are well described, in order to improve our understanding of the evolution of polymodal chemoreceptors in vertebrates, and to aid in future studies that aim to identify putative receptors in air- and water-breathing fish.
Collapse
|
16
|
Gao N, Zhu L, Guo Z, Yi M, Zhang L. Effects of chronic ammonia exposure on ammonia metabolism and excretion in marine medaka Oryzias melastigma. FISH & SHELLFISH IMMUNOLOGY 2017; 65:226-234. [PMID: 28428060 DOI: 10.1016/j.fsi.2017.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/01/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
Ammonia is highly toxic to aquatic organisms, but whether ammonia excretion or ammonia metabolism to less toxic compounds is the major strategy for detoxification in marine fish against chronic ammonia exposure is unclear to date. In this study, we investigated the metabolism and excretion of ammonia in marine medaka Oryzias melastigma during chronic ammonia exposure. The fish were exposed to 0, 0.1, 0.3, 0.6, and 1.1 mmol l-1 NH4Cl spiked seawater for 8 weeks. Exposure of 0.3-1.1 mmol l-1 NH4Cl had deleterious effects on the fish, including significant reductions in growth, feed intake, and total protein content. However, the fish could take strategies to detoxify ammonia. The tissue ammonia (TAmm) in the 0.3-1.1 mmol l-1 NH4Cl treatments was significantly higher than those in the 0 and 0.1 mmol l-1 NH4Cl treatments after 2 weeks of exposure, but it recovered with prolonged exposure time, ultimately reaching the control level after 8 weeks. The amino acid catabolic rate decreased to reduce the gross ammonia production with the increasing ambient ammonia concentration. The concentrations of most metabolites remained constant in the 0-0.6 mmol l-1 NH4Cl treatments, whereas 5 amino acids and 3 energy metabolism-related metabolites decreased in the 1.1 mmol l-1 NH4Cl treatment. JAmm steadily increased in ambient ammonia from 0 to 0.6 mmol l-1 and slightly decreased when the ambient ammonia concentration increased to 1.1 mmol l-1. Overall, marine medaka cope with sublethal ammonia environment by regulating the tissue TAmm via reducing the ammonia production and increasing ammonia excretion.
Collapse
Affiliation(s)
- Na Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy Sciences, Beijing, 100049, China
| | - Limei Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhiqiang Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
17
|
Fulton J, LeMoine CMR, Bucking C, Brix KV, Walsh PJ, McDonald MD. A waterborne chemical cue from Gulf toadfish, Opsanus beta, prompts pulsatile urea excretion in conspecifics. Physiol Behav 2017; 171:92-99. [PMID: 28040487 DOI: 10.1016/j.physbeh.2016.12.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/25/2022]
Abstract
The Gulf toadfish (Opsanus beta) has a fully functional ornithine urea cycle (O-UC) that allows it to excrete nitrogenous waste in the form of urea. Interestingly, urea is excreted in a pulse across the gill that lasts 1-3h and occurs once or twice a day. Both the stress hormone, cortisol, and the neurotransmitter, serotonin (5-HT) are involved in the control of pulsatile urea excretion. This and other evidence suggests that urea pulsing may be linked to toadfish social behavior. The hypothesis of the present study was that toadfish urea pulses can be triggered by waterborne chemical cues from conspecifics. Our findings indicate that exposure to seawater that held a donor conspecific for up to 48h (pre-conditioned seawater; PC-SW) induced a urea pulse within 7h in naïve conspecifics compared to a pulse latency of 20h when exposed to seawater alone. Factors such as PC-SW intensity and donor body mass influenced the pulse latency response of naïve conspecifics. Fractionation and heat treatment of PC-SW to narrow possible signal candidates revealed that the active chemical was both water-soluble and heat-stable. Fish exposed to urea, cortisol or 5-HT in seawater did not have a pulse latency that was significantly different than seawater alone; however, ammonia, perhaps in the form of NH4Cl, was found to be a factor in the pulse latency response of toadfish to PC-SW and could be one component of a multi-component cue used for chemical communication in toadfish. Further studies are needed to fully identify the chemical cue as well as determine its adaptive significance in this marine teleost fish.
Collapse
Affiliation(s)
- Jeremy Fulton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christophe M R LeMoine
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Biology, Brandon University, Brandon, MB R7A 6A9, Canada
| | - Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Kevin V Brix
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Patrick J Walsh
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| |
Collapse
|
18
|
Zimmer AM, Wood CM. Acute exposure to high environmental ammonia (HEA) triggers the emersion response in the green shore crab. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:65-75. [DOI: 10.1016/j.cbpa.2016.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
|
19
|
The sensing of respiratory gases in fish: Mechanisms and signalling pathways. Respir Physiol Neurobiol 2016; 224:71-9. [DOI: 10.1016/j.resp.2015.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/29/2022]
|
20
|
Funk GD, Kinkead R. Fuelling the Fire of Life: A tribute to Professor W.K. Milsom. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:1-3. [DOI: 10.1016/j.cbpa.2015.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Kwon H, Park HS, Yu J, Hong S, Choi Y. Spatio-temporally controlled transfection by quantitative injection into a single cell. Biomaterials 2015. [PMID: 26222285 DOI: 10.1016/j.biomaterials.2015.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfection-based cellular control has been widely used in biology; however, conventional transfection methods cannot control spatio-temporal differences in gene expression or the quantity of delivered materials such as external DNA or RNA. Here, we present a non-viral and spatio-temporally controlled transfection technique of a quantitative injection into a single cell. DNA was quantitatively injected into a single cell at a desired location and time, and the optimal gene delivery and expression conditions were determined based on the amount of the delivered DNA and the transfection efficacy. Interestingly, an injection of 1500 DNAs produced an about average 30% gene expression efficiency, which was the optimal condition, and gene expression was sustained for more than 14 days. In a single cell, fluorescent intensity and polymerase chain reaction (PCR) results were compared for the quantity of gene expression. The high coincidence of both results suggests that the fluorescence intensity can reveal gene expression level which was investigated by PCR. In addition, 3 multiple DNA genes were successfully expressed in a single cell with different ratio. Overall, these results demonstrate that spatio-temporally controlled transfection by quantitative transfection is a useful technique for regulating gene expression in a single cell, which suggests that this technique may be used for stem cell research, including the creation of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Hyosung Kwon
- Department of Bio-convergence Engineering, Korea University, Seoul 136-701, South Korea
| | - Hang-soo Park
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 136-701, South Korea
| | - Jewon Yu
- Department of Biomedical Engineering, Korea University, Seoul 136-701, South Korea
| | - Sunghoi Hong
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 136-701, South Korea; School of Biosystem and Biomedical Science, Korea University, Seoul 136-701, South Korea.
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 136-701, South Korea; Department of Biomedical Engineering, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
22
|
Nawata CM, Walsh PJ, Wood CM. Nitrogen metabolism, acid-base regulation, and molecular responses to ammonia and acid infusions in the spiny dogfish shark (Squalus acanthias). J Comp Physiol B 2015; 185:511-25. [PMID: 25794843 DOI: 10.1007/s00360-015-0898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/18/2015] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
Abstract
Although they are ureotelic, marine elasmobranchs express Rh glycoproteins, putative ammonia channels. To address questions raised by a recent study on high environmental ammonia (HEA) exposure, dogfish were intravascularly infused for 24 h at 3 ml kg(-1) h(-1) with isosmotic NaCl (500 mmol l(-1), control), NH4HCO3 (500 mmol l(-1)), NH4Cl (500 mmol l(-1)), or HCl (as 125 mmol l(-1) HCl + 375 mmol l(-1) NaCl). While NaCl had no effect on arterial acid-base status, NH4HCO3 caused mild alkalosis, NH4Cl caused strong acidosis, and HCl caused lesser acidosis, all predominantly metabolic in nature. Total plasma ammonia (T(Amm)) and excretion rates of ammonia (J(Amm)) and urea-N (J(Urea-N)) were unaffected by NaCl or HCl. However, despite equal loading rates, plasma T(Amm) increased to a greater extent with NH4Cl, while J(Amm) increased to a greater extent with NH4HCO3 due to much greater increases in blood-to-water PNH3 gradients. As with HEA, both treatments caused large (90%) elevations of J(Urea-N), indicating that urea-N synthesis by the ornithine-urea cycle (OUC) is driven primarily by ammonia rather than HCO3(-). Branchial mRNA expressions of Rhbg and Rhp2 were unaffected by NH4HCO3 or NH4Cl, but v-type H(+)-ATPase was down-regulated by both treatments, and Rhbg and Na(+)/H(+) exchanger NHE2 were up-regulated by HCl. In the kidney, Rhbg was unresponsive to all treatments, but Rhp2 was up-regulated by HCl, and the urea transporter UT was up-regulated by HCl and NH4Cl. These responses are discussed in the context of current ideas about branchial, renal, and OUC function in this nitrogen-limited predator.
Collapse
Affiliation(s)
- C Michele Nawata
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada,
| | | | | |
Collapse
|
23
|
De Boeck G, Wood CM. Does ammonia trigger hyperventilation in the elasmobranch, Squalus acanthias suckleyi? Respir Physiol Neurobiol 2014; 206:25-35. [PMID: 25462837 DOI: 10.1016/j.resp.2014.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/26/2022]
Abstract
We examined the ventilatory response of the spiny dogfish, to elevated internal or environmental ammonia. Sharks were injected via arterial catheters with ammonia solutions or their Na salt equivalents sufficient to increase plasma total ammonia concentration [TAmm]a by 3-5 fold from 145±21μM to 447±150μM using NH4HCO3 and a maximum of 766±100μM using (NH4)2SO4. (NH4)2SO4 caused a small increase in ventilation frequency (+14%) and a large increase in amplitude (+69%), while Na2SO4 did not. However, CO2 partial pressure (PaCO2) also increased and arterial pHa and plasma bicarbonate concentration ([HCO3(-)]a) decreased. NH4HCO3 caused a smaller increase in plasma ammonia resulting in a smaller but significant, short lived increases in ventilation frequency (+6%) and amplitude (36%), together with a rise in PaCO2 and [HCO3(-)]a. Injection with NaHCO3 which increased pHa and [HCO3(-)]a did not change ventilation. Plasma ammonia concentration correlated significantly with ventilation amplitude, while ventilation frequency showed a (negative) correlation with pHa. Exposure to high environmental ammonia (1500μM NH4HCO3) did not induce changes in ventilation until plasma [TAmm]a increased and ventilation amplitude (but not frequency) increased in parallel. We conclude that internal ammonia stimulates ventilation in spiny dogfish, especially amplitude or stroke volume, while environmental ammonia only stimulates ventilation after ammonia diffuses into the bloodstream.
Collapse
Affiliation(s)
- Gudrun De Boeck
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield, British Columbia V0R 1B0, Canada; SPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield, British Columbia V0R 1B0, Canada; Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada; Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|