1
|
Yin W, Mai W, Cui D, Zhao T, Song J, Zhang W, Chang Y, Zhan Y. Dynamic responses during early development of the sea urchin Strongylocentrotus intermedius to CO 2-driven ocean acidification: A microRNA-mRNA integrated analysis. MARINE POLLUTION BULLETIN 2025; 212:117514. [PMID: 39755060 DOI: 10.1016/j.marpolbul.2024.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
To explore the dynamic molecular responses to CO2-driven ocean acidification (OA) during the early developmental stages of sea urchins, gametes of Strongylocentrotus intermedius were fertilized and developed to the four-armed larva stage in either natural seawater (as a control; pHNBS = 7.99 ± 0.01) or acidified conditions (ΔpHNBS = -0.3, -0.4, and - 0.5 units) according to the prediction for ocean pH by the end of this century. Specimens from five developmental stages (fertilization, cleavage, blastula, prism, and four-armed larva) were collected and comparative microRNA (miRNA) and mRNA transcriptome analyses were performed. The results showed that 1) a total of 22,224 differentially expressed genes (DEGs) and 51 differentially expressed miRNAs (DEMs) were identified in the OA-treated groups compared with the control group. 2) The numbers of both DEGs and DEMs were the largest at the blastula stage, indicating dramatic changes in gene expression. 3) Five "miR-1/DEG" modules were identified as potential biomarkers reflecting the response of sea urchins to OA during the early developmental period. 4) The PI3K/Akt signaling pathway was a key pathway involved in the response of S. intermedius to OA in its early developmental stages. This study deepens our understanding of the dynamic molecular regulatory mechanisms underlying sea urchin responses to CO2-driven OA.
Collapse
Affiliation(s)
- Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Wenhong Mai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, PR China.
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
2
|
Yin W, Mai W, Hu W, Li Y, Cui D, Sun J, Li J, Zhan Y, Chang Y. Molecular response to CO 2-driven ocean acidification in the larvae of the sea urchin Hemicentrotus pulcherrimus: Evidence from comparative transcriptome analyses. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106951. [PMID: 39826434 DOI: 10.1016/j.marenvres.2025.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In order to explore the impact of CO2-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pHNBS = 7.98) or in three laboratory-controlled OA conditions (ΔpHNBS = -0.3, -0.4, -0.5 units) based on the projections of the Intergovernmental Panel on Climate Change (IPCC) for 2100. Four-armed larval specimens were collected, and comparative transcriptome analysis was then performed. The results showed that 58 differentially expressed genes (DEGs) were identified in OA-treated groups as compared to the control. Moreover, more transition and transversion SNPs were observed in OA-treated groups than those in the control indicating a potential occurrence of adaption to OA in H. pulcherrimus larvae. Six candidate DEGs shared among OA-treated groups were identified as potential biomarkers correlated with low pH tolerance, mainly enriched in nine pathways associated with Notch signaling, dorso-ventral axis formation, oxidative phosphorylation, lysine degradation, valine, leucine and isoleucine degradation, lysosome, cell adhesion molecules, glutathione metabolism and PPAR signaling pathway. These results will not only enrich our knowledge of the impacts of OA on sea urchin larvae from the aspect of gene expression, provide a better understanding on larval forms coping with OA, but also offer more clues and biomarkers for developing protection or management strategies for sea urchins under near-future OA conditions.
Collapse
Affiliation(s)
- Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wenhong Mai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jiaxiang Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
3
|
Jafari F, Naeemi AS, Sohani MM, Noorinezhad M. Effect of elevated temperature, sea water acidification, and phenanthrene on the expression of genes involved in the shell and pearl formation of economic pearl oyster (Pinctada radiata). MARINE POLLUTION BULLETIN 2023; 196:115603. [PMID: 37793272 DOI: 10.1016/j.marpolbul.2023.115603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Our study aims to examine the effect of some stressors on the gene expression levels of shell matrix proteins in a pearl oyster. Oysters were exposed to the different combinations of the temperature, pH, and phenanthrene concentration is currently measured in the Persian Gulf and the predicted ocean warming and acidification for 28 days. The expression of all the studied genes was significantly downregulated. Time and temperature had the greatest effects on the decreases in n19 and n16 genes expression, respectively. Aspein and msi60 genes expression were highly influenced by pH. Pearlin was affected by double interaction temperature and phenanthrene. Moreover, a correlation was observed among the expression levels of studied genes. This study represents basic data on the relationship between mRNA transcription genes involved in the shell and pearl formation and climate changes in pollutant presence conditions and acclimatizing mechanism of the oyster to the future scenario as well.
Collapse
Affiliation(s)
- Fatemeh Jafari
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran
| | - Akram Sadat Naeemi
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran.
| | - Mohammad Mehdi Sohani
- University of Guilan, Faculty of Agricultural Sciences, Department of Biotechnology, Rasht, Iran
| | - Mohsen Noorinezhad
- Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Bushehr, Iran
| |
Collapse
|
4
|
Transcriptomes reveal the involved genes in the sea urchin Mesocentrotus nudus exposed to high flow velocities. Sci Rep 2022; 12:13493. [PMID: 35931770 PMCID: PMC9356045 DOI: 10.1038/s41598-022-17793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the importance of flow velocity in marine ecosystems, molecular mechanisms of the water flow induced behavioral and growth changes remain largely unknown in sea urchins. The present study compared the gene expressions of the sea urchin Mesocentrotus nudus at high flow velocities (10 cm/s and 20 cm/s) and low flow velocity (2 cm/s) using transcriptomes. A total of 490 and 470 differentially expressed genes (DEGs) were discovered at 10 cm/s and 20 cm/s, respectively. There were 235 up-regulated and 255 down-regulated genes at 10 cm/s, 213 up-regulated and 257 down-regulated genes at 20 cm/s, compared with sea urchins at 2 cm/s. Further, there were 72 overlapped DEGs involved in regulation at both 10 cm/s and 20 cm/s. Gene Ontology (GO) functional annotation showed that DEGs were mainly enriched to cellular process, cell part, binding, and metabolism process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that DEGs were enriched in three pathways related to amino acid metabolism and lipid metabolism. A number of genes related to growth and metabolism of sea urchins were mobilized in high flow velocity environment. We further highlighted a muscle-associated gene ankyrin-1, which is correlated with the movement of tube feet at different flow velocities. The present study provides valuable information on the molecular mechanisms of changed behaviors and growth when sea urchins are exposed to high flow velocity.
Collapse
|
5
|
Abstract
Much recent marine research has been directed towards understanding the effects of anthropogenic-induced environmental change on marine biodiversity, particularly for those animals with heavily calcified exoskeletons, such as corals, molluscs and urchins. This is because life in our oceans is becoming more challenging for these animals with changes in temperature, pH and salinity. In the future, it will be more energetically expensive to make marine skeletons and the increasingly corrosive conditions in seawater are expected to result in the dissolution of these external skeletons. However, initial predictions of wide-scale sensitivity are changing as we understand more about the mechanisms underpinning skeletal production (biomineralization). These studies demonstrate the complexity of calcification pathways and the cellular responses of animals to these altered conditions. Factors including parental conditioning, phenotypic plasticity and epigenetics can significantly impact the production of skeletons and thus future population success. This understanding is paralleled by an increase in our knowledge of the genes and proteins involved in biomineralization, particularly in some phyla, such as urchins, molluscs and corals. This Review will provide a broad overview of our current understanding of the factors affecting skeletal production in marine invertebrates. It will focus on the molecular mechanisms underpinning biomineralization and how knowledge of these processes affects experimental design and our ability to predict responses to climate change. Understanding marine biomineralization has many tangible benefits in our changing world, including improvements in conservation and aquaculture and exploitation of natural calcified structure design using biomimicry approaches that are aimed at producing novel biocomposites.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
6
|
Wares JP, Skoczen KM. Maintenance of a Genetic Cline in the Barnacle Balanus glandula. THE BIOLOGICAL BULLETIN 2019; 236:199-206. [PMID: 31167090 DOI: 10.1086/703516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The barnacle Balanus glandula is a broadly distributed species in the temperate northeastern Pacific that is notable for a robust genetic cline between about 36° and 40° N latitude. Prior work established the evolutionary origins of this pattern and proposed that it is maintained by environmental selection. In recent years, "climate velocity" studies in marine habitats have shown dramatic distributional shifts for many species as they track their preferred temperature range in a warming ocean. We re-sampled B. glandula across its entire geographic range to determine whether there has been any shift in this genetic distribution, a development signaling that temperature or other climate factors are maintaining this genetic cline. Additionally, we asked whether the spatially distributed mitochondrial lineages also vary in reproductive output with latitude, using location as a proxy for temperature and other coastal environmental factors. Here we show that although the distribution of the genetic cline has not appreciably changed, there is a notable association of decreased reproductive output at lower latitudes of the distribution in the "northern" lineage of B. glandula.
Collapse
|
7
|
Zhao C, Ding J, Yang M, Shi D, Yin D, Hu F, Sun J, Chi X, Zhang L, Chang Y. Transcriptomes reveal genes involved in covering and sheltering behaviors of the sea urchin Strongylocentrotus intermedius exposed to UV-B radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:236-241. [PMID: 30342356 DOI: 10.1016/j.ecoenv.2018.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Although the potential link exists between behavioral responses to UV-B radiation and the maximization of fitness, molecular mechanisms of these UV-B induced behaviors remain poorly understood. For the first time, we investigated the transcriptomes of covered (CB), sheltered (SB) and non-protected (NA) sea urchins Strongylocentrotus intermedius exposed to UV-B radiation. A total of 330 differentially expressed genes were revealed by transcriptome comparisons. By comparing with the group NA, we found 79 up-regulated and 118 down-regulated genes in SB group, as well as 26 up-regulated and 67 down-regulated genes in group CB. There were 34 up-regulated genes and 52 down-regulated genes in group SB, compared with group CB. These differentially expressed genes failed to enrich either Gene Ontology (GO) or Kyoto Encyclopedia of Genes and Genomes (KEGG), only except an enrichment in KEGG. We highlighted TRPA1 and Opsin as key neurobiological genes involved in the molecular mechanisms of covering and sheltering behaviors of sea urchins exposed to UV-B radiation. What's more, other identified genes provide valuable resources for future investigations on the molecular basis of covering and sheltering behaviors of sea urchins.
Collapse
Affiliation(s)
- Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jingyun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Mingfang Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Dongtao Shi
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Fangyuan Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jiangnan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xiaomei Chi
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Lingling Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
8
|
Liu W, Yu Z, Huang X, Shi Y, Lin J, Zhang H, Yi X, He M. Effect of ocean acidification on growth, calcification, and gene expression in the pearl oyster, Pinctada fucata. MARINE ENVIRONMENTAL RESEARCH 2017; 130:174-180. [PMID: 28760624 DOI: 10.1016/j.marenvres.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 05/27/2023]
Abstract
In this study, shell growth, shell microstructure, and expression levels of shell matrix protein genes (aspein, n16, and nacrein) that play a key role in the CaCO3 crystal polymorphism (calcite and aragonite) of the shell were investigated in the pearl oyster Pinctada fucata at pH 8.10, 7.70, and 7.40. We found that the shell length and total weight index did not vary significantly between oysters reared at pH 8.10 and 7.70, but was significantly lower at pH 7.40. Calcium content and shell hardness were not significantly different between pH 8.10 and 7.70, but were significantly different at pH 7.40. At pH 7.40, the shell exhibited a poorly organized nacreous microstructure, and showed an apparent loss of structural integrity in the nacreous layer. The prismatic layer appeared morphologically dissimilar from the samples at pH 8.10 and 7.70. The internal layer was corroded and had dissolved. At pH 7.40, the expression levels of nacrein, aspein, and n16 decreased on day 1, and remained low between days 2 and 42. The expression levels of these genes were significantly lower at pH 7.40 than at pH 8.10 and 7.70 during days 2-42. These results suggest that ocean acidification will have a limited impact on shell growth, calcification, and associated gene expression levels at a pH of 7.70, which is projected to be reached by the end of the century. The negative effects were found on calcification and gene expression occurred at the lowest experimental pH (7.40).
Collapse
Affiliation(s)
- Wenguang Liu
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Zonghe Yu
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Xiande Huang
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yu Shi
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Jianshi Lin
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Hua Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Xuejie Yi
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Maoxian He
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China.
| |
Collapse
|
9
|
Jia Z, Wang Q, Wu K, Wei Z, Zhou Z, Liu X. De novo transcriptome sequencing and comparative analysis to discover genes involved in ovarian maturity in Strongylocentrotus nudus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017. [PMID: 28622611 DOI: 10.1016/j.cbd.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strongylocentrotus nudus is an edible sea urchin, mainly harvested in China. Correlation studies indicated that S. nudus with larger diameter have a prolonged marketing time and better palatability owing to their precocious gonads and extended maturation process. However, the molecular mechanism underlying this phenomenon is still unknown. Here, transcriptome sequencing was applied to study the ovaries of adult S. nudus with different shell diameters to explore the possible mechanism. In this study, four independent cDNA libraries were constructed, including two from the big size urchins and two from the small ones using a HiSeq™2500 platform. A total of 88,581 unigenes were acquired with a mean length of 1354bp, of which 66,331 (74.88%) unigenes could be annotated using six major publicly available databases. Comparative analysis revealed that 353 unigenes were differentially expressed (with log2(ratio)≥1, FDR≤0.001) between the two groups. Of these, 20 differentially expressed genes (DEGs) were selected to confirm the accuracy of RNA-seq data by quantitative real-time RT-PCR. Furthermore, gene ontology and KEGG pathway enrichment analyses were performed to find the putative genes and pathways related to ovarian maturity. Eight unigenes were identified as significant DEGs involved in reproduction related pathways; these included Mos, Cdc20, Rec8, YP30, cytochrome P450 2U1, ovoperoxidase, proteoliaisin, and rendezvin. Our research fills the gap in the studies on the S. nudus ovaries using transcriptome analysis.
Collapse
Affiliation(s)
- Zhiying Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qiai Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kaikai Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenlin Wei
- Biological Science Department, Dezhou University, Dezhou 253023, Shandong, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, Liaoning, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Evans TG, Pespeni MH, Hofmann GE, Palumbi SR, Sanford E. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. Mol Ecol 2017; 26:2257-2275. [PMID: 28141889 DOI: 10.1111/mec.14038] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023]
Abstract
Increasing awareness of spatial and temporal variation in ocean pH suggests some marine populations may be adapted to local pH regimes and will therefore respond differently to present-day pH variation and to long-term ocean acidification. In the Northeast Pacific Ocean, differences in the strength of coastal upwelling cause latitudinal variation in prevailing pH regimes that are hypothesized to promote local adaptation and unequal pH tolerance among resident populations. In this study, responses to experimental seawater acidification were compared among embryos and larvae from six populations of purple sea urchins (Strongylocentrotus purpuratus) inhabiting areas that differ in their frequency of low pH exposure and that prior research suggests are locally adapted to seawater pH. Transcriptomic analyses demonstrate urchin populations most frequently exposed to low pH seawater responded to experimental acidification by expressing genes within major ATP-producing pathways at greater levels than populations encountering low pH less often. Multiple genes within the tricarboxylic acid cycle, electron transport chain and fatty acid beta oxidation pathways were upregulated in urchin populations experiencing low pH conditions most frequently. These same metabolic pathways were significantly over-represented among genes both expressed in a population-specific manner and putatively under selection to enhance low pH tolerance. Collectively, these data suggest natural selection is acting on metabolic gene networks to redirect ATP toward maintaining acid-base homeostasis and enhance tolerance of seawater acidification. As a trade-off, marine populations more tolerant of low pH may have less energy to put towards other aspects of fitness and to respond to additional ocean change.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Stephen R Palumbi
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, 93950, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, USA
| |
Collapse
|
11
|
Calosi P, Melatunan S, Turner LM, Artioli Y, Davidson RL, Byrne JJ, Viant MR, Widdicombe S, Rundle SD. Regional adaptation defines sensitivity to future ocean acidification. Nat Commun 2017; 8:13994. [PMID: 28067268 PMCID: PMC5227702 DOI: 10.1038/ncomms13994] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022] Open
Abstract
Physiological responses to temperature are known to be a major determinant of species distributions and can dictate the sensitivity of populations to global warming. In contrast, little is known about how other major global change drivers, such as ocean acidification (OA), will shape species distributions in the future. Here, by integrating population genetics with experimental data for growth and mineralization, physiology and metabolomics, we demonstrate that the sensitivity of populations of the gastropod Littorina littorea to future OA is shaped by regional adaptation. Individuals from populations towards the edges of the natural latitudinal range in the Northeast Atlantic exhibit greater shell dissolution and the inability to upregulate their metabolism when exposed to low pH, thus appearing most sensitive to low seawater pH. Our results suggest that future levels of OA could mediate temperature-driven shifts in species distributions, thereby influencing future biogeography and the functioning of marine ecosystems. Global warming is expected to lead to shifts in species' geographic ranges to track preferred temperatures. Here, the authors show that populations of the common periwinkle vary in their sensitivity to ocean acidification, another major global change driver, which could further restrict range shifts caused by warming.
Collapse
Affiliation(s)
- Piero Calosi
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec G5L 3A1, Canada.,Marine Biology &Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Sedercor Melatunan
- Marine Biology &Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK.,Faculty of Fisheries and Marine Science, University of Pattimura, Kampus Poka, Ambon 97233, Indonesia
| | - Lucy M Turner
- Marine Biology &Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK.,Department of Marine Sciences, University of Gothenburg, Box 460, Gothenburg 405 30, Sweden
| | - Yuri Artioli
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Robert L Davidson
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan J Byrne
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark R Viant
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Simon D Rundle
- Marine Biology &Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
12
|
Dineshram R, Chandramouli K, Ko GWK, Zhang H, Qian PY, Ravasi T, Thiyagarajan V. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors. GLOBAL CHANGE BIOLOGY 2016; 22:2054-2068. [PMID: 26990129 DOI: 10.1111/gcb.13249] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.
Collapse
Affiliation(s)
- Ramadoss Dineshram
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Island, Hong Kong SAR, China
| | - Kondethimmanahalli Chandramouli
- Division of Biological, Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences and KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ginger Wai Kuen Ko
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Island, Hong Kong SAR, China
| | - Huoming Zhang
- Division of Biological, Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences and KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Timothy Ravasi
- Division of Biological, Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences and KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Island, Hong Kong SAR, China
| |
Collapse
|
13
|
Sea Star Wasting Disease in the Keystone Predator Pisaster ochraceus in Oregon: Insights into Differential Population Impacts, Recovery, Predation Rate, and Temperature Effects from Long-Term Research. PLoS One 2016; 11:e0153994. [PMID: 27144391 PMCID: PMC4856327 DOI: 10.1371/journal.pone.0153994] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
Sea star wasting disease (SSWD) first appeared in Oregon in April 2014, and by June had spread to most of the coast. Although delayed compared to areas to the north and south, SSWD was initially most intense in north and central Oregon and spread southward. Up to 90% of individuals showed signs of disease from June-August 2014. In rocky intertidal habitats, populations of the dominant sea star Pisaster ochraceus were rapidly depleted, with magnitudes of decline in density among sites ranging from -2x to -9x (59 to 84%) and of biomass from -2.6x to -15.8x (60 to 90%) by September 2014. The frequency of symptomatic individuals declined over winter and persisted at a low rate through the spring and summer 2015 (~5-15%, at most sites) and into fall 2015. Disease expression included six symptoms: initially with twisting arms, then deflation and/or lesions, lost arms, losing grip on substrate, and final disintegration. SSWD was disproportionally higher in orange individuals, and higher in tidepools. Although historically P. ochraceus recruitment has been low, from fall 2014 to spring 2015 an unprecedented surge of sea star recruitment occurred at all sites, ranging from ~7x to 300x greater than in 2014. The loss of adult and juvenile individuals in 2014 led to a dramatic decline in predation rate on mussels compared to the previous two decades. A proximate cause of wasting was likely the "Sea Star associated Densovirus" (SSaDV), but the ultimate factors triggering the epidemic, if any, remain unclear. Although warm temperature has been proposed as a possible trigger, SSWD in Oregon populations increased with cool temperatures. Since P. ochraceus is a keystone predator that can strongly influence the biodiversity and community structure of the intertidal community, major community-level responses to the disease are expected. However, predicting the specific impacts and time course of change across west coast meta-communities is difficult, suggesting the need for detailed coast-wide investigation of the effects of this outbreak.
Collapse
|